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. INTRODUCTION

Analytical solutions of the wave equation for impulsive sources frequently give
rise to expressions of the form

§(£) —~ sa(t—%) * Au(r:—-g) (1)

where an impulsive source gives rise to a travelling impulse of variable strength
together with a modulated travelling step wave. Examples of this form are to
be found in the solution for current flow in an infinite cylinder in free space
when subjected to an impulsive wave l-l, the reflection of impulsive waves from
conducting dielectrics L2 and the passage of waves through both lossless and
lossy plasma 2.

Adopting this form of solution ab initio leads to a set of first order equations
together with the original equation and is accordingly over-determined.
However, the equations only have to have consistent solutions at the wave front
and imposing this condition allows the determination of S and the amplitude of
A at t=z/c. Analytical solutions are thus obtained at the wavefront, the very
region of space-time that is most difficult for a numerical attack.

A trial substitution of either component of the formal solution separately,
rapidly demonstrates that neither is a possible solution of the original equation.
This observation gives rise to the name of the method - the Method of Fractured
Solutions. The power of the method lies in its ability to cope equally with spatio-
temporal variations in material parameters, the most general variations of which
do not allow the reduction of Maxwell's equations to a wave equation in one field
component. The approach here is to.impose the formal solution directly on the
field components in Maxwell's equations resulting in analytical solutions, up to
an integral, for each of the field components. '

An obvious application for these methods is inssthe transmission of-
electromagnetic waves through time and space dependent plasmas, such as in the
EMP source region and in stratified conductors such as the ground.

It is to be noted that this functional form is not an approximation but constitutes
the complete solution. The information that can be extracted however is only
partial, in that the solutions readily obtained relate only to the wavefront. The
equation that determines A is the original equation. The value of the method is
that it produces analytical results at the wavefront enabling late-time (low-
frequency) approximations to be matched at the wavefront, producing
approximations valid over all space-time, and provides analytical data for
validating numerical solutions.




2 MAXWELL'S EQUATIONS

2.1 Maxwell's equations for an isotropic medium can be written

VxE = _98 (2)
ot

VxH = % ' (3)

V.B=0 ' (4)

V.D=p (5)

Combining these with the constitutive relations

D = ¢E (6)

B = uH (7)

J = oE (8)
they become

vxg = -2LAl | (9)

VxH = Q%l + OE : & (10)..

Making use of the vector relation

Ux (VxX) = V (V.X) - V?X (11)

and observing that within a conductor we may set
p=o0 (12)

we obtain



_ 0 (13).
VE = 3t [Vx(pﬂ')]

—V2H=%[VX(SE)] + Vx(0E) (14)

3 UNIFORM COLLISIONLESS PLASMA

3.1 If we now consider the case of constant parameters, these equations reduce to

3
VE = u-2 (V) (15)
VeH = —sait(vxg) _ OVXE (16)

Eliminating H and E in turn yields

O*E OE
VeE = pu Ho— 17
FTE " at (17)

0°H oH
V2H = oz 18
H = pue 3:2 + uo 3t (18)

which is of course the standard separation of the fields obtaining the wave
equation for each component. We now restrict our attention to the one
dimensional case, obtaining

0*E _ . OE JE - <
ozz "% aer T H%E | (19)
FPH _ 0°H oH

azz  Mf 9e2 "M% (20)

3.2 We now determine the impulsive response by imposing the fractured form of the
solution, '

E=5, e a(t—%) + ETu(t——g) (21)

this particular form being chosen for algebraic convenience.



3.3

Forming the various derivatives

i@:-ﬂ&’—(age‘“z+ﬁ)s +-.§.Ei'u T (22)
0z c ° c

PE _ S,e* 6,,+i(2a306-¢z+ﬂ')51_,_(uzsoewz_g 3_5'1_')5 + azETu (23)
oz?2 c? c c c 2

OE _ g g-azg! 9E; (24)
3t S,e™ 6/ + E.b + 3¢ U

FPE _ —az &1 / OE,; E,

'-é'—t-'z- = Soe z 6 + ETB + 2 —a? 6 + atz u (25)

We note that the constructs u, 8, &', 8" are not functions but distributions, and
that we are using the extended meaning of differentiation due to Schwartz L=
The prime is used throughout to denote differentiation with respect to the

argument.

