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SECTION I
INTRODUCTION T

E In this report we derive approximate analytic expressions for electro-
ma§het1c fields near conduct1ng surfaces caused by the interaction of high
fluence (mu1t1calor1e/cm ) X-rays with the surface materials and surround-
jng atmosphere. The atmospheric pressures considered are less than 0.1
torr, as the goal of these calculations is the analysis of the survivability
of a missile in flight at altitudes greater than about 60 km. The fluences
and X-ray energies considered are such that, in vacuum, the photoelectrons
emitted from surface materials would space charge 1imit in distances much
smaller than typical object radii of curvature in a time scale much shorter
than the duration of the X-ray pulse.

The use of numerical techniques to analyze the electromagnetic fields
near missile surfaces in this regime has been in progress for about a
year before the preparation of this report, and two of the analytic cal-
culations presented here were derived in an earlier report*. There are a
number of reasons for proceeding with both numerical and analytical tech-
niques. The numerical techniques are capable of including effects such
as velocity-dependent momentum transfer cross sections that are not trac-
table analytically, are more accurate when there are opposing physical
effects with comparable magnitudes and time and distance scales, and are
capable of working with much more complex geometries.n The analytic tech-
niques are more capable of combining physical effects with greatly dis-
parate time and distance scales and serve to guide one in the construction
of numerical techniques; they directly tell one what are the relevant
physical effects and time and distance scales. In addition, they permit
one to check the accuracy of his numerical code by calculating an exactly
solvable case. ‘

There are basically two physical effects which create electromagnetic
fields in the vicinity of a missile in flight. The first of these is

*Giibert, J. L., W. E. Hobbs and H. J. Price (to be published).



caused by photoemission of electrens from the missile surface, and is known
for historical reasons as system-generated electromagnetic pulse (SGEMP).
The motion of these photoelectrons causes EM fields and skin currents which
can drive currents on conductors connected to electronic circuitry and

thés damage them. These EM fields also modify the motion of these photo-
eléctrons and so require a simultaneous solution of the electron motion and
electromagnetic fields. In the case with which we are interested here,

the electric fields become so large that the emitted electrons are driven
back into the surface on an extremely short time scale after travelling
only a few millimeters from the missile surface. This allows us to treat
the conducting missile surface as 1oéél1y flat and compute the normal
electric field near the surface as the solution of a planar electro-
statics problem. The low velocity of the electrons relative to the

speed of light allows us to aiso ignore the effects of the magnetic

field upon the electron trajectories. (The time required for an electron
to complete a Larmor orbit in the earth's magnetic field is about 10'6

sec. A1l the effects which we consider in this report occur on a time
scale less than 10'7 sec.) Within these approximations, and using the
results of previous studies of vacuum SGEMP, we can solve for the mag-
netic fields which result from this effect and we find that they domi-

nate at early times, peaking much before the peak of the X-ray pulse.

~The reason for this js that once the surface photoelectrons space charge
1imit, the returning current nearly cancels the emitted current so that
there is 1little vxJ which drives the magnetic field.

The second physical effect is the ejection of photoelectrons from the
atmosphere. These electrons are ejected with a slight correlation between
the directions of the incident photon and the ejected electron, giving
rise to a net current in the direction of the X-ray source. (There are
also strong currents arising at the interfaces between exposed and shadowed
regions which we will examine here.) This effect is analogous to currents
on conductors caused by gamma rays at ground level and referred to as close-
in-coupling (CIC); in our case it will dominate the late time magnetic



fields. The surface magnetic fields resulting from this effect have a
waveform similar to the time integral of the X-ray pulse, rather than
one.similar to the X-ray pulse itself. The reason for this is thﬁt the
drag forces on the photoelectrons, caused by collisions between the photo-
ele;trons and the neutral atoms in the ambient atmosphere, are small so
that the photocurrent continues to rise through the entire X-ray pulse.
(The time required for the drag forces to appreciably slow a 10 keV primary
photoelectron is on the order of 200 nanoseconds.) This is dependent on
the air photoelectrons not space charge limiting in their own electric
fields; space charge limiting does not occur for two reasons -- the ioniza-
tion existing before the X-ray pulse arrives is sufficient to preéent space
charge 1imiting when this ionization electron density is substantially
greater than the photoelectron density, and the presence of the conducting
missile skin reduces electric fields parallel to the surface near the
surface.

