
 
EM Implosion Memos 

 
Memo 2 

 
 

June 2006 
 

Analytic Calculation of Fields on z- Axis Near Second Focus 
 

 
Serhat Altunc and Carl E. Baum 

 
University of New Mexico 

Department of Electrical and Computer Engineering 
Albuquerque New Mexico 87131 

 
 
 
 
 
 

Abstract 
 

This paper continues the development of the field focused at the second focus of a 
prolate- spheroidal reflector. Here we explore the behavior of the impulse term along the 
z-axis as one passes through this focus.  
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Section 1. Introduction 
 
This paper is an extension of two previous papers [1,2] . 
 
In [1] some analytic approximations were developed  for the focal waveform produced at 
the second focus of a prolate-spheroidal reflector due to a TEM wave launched from the 
first focus. This is extended to consider the spot size of the peak field near the second 
focus. 
In [2]  parameter study of the focal waveform  was produced at the second focus of a 
prolate-spheroidal reflector due to a TEM wave launched from the first focus 
 
In this paper we find the analytic calculation of fields on z- axis near second focus. 
 
In Section .2 we show that the impulsive part of the waveform at the second focus can be 
described by a delta-like pulse forming for 0zz <  and in the limit as gives the 
required true delta function. This is a physical example of the formation of a delta 
function. 

0zz →

In Section .3 ,the aperture integral gives the same result (at early time) as the exact 
incident wave before truncation. This gives confidence in the aperture integration. 
In Section .4, we can see that the area of the like−δ pulse is same for both after and 
before  0z .
In Section .5 we illustrate these results with a graphical example. 
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Section 2. Exact Solution for  0zz < up to Aperture Truncation of Signal  
 
     First of all, we will find the exact  for 2E 0zz <  time after pulse arrival when solution 
no longer goes to 0. 
 
     We  can write (3.13 and 3.10 in [1]) 
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On the z-axis  is arbitrary so lets take 22 ,0 φ=θ 02 =φ , giving 
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This result applies for a time up until the signal from the truncation of the aperture is 

 

seen. 

Figure 2.1  z values for 0zz <  
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So we can find 
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This is like an impulse , going to zero width as . Let us compare this with (5.1) in 
the imp

0zz →
[509].  They are exactly same! This shows that ulsive part of the waveform at the 
second focus can be described by a delta-like pulse forming for 0zz <  and in the limit as 

0zz → gives the required true delta function. This is a physical example of the formation 
ta function. 
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Section 3.  Approximate Solution for 0zz <  by Aperture Integration for Early Time with 
 Near z 0z  

 
Figure 3.1  z values for 0zz <  
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If   zz0 −  is small 
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As we can see it is same as in (2.4) . This shows that the aperture integral gives the 
same result (at early time) as the exact incident wave before truncation. This gives 
confidence in the aperture integration. The reader can note that since the above gives a 
pulse of width greater than zero, one can add a correction term (zero at zero retarded 
time) from , also dispersed like  

2E

sE δE .
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Section 4.  Approximate Solution for  by Aperture Integration for Early Time with 
Near 

0zz >

z 0z  
  

 

 
 
 Figure 4.1  z values for  0zz >
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[ ] [ ] ppp0p0lastr zzzzzzzzct −=−+−−−=  (4.5) 
 
So define retarded time by subtracting pzz −  so the pulse stops at 0 but begins at 
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Section.5 Concluding Remarks 
 
     In order to illustrate what our results have shown, let us make a graph showing the 
normalized pulse shape for various 0zz − as one goes from negative values through the 
second focus to positive values. For negative values the pulse follows after zero retarded 
time. For positive values the pulse precedes zero retarded time. For our example we take 
the simple case from [1,2] for which, 
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and which is related to the 3,4,5 right triangle. 
 

Figure 5.1 Normalizes Pulse Shape for the various 
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