Substituting these derivatives into the wave equations we obtain two further
equations involving all of these distributions. However the distributions are
linearly independent and accordingly the coefficients of the various distributions
must vanish identically. This process results in the following set of equations,
before cancellations

-z
(&) Soez = pe S, e (26)
(o
E,
(89 %(ZaSoe'”‘ + —CT] = peE, + posS,e™*? (27)
OE,
(8) a5, e7%% - %a—; = Zpe%il' + HokE, (28)
() PE, _ °E,, OF, (29)

[
®

+
azz  Ffae TH9G

-



3.4

Cancelling common factors, the first of these reduces to

a not unexpected result.

Making use of this result the second equation yields

o = paoc
2

and the third equation gives

OE;

L OEr , poc p _ _C(ﬂf)’-s I

1 %57
c dt 2 T2 o

iIf we now set

the equation reduces to

By inspection, this has a solution

z c
G = g(t——c) + 5“2502

where g is an arbitrary function. Therefore we have

Ep= e'“[g(t—-g) + gazsoz] &

(30)

(31)

(32)

(33)

(34)

(35)

(36) — - .

It is readily checked that this solution is incompatible with equation (29).
However, this solution resuits from the & - function whose distribution only
exists at the wavefront. Accordingly we only impose this solution at the
wavefront, and so determine a boundary condition for the fourth equation. At

the wavefront

(37)

When z = 0, the amplitude of the tail, E, must be zero, and so we have g(0) = 0

which gives



- C{ g \? " Zec” .38
e = 3\ 200) %7€ °° R (38)

Equation (29) is, of course, the original equation. The advantage of the above
procedure is that we now know the amplitude of the tail function at the
wavefront, enabling late-time approximations to be matched to this result and
so obtain reasonable approximations over all space-time.

3.5 In this particular instance the problem has an analytical solution '-5, and we can
validate the above procedure. Taking Laplace transforms of each term of the
E-field equation, and denoting transformations by a tilde, there results

RE

= [spo+s?pel & (39)
dz?
This has a general solution
F=A eVshovsipez 4 g o-Vspa+siuc z (40)
The boundary conditions are
z=0, E=S.8(t) = E=S, . B =3, (41)
z-o, E-0 = F-0 . A=0 (42)

Noting the transform pair L6

e ~kvETETa = o-at/2 T, (a___\ltzz'kz) u(t-k) (43)
Js(s+a)
We write, on making use of
c? = 7}5 (44)
S - +2 E]
5. 5 oexp( \ s(s s) = (45)
z
a(z) s(s+3)
€

R

e’



3 =t | 9 | peo 22| yfe-2)|
a(E) 5, e 10[28 £ Cz) u(t c)] (46)
C

Carrying out the differentiation

(47)

which is precisely the fractured form of the solution. Observing that L7

f(z) 8(a-z) = f(a) & (a-z) (48)

the solution reduces to

2
I(_G_ tz_z_]
-9 ¢ 1 2
E =5, 2 51:—-2-') . oz (28N c ut——z-) (49)
c 2eC ) P c
-

To obtain the amplitude of E, at the wavefront, we allow ¢ - z/c in the second
term, and there results

az

_ cl ¢ \2_ "3 50
[Ed,.., = 503(—280) ze 2t (50)

which is the previous formula (38).



4 LOSSY PLASMA WITH VARIABLE CONDUCTIVITY

4.1 Having illustrated the method of fractured solutions on an elementary problemA

we now consider the more difficult problem of a wave travelling in a medium
with a spatial dependency of the conductivity. We must now write

o)
=y Y 1
V2E yat(VxH) (51)
Vo = -sait(Vx:-:) - Vx (0E) (52)
where
o = o(r) - (53)

Eliminating H from the first of these

V3E=psa—a; E+pa(r)g—€ (54)
Making use of the vector identity

Vx(¢da) = ¢Vxa + (Vo) xa (55)
the equation for the magnetic field becomes

V2H=,us% +,ua(r)ig£;:r + (Va(r))x E (56)

Restricting our attention to the one dimensional case the equations reduce to

PE _  OPE 3E '
5o~ Mg TR 3 (57)
gzzfzf = ue gzt}.:- + pa(z)g_‘{: + %Z_)_E (58)

We can eliminate E from this latter equation, but at the expense of some
complexity. The result is

(59)

10

e



4.2

We first consider the E-field equation. We proceed in the same manner as
before, that is we introduce the fractured form of solution as a trial solution and
attempt to determine the coefficients of the distributions.