At higher pressure regimes than-the one which we consider, the col-
lisional drag on secondary electrons is sufficiently large that their veloc-
ity is determined by the balance of the accelerations due to the electric
field and the collisional drag. In our regime (pressures below 0.1 torr),
the electron momentum becomes more important than the. drag and at early
times a cold collisionless plasma is a good model. For later times at the
lower altitudes in this regime the collisional drag on secondaries becomes
jmportant. It is never important here for photo primaries due to their
larger energies.

The remainder of this report is organized in four sections on analytic
approximations to the environment (ionization and photo currents), early
time effects, late time effects and an example of coupling to Tocal geom-
etries. '

In this report we work in cgs Gaussian units, but give typical results
in MKS units. Some useful conversion formulae are:
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Electric field
Magnetic Field
Current

Conductivity

volts\ _ 4
E(m) = 3x10 E(ESU)

B(teslas) = 10'4 B(gauss)
I(amps) = %XIO'Q 1(esu/sec)

o(swmen_s) = %xm‘g o(sec'l)
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SECTION II
ENVIRONMENTS

-~ In this section we discuss the approximate calculation of the quantities
which determine the electromagnetic fields. These quantities are:

-

1) Energy deposition of X-rays in the air.
2) Surface electron emission.
3) Air photocurrents.

1. ENERGY DEPOSITION

The total energy deposition in the air is important as it determines
the ionization present about the missile from previous X-ray pulses; there
will, in addition, be ionization created by the photoelectrons ejected
from the air and surface by the X-ray pulse which is arriving at the times
of interest. The pre-existing ionization is the more important in deter-
mining the modification of the early time SGEMP response; which of the
two sources of ionization is more important in determining the late time
behavior of the surface magnetic fields is dependent on the altitude and
the relative temperatures of the X-rays of interest. We will first discuss
the ionization created by previous X-ray pulses. This ionization is rela-
tively constant over times of interest; we will defer the discussion of the
jonization created by the arriving pulse until the last part of this sec-
tion.

The mechanism for producing ionization is the ejection of photoelectrons
by the incident X-rays followed by the production of free secondary electrons
as the photoelectron is slowed down. As the photoelectron is almost always
ejected from the K-shell, it is ejected with the photon energy minus the
biﬁding energy (about 600 eV) which is small compared to the photon energy.
The photoelectron then loses energy, producing about one secondary for every
86 eV of energy Joss {ref. 1). Each of these secondaries in additional col-
lisions produces on the average about two additional secondaries for a total
of one secondary for each 34 eV of energy deposited.

1. Longmire, C. L. and H. J. Longley, Improvements in the Treatment of
Compton Current and Air Conductivity in EMP Problems, DNA 31927, De-
fense Nuclear Agency, September 1973.
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We have developed a simple method to evaluate the energy absorbed. Let
1(E)dE be the X-ray energy (keV) in the interval E to E + dE produced by
the bomb. In travelling out to a distance R from the'detonationz the X-rays
wii1 be attenuated by both I/r2 and absorption in the atmospherei At a
d{ﬁtance R from the burst, the X-ray packet will have a fluence of

4R

where L(gm/cmz) is the integrated air mass between the detonation point
and the point R,

R
L= etryer (2)
o

and c(cmz/gm) is the mass attenuation coefficient for the X-rays of energy
E. The differential energy absorbed dw(keV/cm3) is therefore,

dW = poF(E)dE ' (3)

where p is the local air density, and the total energy absorbed is simply
the integral of this.

In fact, this integral may be approximately evaluated in a straight-
forward manner. The energy spectrum is essentially a blackbody and the
high energy part of the spectrum may be approximated as a cubic times an
exponential. A reasonable approximation of the spectrum is given by

I
: I(E) = 6—;'¢ E3 exp(-E/T) (4)

where I0 js the total energy in the spectrum and T is the blackbody tempera-
ture in kilovolts. At high photon energies the atmospheric photoelectric
absorption coefficient is well approximated by

o = ot/E3 (5)



where a = 3 x 103 keV3 cmzlgm. Tpis is a good approximation from above the

oxygen K-edge at 0.56 keV up to above 40 keV where Compton scattering be-
comes dominant, so it covers the energy of our X-rays. Since the third
powers of E cancel, the integral for the total energy absorbed becomes

paI

1

241TR2T4 I expl-(F + Eg)]dE (6)
0 .

