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Abstract

This paper continues the development of the field focused at the second focus of a
prolate- spheroidal reflector. Here we explore the behavior of the impulse term along the
z-axis as one passes through this focus.



Section 1. Introduction
This paper is an extension of two previous papers [1,2] .

In [1] some analytic approximations were developed for the focal waveform produced at
the second focus of a prolate-spheroidal reflector due to a TEM wave launched from the
first focus. This is extended to consider the spot size of the peak field near the second
focus.

In [2] parameter study of the focal waveform was produced at the second focus of a
prolate-spheroidal reflector due to a TEM wave launched from the first focus

In this paper we find the analytic calculation of fields on z- axis near second focus.

In Section .2 we show that the impulsive part of the waveform at the second focus can be
described by a delta-like pulse forming for z<z, and in the limit as z — z, gives the
required true delta function. This is a physical example of the formation of a delta
function.

In Section .3 ,the aperture integral gives the same result (at early time) as the exact
incident wave before truncation. This gives confidence in the aperture integration.

In Section .4, we can see that the area of the 5 — like pulse is same for both after and
before z,.

In Section .5 we illustrate these results with a graphical example.



Section 2. Exact Solution for z < zyup to Aperture Truncation of Signal

First of all, we will find the exact E, for z <z time after pulse arrival when solution
no longer goes to 0.

We can write (3.13 and 3.10 in [1])
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This result applies for a time up until the signal from the truncation of the aperture is
seen.
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Figure 2.1 z values for z < z,

For convenience we define retarded time t, such that t, = 0 is the time of arrive of the

direct ray along the z-axis. The field from ‘¥jthen arrives at the observer on the z-axis at
a retarded time
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So we can find
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We notive that e, is proportional to [z—z,] ™ and ct, is proportional to [z —z,]. The
product gives the “area “ under the pulse as
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This is like an impulse , going to zero width as z — z. Let us compare this with (5.1) in
[509]. They are exactly same! This shows that the impulsive part of the waveform at the
second focus can be described by a delta-like pulse forming for z <z, and in the limit as

z — z, gives the required true delta function. This is a physical example of the formation
of a delta function.
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We can find the normalized value of the (2.10) from (2.5) and (2.9) so
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Section 3. Approximate Solution for z < z, by Aperture Integration for Early Time with
z Near z
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Figure 3.1 z values for z < z,
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The field seen at observer at z 1; is seen at a time later

ety =ln-[e-2, [~ [ -[z0- 2, ]

r3=[‘P2+[z—szl/2 and rzz[‘PZJr[zo—zp]z]l/Z SO (3.1)

ct, :[[\PZ +[e _Zp]z]llz L _Zpﬂ‘“‘Pz +[zo _Zp]z]llz |z _ZP]}

For small ¥ we have

3.2)
2ct,

|2 -1sz [z _lsz




If |zo - 2| is small
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We want to take the surface integral of (4.2 in [1]) to find a new form for Eg. It does

not involve a step-function from S,. It is now dispersed such that the integration limits
can be functions of time.
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Lets take the time derivative of the integral
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As we can see it is same as E,in (2.4) . This shows that the aperture integral gives the

same result (at early time) as the exact incident wave before truncation. This gives
confidence in the aperture integration. The reader can note that since the above gives a
pulse of width greater than zero, one can add a correction term (zero at zero retarded
time) from Eg, also dispersed like Ej.




Section 4. Approximate Solution for z >z, by Aperture Integration for Early Time with
z Near z
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Figure 4.1 z values for z>z,

Imagine ‘¥, closeto ¥, for which
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On S, fields arrive at the time
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The last fields come along the z axis at
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So define retarded time by subtracting z —z,, so the pulse stops at 0 but begins at
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It is same as (2.5)
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The integral (or area) of the pulse is just
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One can see with comparing (4.16) and (2.9) the area of Egis same both after and before
Zg.

(4.16)
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Section.5 Concluding Remarks

In order to illustrate what our results have shown, let us make a graph showing the
normalized pulse shape for various z —z,as one goes from negative values through the
second focus to positive values. For negative values the pulse follows after zero retarded
time. For positive values the pulse precedes zero retarded time. For our example we take
the simple case from [1,2] for which,
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and which is related to the 3,4,5 right triangle.
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Figure 5.1 Normalizes Pulse Shape for the various

One can see from Figure 5.1 the compression of the pulse as z — z, and expansion of
the pulse for z> zy as z increases away from z;.
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