The input is
E = 5,56(¢8) (60)

and the output, or the response of the medium, is taken to be

E=Sﬁ(t—%) +ETu(t——zé) (61)

where S is the strength of the travelling impulse, and can be regarded as
depending on z, it only existing when z = ct; E; is the 'tail' function which
depends on both z and ¢. Forming the various derivatives

95 _ 5 - S8/ (62)
0z c c

o 95, (o5 B
0z oz

E = _(_9_2_E_Tu+[825'_£%6 i{zi‘g Br & + i&” (63)
dz? dz?2 dz2 ¢ 0z c|l 9z ¢ c?

%:%E;Z'u+g_'s+az,a+saf (64)
FRE _ azET d%2s aET 0s / " 65
atZ'atZU+[ac2+2W5+[2W+E"]a+S§ res)

The various distributions are linearly independent, and so we may equate
coefficients, and we obtain-the following set of equatio®s ) .

11



4.3

(8 . = = pes (66)
| g o

, Er 298| _ as . (67)
(&%) [? =32 pe[Z 3c +ET] po(z)s

#s _ 2 OEr| _ ?s , ., OF; as (68)

I e —c—z] ‘“’[W“‘zﬁz " pol2) [5E + B
PE, 0%E., OE, : 69
(u) Frrii HE 327 + po(z) = (69)

The first of these equations yields, as before

c? = eip (70)

Making use of this result, the tail component cancels from the second equation
which reduces to

285 _ 208
c dz c? ot

+ uo(z)s (71)

We have chosen to display the variable conductivity as a function of z, and so for
the impulse propagation it is appropriate to express S as a function of z only.
Accordingly this equation reduces to

95 _ -cpo(z) 4 (72)
dz 2
which has the solution
_ o(z!) , ; (73)
S
S, exp Seo d

The same solution is obtained if we consider S to be a function of ¢ only, and

regard
g = ag(ct) (74)

12
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4.4  Utilising the solution of the first two equations, the third equation reduces to

3E,

(75) .
oz o

OFr , o(2) o . c| [0(2)\2_0o'(z)
at 2ec T 2 (230) 2eC

« X
oy

which we note is a first order equation, and again the solution must only be
imposed at the wavefront. Accordingly we may regard E, as depending on zonly,
and we may delete the term in JE,/dt. Note that we do not replace

1 0E;, _ OE,,

=_T _T 76
¢ ot 0z (76)

as this would be taking the spatial variation into account twice. The equation
then becomes an ordinary differential equation, and the solution is

j (cr (z) )2 _ol(z
A 2eC 2¢eC

4.5 We now turn to the magnetic field equation, where we make the Fractured
Solution substitution

z /
_ ag(z’) dZI
2e8C

dZI (77)

H = s,,a(t——i) + H,_,.u(t——-i) (78)

The distribution coefficient equations can be written down by inspection, the
only equation with an additional term being derived from the coefficients of &.
Accordingly we have

i Sy _
2 95y 3s _ - -
(8%) ,HT'—ca—ZH = ﬂs[za—t” +HT] + uo(z) Sy ey ) (80)
2 2
(o) aazSZH B Tzsaaic ) #8[22“2 %i‘] + po(z)H, + o’/(z)s, (81)
azH azH aH
(u) aZZT = ue aczT + pcr(z)—-a—éf + 0/(2) E, (82)

13
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From (&'}, by analogy with the E-field equation, we have immediately

4
_ | e _fo(z) 5, (83) -
Sy #Soexp .Of__z‘ec dz
The (8) equation reduces to
9H, 1 0H: _ a(z) cl|l{alz)\2_ d(2) (84)
e, L .= £ £ S
3z ¢ at | 2ec T 32 (Zsc) 2ec P (2) | Sx
and this has a solution
Hy = S Es exp-?a(zf)dz, 2z ) gy - 30/ | (8s)
1) mce 2\ u ° 2¢ec 2¢ec 2¢ec

The space-derivatives of the tail function at the wavefront are obtainable
directly from the amplitude result. In particular, for the constant conductivity