1"-
=

The exponent in the integral has a maximum value at
£ = (3aLT)/4 (7)

If this is somewhat higher than the radiation temperature, then the integral
can be approximately evaluated using the saddle point method (ref. 2),

pan nEmT : ( )

W= — exp(-4E_/3T (8)
24nReTt Y 2 m

In preionization cases of interest W can range up to about 10'8 ca1/cm3

resulting in electron densities up to 4><109 e1ectons/cm3.

2. SURFACE PHOTOEMISSION

This method can also be used to estimate the surface photoemission.
As discussed previously, the photoelectric cross section behaves as 1/E
The range of electrons in materials in this energy range behaves as E2
so the electron yield from a surface for monoenergetic photons behaves as
1/E electrons/photon or ]/E2 electrons/keV. From the tables of Dellin and
McCallum (ref. 3), these yields for carbon and aluminum are

¥, = 0.02 lz electrons/keV (9)
X
Y.. = 0.340 4 electrons/keV (10)
AT 2
X

7. Morse, P. M. and H. Feshbach, Methods of Theoretical Physics, McGraw-

Hi1l, 1953.
3. De111n T. A. and C. J. MacCallum, Handbook of Photocompton Current

Data, SCL-PR-720056, Sandia Laboratories, 1972.
9




where E is in keV. If the device X-ray output is I](t) keV/sec, the
current density emitted from the surface is

eYI.(t) : '
1 E, ol
Jﬂ)=—:73] Eﬂ%ﬂf+%ﬂﬁ (1)

eVI,(t)E, [wET -4E /3T
- fil e m
241TR2T4 2

for E_ 2 T. The actual velocity distribution of the emitted photoelectrons
is more complicated -- there are a couple of limiting cases which are
reasonably simple. The first of these is where there is little attenua-
tion, g“<<'r. This is the usual case in satellite SGEMP and the resulting
photoelectron distribution is exponential in energy with a characteristic
energy near the X-ray temperature and has a cosé angular distribution where
9 is the angle between the surface normal and the ejected photoelectron.
The other case is where E >> T so that the distribution of photons inci-
dent on the surface is sharp]y peaked about Em In this case the emitted
electron energy distribution is nearly triangular (ref. 4) as shown below,
with a cosé angular distribution. In cases of interest, the surface photo-
emission can produce emitted currents up to about 1000 amperes/cmz.

f(E) &

—

E~ E

Figure 1. Electron Energy Distribution for Monoenergetic Photons

4. Schaefer, R., "A Simple Model for Soft X-ray Photoemission," Jo. App.
Phys., 44, 1973.
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3. AIR PHOTOCURRENTS

.

Next we calculate the sources of primary photocurrents and secondary
jonization. We first examine the angular distribution of photoe@ission.
From reference 5 the angular distribution is proportional to i

2
c_1-u . (12)
(1 - Bu)

b Kl

where 1 is the cosine of the angle between the incident photon and the
ejected electron,and B = ve/c, where Vv is the velocity of the emitted

electron. For small B we can expand

6~ (1 - 121 + ap) (13)

and 1
§, ue(8.n)du

52, 6(8.m)du

u(8) = - 38 (14)

If we are far from material discontinuities we can use the fact that our
electrons are slowly moving with respect to ¢ and write

ad 3o, (E)
_P=_ P
5 eI dE u(E) ve(E) 5E _ (15)
0
app(E) , _
where Sg— 1S the rate at which photoprimaries of energy E are being

created in electrons/cm3-sec. From our discussion of energy absorption
we easily have app/at, ‘

-(E/T + oL/E%)

3o (E)  pal, (t)
T L Fe (16)
247R°T
and for nonrelativistic velocities
' 2
4y
- _ _e _8E
u(E) Ve(E) T 5  Bmc (a7)

§. Heitler, W., The Quantum Theory of Radiation, Oxford University Press,
London, 1954.
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The energy integral can again be_.evaluated by the saddie point method for
Em > T, yielding

EE _ epa I](t) mE T -4E /3T L
ot 2.4 7 ¢ (18)
15mmcR™T

A typical value of the peak of Jp is 1000 amps/mz. We find the rate of the
production of secondary ionization from the energy loss of photoprimaries.
The extreme range of electrons in air is fit between 3 and 30 keV by (ref. 6)

R~ & E2 (19)
where
¢ ~2.5x10°8 ——s
cm- - keV
so that
dE _ p dR__0p (20)

d 2CE dt C/omE

for each electron. If wI is the energy loss of a photoprimary required
to produce a secondary electron, the production rate of the secondaries

is .
t ‘o
., ofaf 1,(t7)dt’ 5
s___ T _dE_ - (E/T + al/E%) 21)
3t 7.0 372
20nCU RTVER ) E

which is approximately, again using the saddle point method,

2 et ot (peygpe
oo, P of LN — g yar

s .20 oo M (22)
3t ggnCwRTE, m

10 e1ectrons/cm3.

during times of fnterest, a typical value of Pe is about 10

6. Evans, R. D., The Atomic Nucleus, McGraw-Hill, 1955.
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The final calculation is of the current caused by photoelectrons which
free stream from an illuminated region into a nonilluminated reaidn This
is: 1mportant as it describes approximately the sources existing in shadowed
reg1ons as well as the alteration of the current in unshadowed regions
re§u1t1ng from presence of nearby shadowed regions. In this calculation
we assume that the photoprimaries are freely streaming from their point
of origin. The drag forces on the primaries are small and if the second-
ary number density is much greater than the primary number density, the
effects of the electric field on the motion of the primary electrons are
small. We use the geometry shown in figure 2.

z

Shadowed Region

Exposed Region

Figure 2. Geometry Used for Transversé Current Ca1cu1ation'

Defining
f(x v ﬁ ,t) dvd® = density of primary photoe1ectrons moving
between v and dv w1th1n dQ of direction
8 (electrons-sec /cm ) (23)

13



S (X,V,8,t) dvd® = source rate of photopr1mar1es
(electrons-sec 2/em ) . (24)

The free streaming solution is

bt = 1 f dn s (% - vt -2v) (25)

0

For our problem, as the electrons are nonrelativistic,we ignore the re-
tardation in time and set

= g(v)n(@)h(t) (26)
where £ and n are normalized so

==}

j v2dv E(v) = 1 (27)
0

sdﬁ n(@) =1 . ©(28)

For low velocity (g<<l) electrons, we use 2 sinzex distribution

n@) = & (1 - 1) (29)

where = cos e , and e is the angle between the 1nc1dent X-ray and the
emitted e]ectron In our frame where 8 is the angle with respect to the

Z axis

2

n(Q) = é%-(] - sin ecosz¢) (30)

where ¢ is the azimuthal angle in the x-y plane; We calculate the net
current

14



s 3
Jz(x,t) = -ed v, f d°v )
(31)
o~ 0 ] 21T :
= - vzdv'[ de e(v)h(t - z/v)! duj do —g% [1-(1-u2)c052¢]
i ‘o H /%2 0

where W = H/% from the figure, and e is the electronic charge.

The angular integrals are readily evaluated
1 2m | 2 4
3 ("o dol1-(1mdcos?e] = 392 - Hr - Ay (32)
8m 8)4 29“2 424
H/% 0

Replacing & by T = &/v

- 2 4
3e 2 3 H H

a=-—§ vdvI dt vg(v)h(t-'r){—- - (33)
8 4 2V2T2 4 44

v
0 H/v t

We can interchange the limits of integration (see figure 3) and we obtain

J = - —%e-jmd'r h(t-t) I(T) _ (34)
0
where o
1) = 3 o v’ e
H/T
2 [--]
- _H‘ES dv v E(v) (35)
2t H/T

whoe®
- —3"5 dv E(v)/v
4t
H/T

15



- . T=H/V

.

-
T

Figure 3. Region of Integration in v-t Plane

These integrals become simple in a couple of Timiting distributions --
the first of these is when there is little air intervening between the
burst and the missile. In that case the X-ray flux is an unattenuated
black body spectrum and, as the photoelectric cross section behaves as
1/E3, the electron spectrum is approximately

2
gv) =3 L ™/ | (36)

The integrals can be evaluated in terms of the error function ¢(x) defined
by

_2 (Ff .
¢(x) /E'J; e du N {37)

The second integral is in this form already and the first and third can
be.converted into it by integration by parts. The resulting function is

1(r) = oM 2/21:2 NEy {1 _ ¢(% /ZET)}
W2
__2 zm {1 _ ¢(% /_zrg_l__)} | . (38)



by

-

where the three lines of the expression here correspond to the three inte-
grals. The other limiting case corresponds to a photon flux that has been
greatly attenuated by passage through the air; if E >> T the electron
velocity is strongly peaked about

v_= -—%3 (39)

As the time integral will smooth out the behavior of currents, we can treat
the velocity distribution as a & function

E(v) = 5 8(v - V) (40)
v
m
and obtain 3y H2 4
I(T)=(4m" 2 43)9(T'H/V ) (41)
2t Vin 4 m

where © is the Heaviside step function

e(x) =0 x <0
=1 x>0

(42)

Note that I(t) rises smoothly from 0 for t < H/v_to-a maximum value of 3vm/4.