4.6
case we have
(B e = S 57070 (86)
Differentiating this result we have
- 25, e (1 - az) (87)

[ OE,
2

oz

To confirm this result we extract the tail function from the complete solution

zZ=Cct

1% |e2- Z—zl
- 2¢ 2
Ep.= 0.S,ze™%% \ <l (88) .
E2 - Z_z
C2
Differentiating‘
1|9 | sz - 2 |2 cz_Lz‘ :‘[0 cz-—}(ag)
% = aS,e™ 2\ c (1-az) - Z2 9 22\ ctl, 2z 22\ c?
3z o tz__z_z c2 2e z_z_z c? z_Z_z ;
c? c? c?

14



Letting z-ct

OE,

Oy . ca? - -ez (90) -
3z S,(1-az)e

2

z=ct

confirming the previous derivation. Generalising the result, we obtain

o o
oz?

] = (—)"'13("0:”*1(1- (n-1)e - az) e =2 (91)
zZ=Cct

The amplitude of the tail function at the wavefront is independent of ¢, other
than through the relation z=ct, and so we have

0E,
Ser = . (92)
ot L=ct ° '

To confirm this result we return to the complete tail-function

£2- 22

.| 9
1 28\ c?

E, = aS,ze ™2 (93)

£2- 2
c2

Differentiating this result with respect to ¢ in the neighbourhood of z=ct, there
results

ag g 2 z2
— —. | Ec-== ¢t
OE - i de'\ c?
52 =wS,ze7 _ - < (94)
. tz—z— t2 zZ _2.
c? o2
=0

15



5.1

COLLISIONLESS UNMAGNETISED PLASMA

The equation of motion of an electron in an electric field is

.& =% = -_eE
at? m
while the field equations are
OF 0H _
9z " hoge T °
oH JE _ .
35 + eo% Nex

Differentiating (97) with respect to ¢
*H , , PE

3692 8"—81':2 = NeX
Combining with (95)
FH o FPE _ _Neip
dtdz °ot? m
Differentiating (96) with respect to z
PE FPH
—_— — =
azz  Hoazae ~ °
Combining with (99)
_PE _ € *E , , Ne?
oz2  [oo5ea °m
Substituting for the plasma frequency
2 _ #ONGZCZ
YT Tm
and taking Laplace Transforms
RE , . Wal
32 BoE,s8? + —|E

16

(95)

(96)

(97)

(98)

(99)

(100)

(101)-

(102)

(103)

N,



which may be re-written as

GZE _ 2 E ' .
—azz = [S + Wp ? (104) .
Solutions are
sfoZ v o 2 (105)
e
Setting the initial condition to
E =5,8(¢t) (106)
F=35 L (107)

o

and letting E —~ 0 as z ~ o, we have the solution

Ezsoe-m% (108)
which can also be written as
, VT ad
E=-s5, e (109)
8(5) s? + @2
c D

(110)

E = -5,|-J,

2_{2ZV?
Wyl L (c)

u(t——) (111)

17



We have the equivalence

f(E)Y6(E) = £(Q)B(E) - (112)
and the solution reduces to

zZ

E=85, 6(::--)— “pZ

which is the fractured solution form. From this result we obtain

C

Ed,ce = ~ =28 (114)

We see from (113) that the &-function propagates into the plasma with a growing
tail function, and a qualitative graph is indicated below

s, A
" .

The amplitude of the tail at the wavefront tends to -« wi¢h z, while the distance-

of the first zero behind the wavefront tends to zero with 1/z.

18



5.3 If we conduct a fractured solution analysis, we make the substitution

E=S§(t~—i) +E‘,_,.u(t—TZ:) (115)

and form the relevant derivatives

OE _ _Sg |95 _ Er oF (116)
az = ¢ +[az c]°* Y

PE _ S sy |20 _ EBr|ls  |8%s _ 2 9E; FEyp 117
Ereiit [caz Zloe |25 - 25z ]er FEw )
@—56/+E5+% (118)
at T ot

2

PE _ oo 4 gy + 25018 « ZEx, (119)
ace at acz

Substituting into the equation for the fields and equating the coefficients to zero

S
(8") = = p,e,S (120)
oy (285 Er] _ (121)
(5 ) [C aZ Cz] ”ogoET
2
(5) P25 EBET - ope OE, . HolVe 5 (122)
dz2 oz °° gt m -
S
O%E, J*E,  p,Ne? (
= 123)
W T TR Ty P
From these we obtain
(8 ¢ = —2 (124)
#OSO
~ 8 = F(t) (125)

Therefore S is a function of t only.

19



At t=0,

E=5,08(¢t)
S =3,
_2 0B, _ OF, p e
(8) c oz 2Hofo 3t T m 5o

(126)

(127)

(128)

This equation is only imposed at the wavefront and so we can delete the dE,/dt

term, and we find

. _ hNetc
[ET]z=ct: - 2m Z5,
which may be re-written as
2
- _ Wp z
(Brlzece = ~ 3 %

in agreement with the complete solution.

20
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6.1

6.2

COLLISIONLESS MAGNETISED PLASMA

The propagation of arbitrary pulses through the ionosphere is a problem of some
complexity, involving electron motion in the Earth's magnetic field, with this
motion coupled to the radiation fields. In addition, the electron density and
magnetic field depend on altitude. This note is a preliminary study of impulse
propagation through a uniform plasma with a uniform imposed magnetic field,
the method of attack being that of the Method of Fractured Solutions. Though
this method is not essential to the solution. of this particular problem, it has
significant advantages when the medium parameters have a spatial dependency.

A further simplification is to consider a collisionless plasma; that is, the mean
free path of the electrons is taken to be so large that dissipation can be ignored.

The Equations

We consider an ionised medium containing N electrons per unit volume, with an
imposed magnetic field H,. We now direct a plane impulsive EM wave in the
direction of H, which we will call the z-directijon. This EM wave causes the
electrons to move and the resulting currents modify the fields. The equations
of motion for a charge in an arbitrary EM field are L3:

e
% = —TiEx— "°(;’zHD—2Hy) (131)
e . .
y=-2E, I‘:"(sz—xHo) (132)
. ©H, . :
Z=- m" (XH, - yH,) (133)

The ratio of the force exerted by the magnetic vector o?the travelling wave to
the force exerted by the electric vector is equal to v/c, where v is the velocity.
Accordingly we may ignore terms involving H, and H},, and the set of equations
reduces to:

o e — eyoHo ) (134)
* mEx m O
. _ e epH, .
L (135)

The motion takes place in the x-y plane and the wave vectors are so restricted.
This allows us to take advantage of the complex notation by writing

21 -



v=x+1iy
E=E +1iE,’

H=H, + 1H,

equation of motion

,ep H |
i Auo oy = e

The field equations are:

3E, ,  OH, _
3z K3t T
9E,  0H,

oz " Hege 7O

JH. oE
y + X = 5
3 so—a - Nex
0H, JE,
_ - —t = =N Yy
az €o ot ey

Multiplying (142) by -i and adding the result to (141), we obtain

3 _ ,  OH, _
3z tHoze T O

and in a similar fashion, from (143) and (144)

O0H . OFE . .
—_— —_— =
3 1soat iNev

22

(136)7

(137)

(138)

(139)

(140)

(141)

(142)

(143)

(144)

(145)

(146)

~——



Equations (140), (145) and (146) constitute the set of equations to be solved.
Differentiating (146) with respect to time, we obtain
& H o°E

T2, = iNe? 147
5taz * 1%03.z iNevV (147)

 Making use of (146) and (140), this equation becomes

FH , ;. PE _ ;Ne’E ,CHH 00 ., OE (148)

otdz * 1soat2 m m |0z 183t

Differentiating (145) with respect to z

FE _ . &H _

Substituting for 2H/dtdz from (149) into (148), we obtain

*RE *E . NeZFoE_ e”ﬁHo[aH aE] (150)

—— = pu_e = + ig —=
dz2 Bo °ot2 m m oz °ot

and so we have succeeded in eliminating v and reducing the equations to be
solved to (145) and (150). It is possible to eliminate H from (150), but no
advantage is gained. Noting that the plasma frequency, @ o is given by

o = ‘Nezﬂocz (151)
P m

and making the substitution

2 .
- eH. H, (152)
C m
we have S - : e
FE oRE wf, n[oH ., OE
- PE | % OH OF (153)
dz2 ”°8°8t2 ¥ c? c?|dz * 18°8t

The pair of equations may be tackled by the Fractured Solution method directly.