The shapes of I{t) are similar for the two cases given; a sketch of I(t)
for a greatly attenuated spectrum is shown in figure 4.

?I(T)
3wl'll g
N
i —» T
c/vm

Figure 4. I(t) for Monoenergetic Spectrum

17




SECTION III
EARLY TIME SURFACE MAGNETIC FIELDS *

¢ In this section we investigate the modification of the SGEMP response,
that is the surface currents caused by the emission of photoelectrons from
the surface materials, by an ambient plasma. To examine this modification
we examine two cases; the first of these is a uniform plasma over a con-
ducting surface. This plasma represents the plasma present about a missile
surface at the time the X-rays are incident upon the surface; the electron
density in this plasma is small compared to the surface electron Bensity
resulting from photoemission from the surface. The second case which we
will consider is where the background plasma has a layer adjacent to the
surface with a much higher electron density. This layer represents ions
and their associated electrons which have been released from the surface
by the breakdown of a dielectric coating over a conducting surface. The
purpose of this second problem is to determine how magnetic fields created
on the outside of the ion layer penetrate the layer to the conducting sur-
face beneath; if the electron density of the plasma adjacent to the surface
is much greater than the electron density of the emitted photoelectrons,
the photoelectron currents will be balanced by plasma electron currents
within the plasma, resulting in small electric fields in the plasma, and
the space charge limiting of photoelectrons will occur outside the dense

plasma layer.
1. UNIFORM PLASMA

To consider the first case, we focus on the magnetic field and solve
for it by taking the curl of Ampere's law,

) (43)

Here, Jp $s the current due to the photoemission, and Js is the plasma
(secondary) current. If we assume that the spatial extent of each electron's

18
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trajectory is small, the curl of the plasma current is proportional to

the magnetic field -

2
-Ne"B

mc

voxdoo= (44)

whére Ne is the secondary electron density and m is the electron mass.
(As noted in the introduction, we have ignored the magnetic forces on the
electron in the derivation of equation (44) due to the small ve/c and the
long period of Larmor orbits compared to time scales of interest, which
are <100 nsec.) Recalling that the plasma frequency is defined

2 _ 2
Wy = 4nNee /m (45)

and substituting, we have

2
2. 1 (2%, 2.\.4m
vV°B = 2 (Bt2 * B) - (v x Jp) (46)

1f we have a situation so that the missile surface may be assumed to
be a far-plane relative to the incoming X-ray wave fronts, it is valid to
assume that B = B, and JD are only functions of the distance from the sur-
face z and the retarded time of the X-rays. They sweep along the surface
with a phase velocity of c/siné where 6 is the angle -of incidence of the
X-rays. The X-ray retarded time T is therefore defined

T =1t - xsing/c < (47)

where the geometry is depicted in figure 5. With this our magnetic field
equation is written

2
328 cos®e 2%B _(_‘fp_) B = - 4_1r(s1'ne Y . aJpx) (48)

az2 c2 aT2 c ¢ c 3T 0z

The left-hand side of this equation is just the wave equation for an elas-
tically suspended string, and the right-hand side is the forcing function.

19



X-Ray z
Wavefronts A :

e e S - X

Conducting Surface

Figure 5. Far-plane Approximation for Missile Surface

The Green's function can be determined by Fourier transforming. The
solution of the above equation for a simple harmonic waye moving away
from a driving function at z = 0 is

B{w) = A(w){exp{-

- w? (zcgse) - iwt 8(z)
(49)

- Wl (zcgse) - iwt|e(-2)

where @ is the Heaviside step function as before. To obtain the Green's
funiction we use a unit forcing function

(50)

]
—

38
3z | -, 9z
>0 z+0

20



-

and obtain
2 -1/2

-w i (51)

This may be transformed to the time domain by noting that B{w) has essential
singularities at w= % wb/cose. In Fourier transforming to the time domain

G(z[t) ='£E J“;m B(z,w) g~ iut (52)
—o

we must pick the integration contour as shown below (we can close the con-
tour by an infinite semicircle through w = i= for ct < |z| cose and through

= -io for ct > |z| cos8) so that G(z|t) = 0 for t<0 (see figure 6). Note
that the branch cut can be chosen to run between the essential singularities.
For ct > |z| cose we can collapse the contour about the branch cut and
obtain for z > 0