23



6.3

The Fractured Solution Equations

We impose the Fractured Solution form

S,8(t) - sa(t—%) + Tu(t--—zc-) (154)

where S, the strength of the delta-function, and T, the amplitude of the tail
function may be functions of z and ¢. Generally neither term satisfies the
differential equation on its own, the sum being required to obtain a solution.

To apply the method, we first develop the various derivatives of the Fractured
Solution, where we are making use of the Schwartz definition of derivatives for
distributions. For the E-field we write

E=SE.5(t——‘Z) +E’Tu(t-—zé) (155)

and we obtain

' JE.
%%:_5'36’+ET5+8_;'U (156)

We have chosen to let S, depend on z only as the §-function only exists at z=ct.
Primes indicate differentiation with respect to the argument. Continuing,

FPE _ Sesy | 2098 Eply, #Sy 2 OE; 0% E; 159
0z? 026 +[ Caz+?6 9z c 9z 6+azzu ( )

24



In a similar manner we impose the fractured form on the magnetic field and we

have the set

H= s,,a(t-—z) + HTu(t-ﬁ;)

OH OH.

3 © S8/ + H 8 + —at""u

FH _ 7 / OH, PHy
32 S,0" + H O +26t6 é)tzu

2z ¢ 3z 3z
PH _ Susn ,|_2 98y . Hpl|g, #Sy; 2 OHp FH,
= Aalion Ll b Tl | LA b et - A

(160)

(161)

(162)

(163)

(164)

Substitution of these sets into the differential equations would lead to lengthy
expressions from which to determine the four field quantities. The distributions
are linearly independent and so the coefficients of each of the distributions must
be identically zero, yielding a set of three equations from equation (145) and a
set of four equations from equation (153). Picking out these coefficients, we

obtain,

i
(8), Sy = ”ocSé

. . aS
5 H = _i_ - _l—_E
(8), R e

oE, ., OHp _

(u)y 3z Hoge -0

" 25
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(166)

(167)



S : .
(81, 2 = pee.Ss (168)

! __2 aSB ET = - -80’7
(8, ~Z5F + 5 = Hobofr ~ 1355, + _C’];sy (169)
aZSB. 23ET r _ - mﬁ _n aSH B Hp 170)
B2 527 " ooz T MR T eitrt 2% T i T e (
2
(w, Py, FEr ;. n OB @pp _ n O (171)
3z2 ' ° 92 °c2 ot g2 T o2 oz

We now have seven equations. Equation (171) is just the original equatioﬁ and
(168) reduces to

BoE, = _1_2 (172)
C

Equations (165), (166) and (167) allow the elimination of Sy and Hp from
equations (169) and (170). Following this procedure, there results

oz

That is, the strength of the delta function does not reduce with distance.
Applying this result to (166), (170) and (171) we have

 Hy = ie,CE, “ (174)
Hence
-aaizT = ig,c—~F (175)
From (170)
w5Sg = -2% —zc%E-é“-” (176)

26
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6.4

The Fractured Solutions

From equation {173), we have
oS,

—_ =0

oz

Therefore S, is a constant as we have excluded dependency on time.

condition, and hence the solution is
Sy =5

o

To obtain the tail amplitude at the wavefront we set

OE,
2t P
and we obtain, from (176)
O0E, _ wf,
0z 2c¢”7°
which gives
2
- _ %9
[E e = = 52507

which is the same result as for an unmagnetised plasma.
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7.1

SUMMARY

The method of fractured solutions has been introduced for obtaining partial
solutions to Maxwell's equations for media with arbitrary space and time
dependent parameters. The solutions are obtained in terms of the impuise
response which is separated (fractured) into two components that separately are
not solutions to the equations. The partial results are the time/space dependency
of the original impulse together with the amplitude at.the wavefront of a
modified step function (tail function). This latter result is analytical up to an
integral and this integral can be evaluated in a number of interesting cases.
Further analysis can extract more information as the derivatives of the tail
function at the wavefront follow in a simple manner. The results are interesting
in their own right, more general solutions can be generated by convolution, and
the analytical character provides simple reference data for numerical studies.
In addition late-time (low frequency) approximations can be matched to those
conditions at the wavefront, so obtaining approximations valid over all space-
time.
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