6(z]t) = 5oer = | dw os \1b va - (53)

where a = wp/cose and b = z cosé/c. Substituting w = a cos¢ we obtain

T . -
6(z|t) = 5= %-J.d¢ 13t COSP coq(fab sing) (54)
0

Substituting ¢~ = ¢ - cos'1 t//t2 b2 (note that the arccosine is imaginary
for real b as the argument is greater than one; here we can treat b as
jmaginary and analytically continue to real b as long as b2 < t ) we obtain

2m
c 1 - iaJtz- b'2 cos¢”

2co0s6 2m d¢” e
o
c ' f 2 2
2¢0s8 Jo (a tt-b )
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The Green's function is

“p [z 7€036\2
G(z|7) = 2cose Jo(cose T "( c )

x [Blet - zcos6)&(z) +O(ct + zcos6)e(-z)] (56)

where J0 is the zeroth order Bessel function. The magnetic field is
therefore given by

T
B(z,t) = 41rrdz'j dt°G(z - z°|t - 17)
)

-0

_'3_&, 13 ffp_, (57)

ot 9z

For the early-time response the currents in the x direction are negli-
gible compared with those in the 2z direction. The air photocurrents have
not yet had time to build up and there is no net emission current in the
x direction. (The EM fields will induce currents in the x direction, but
these are very small.) Further, the details of space-change-limiting are
not sens1t1ve to the ambient plasma. The density of emitted electrons is
typically two to three orders of magnitude greater than the ambient plasma.
The SGEMP boundary layer thickness is on the order of a few millimeters,
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while the skin depth of the plasma c/mp is typically tens of centimeters.
Under these conditions, the dynamics of the photoelectrons emitted from
the surface may be assumed to be independent of the plasma dynam%cs and
the solution for the magnetic field at the surface reduces t6

_ 4ntand (.- wE(T LA P
Bs = ¢ j P(r”) Jo( cos8 dt (5€)
0

]
=

where F is the second time derivative of the dipole moment. (We have in-

cluded the image sources.) P is related to Jpz by

P(1) =Jmez(z,'r)dz (59)
(¢}

One should note that this reduces to the vacuum case of Carron and Longmire

(ref. 7), when the plasma density goes to zero so that W, =0

Bs = ¢ . (60)

The time history of ﬁ is determined by the dynamics of the space charge
1imiting of the photoelectrons emitted from the surface. This is not ame-
nable to analytic calculation, but these dynamics (in vacuum) have been
examined extensively by numerical methods in 1-D planar geometries (refs.

8 and 9). (These calculations are accurate when the sﬁéce charge limiting
distances are small compared to object radii of curvature, as they always
are for X-ray fluences of interest to strategic missiles.) For the calcu-
lations shown in this section, we have assumed that the early part (< 1 ns)
of the incident X-ray time history is a ramp, f(t) = Rt for t > O.

7. Carron, N. J. and C. L. Longmire, “Electromagnetic Pulse Produced by
Obliquely Incident X-Rays," IEEE Trans. Nuc. Sci., NS-23, December
1976, pp. 1897-1902.

8. Longmire, C. L. and N. J. Carron, Scaling of the Time Dependent SGEMP
Boundary Layer, DNA 3975T, Defense Nuclear Agency, April 1976.

9. Carron, N. J., Dynamical Solution of the SGEMP Electron Boundary Layer
for Linearly Rising and Constant X-Ray Time Histories, DNA 4142T,
Defense Nuclear Agency, December 1976.
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Both the vacuum and plasma solutions show a tané dependence for the
surface magnetic field. The plasma case additionally involves aiconvo]utien
iniegraI involving a Bessel function. The response will therefo;e depend
on;the relative magnitude of the time scales for establishing of the SGEMP
boﬁndary layer and the plasma's reaction to the fields. Longmire and Carron
(ref. 8) noted the propensity of the Vlasov and Poisson equations to scaling
and established characteristic units for the variables. The characteristic
time, of course, depends critically on the assumed secular rise rate. It
depends to a degree on the other parameters; blackbody temperature, fluence -
level, and electron yield of surface material. For the situation we have
been considering, the X-rays have a linear rise and a typical characteristic
time for establishing the SGEMP boundary layer is about 0.2 ns.

The response time of the plasma to the EM fields generated will have
a characteristic time of mp/cose. The cos6 term results from the geometry
of our problem. Monochromatic waves with frequencies higher than this
will propagate, while lower frequency waves will be evanescent. These
low frequencies are trapped near the surface with the result that the
magnetic field persists long after the source is turned off. The Bessel
function results in oscillations with an envelope with a late time be-
havior t'%. A typical resulting surface current density is shown in
figure 7.

We have also developed and implemented a simulation_.model to study
the situation in detail. In this the photoelectrons aré'approximated as
macroparticles and the plasma as a cold fluid. Although it contains some-
what more physical detail than the analytic model here outlined, it gives
quite similar results.

2. PLASMA SHEATH

We next consider the case of a plasma with a step variation in density
with a dipole source, resulting from the space charge limiting of photo-
electrons ejected from the surface, occurring at the discontinuity.
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Figure 7. Surface Current Density

The purpose of this is to determine what densities of electron-ion plasma
released from a surface could be important in modifying the surface mag-
netic field. At present there is no good theory for the quantity of ions
released from an irradiated surface. The geometry we consider is shown
in figure 8.

* Primary photocurrents caused by the ejection of electrons from the
surface exist in both plasma regions; the electrons do not space charge
limit in the dense plasma region if this plasma density is much greater
than the density of emitted electrons. Under these conditions the plasma
currents nearly cancel the photocurrents so that the dominant driver of
magnetic fields is the photocurrent in the sparse plasma region, which
we calculate in this section.
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The differences in plasma characteristics at this discontinuity will
be modeled as a jump discontinuity in free-electron density and hence
(according to equation (45)) a jump discontinuity in plasma frequency.
Clearly, away from the interface (z = 0), the magnetic field satisfies

2
2 2 2 w
3 cos“e 3 “px 5
- - B{z,t) =0, forz< 0 61
{822 c2 312 cz} (61)

where w_ and w_ are the plasma frequencies in the two plasmas. The plasma

frequencies arise, as before, from the equation of motion of an electron
in an electric field .

dv e

F=-gE (62)

hence, for a constant secondary electron density,

2
v, _ _4n -
C Js C Ne ev c j‘th . (63)
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From the above expression, the boundary condition for the magnetic
field at the interface may be determined. For early times, Ampefe's
law has the form, for the transverse components, )

-
[+ 3]

S2pafmy sl D 12
B Jsx TTatEx T C Ithx+ 3t x (64)

Fourier transforming time, t»w, yields

ge(E ), o

hence the boundary condition at the interface utilizing the continuity
of the electromagnetic fields gives

B = B (66)
z=0+ lZ=0_
and
—7. 2 = |z=0, * '—?'_'_ 32 B|2=0_ (67)
u)p+ w - W .
The jump discontinuity in the derivative at the density discontinuity is
mz _ 2 T
2B __3_3l _ =Pt P-p
3z "|z=0, ~ Bz {z=0_ 2 _ w2 170,
p+
w, - 2
=.JEL___2_
N azB|z=o (68)
p-

which may then be directly incorporated into the general, Fourier trans-
formed differential equation including the dipole photocurrent driver
normal to the interface in the sparse plasma region,
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2 2 2
2 w w., =
3B, cos®@ 2 pt p+ p- 8B
{?)zz ¥ CZ wB - c2 B - 2 2 az|z=0 5(2)} .
. w -
: p¥
B e (a) ol2) (69)

By direct substitution, the magnetic field which satisfies this equa-
tion can be seen to be

2 2

. w - W
B(z,w) = ——4“55"6 i J__(w) exp[ﬂ‘+z]/’ -‘I‘++ —P——; 5 I‘_I. (70)

c Pz - l W, - w

P-
for z 2 0
Nﬁnpi - wzcosze

I‘t = Y= C (71)

The inverse Fourier transform of the above expression is not easy; therefore,
we shall consider the special case where

w. >>uw (72)

and the contributions of the high frequency components to the above expres-
‘sion are small, e.g.,

114

>
Jpz(w) 0 foruw W (73)

For such a case,

‘o exp[+r,z]
B(z,w) = 4“—1;1—"-9- pz(¥ —I.——i~ forz20 (74)

Cc +
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In the low frequency plasma (z > 0), this is identical to the sincle plasma

result, equation (57) :
. ~ 77
¢ . 4rtand (* 4. - 3 . “p+ .2 _zcos® )
" , B(z,7) = __c__j dt” 37 ‘]pz(T -1 Jo( TN 2
0 (7%)

and in the dense plasma, (z < 0), we find (ref. 10), for small z,

T
B(z,7) =51§-ﬂ‘9-f dr” 2= d (1 - 17) J_(w
0

57 Ipz olw,77) explu, z/c]

Pt (76)
The physical significance of this solution is that it gives us an indica-
tion of what densities and layer thicknesses of plasma released from a
dielectric surface are important in shielding the surface from maonetic
fields created outside this layer of dielectric. Specifically, this effect
becomes important if the layer is thicker than

c .
% > a— (77)

P

where mp is calculated with the electron density in the layer itself.

10. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions,
U. S. Government Printing Office, 1970.
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SECTION IV
LATE-TIME SOLUTIONS :

. In this section we investigate the surface electric and magnetic fields
ca;sed by the motion of photoelectrons created in the air. This mechanism
is analogous to the usual close-in coupling with gamma rays; the greatest
magnitude of this coupling should-be seen when the X-rays are parallel to
the conducting surface. We will first examine the fields seen in a uniform
collisionless plasma with constant density. We will next separately ex-
amine the effects of a time-varying density and electron-neutral ‘collisions
in the plasma; the physics of these effects can be seen separately and
the mathematics of treating them together appears to be intractable.
Finally we will examine the effects of a surface layer with a high electron
density on the surface magnetic fields.

1. BASIC SOLUTION

We first consider the case with a constant density and no collisions.
Maxwell's equations are

= 13E 4 L ,
VxB-ca+ch+ch . (78)
and
. _138
VXE--Ea - (79)

where our frame is as before (figure 5) except that we fix 6 = 90°. Taking
the curl of B as before

) (80)

3 .13 (81)
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we obtain
2

)

Z2 c

9z

c

ot

C

22 ﬂ{aapx+ladpz}_ﬂr_

aJsx .
9z

Frém the z component of Ampere's law we obtain

For the secondary electrons

2

adsz ) e Ne (
ot m
2

BJSX i e Ne E
ot m

G - B)

A bit of substitution yields for B

3°8 EE
—-28°
9Z c

which has the solution

) 4_ﬂ(_u+ 1-_925)
[od o4

oJ
9z

3
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(82)

(83)

(84)

(85)

(86)
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o © -lz-z‘lwp/c BJpx l_aJpZ A ;
B—mfdze 3z- T ¢ ot L (89)

=00

L

" We next consider the relative importance of the two source terms and
how one includes the conducting surface. Introducing the conductor is
most easily done with image currents (see figure 9), so that if Jpx is
spatially uniform above the conductor, the relevant derivative is

3J
—PX = 28(z)d _ (90)

¥4 px
3 y4
px t__..
> X

AN

ffp————
Image J

px

Figure 9. Introduction of a Conductor Using Image Currents

ad
If —5%5 << wd . as it almost always is in cases of interest, Jpy s the
dominant driver of late time near-surface magnetic f1e1ds and
-2w /¢
B(z, 1;)-m Ipu(t) e P (91)

P

We can find the differential equation for G

a2 od
96 2 2 pz
atz +w G= wy B - 41 —% (92)
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which has the solution

r

j“ t 8d
- a(z.t) =+ = [ dt” sin o (t-t7) Ju ? B(z,t7) - 4ngghE (93)
: wp D p ot
= 0
or, with Jpx as above and neglecting Jpz near the surface,
t 3
-zw_/C
G=+4me F dt® sin w_(t-t*) J_ (t%) (94)
4 p X
We can now solve for Jsz
= . 196
Jez = " Wm 3t Jpz (95)
which allows us to solve for EX
74 z
= - 5-1-1- = - l - M
Ex I dz c (Jpz + Jsz) CI dz " (96)
o} 0
or, again in the approximation of small Jpz and uniform Jpx
-zmp/c t
E, = -4ril - e dt” cos wp(t-t ) in(t ) (97)

0

This solution is for a spatially uniform, time independent plasma
density. The numerical results discussed below indicate that even for
the long time periods the convection of plasma density will produce small
gradients. The plasma density will build up on a slow time scale due to
slowing down of primary electrons. This solution also requires knowledge
of the photocurrents. A preliminary estimate of the photocurrents can
be made by using the method of 0‘Dell, Longmire, and Higgins (ref. 11),

i1. Higgins, D. F., C. L. Longmire and A. A. 0'Dell, A Method for Estimating
the X-ray Produced Electromagnetic Pulse Observed in the Source Region
of a High Altitude Burst, DNA 32181, Defense Nuclear Agency, November
1973. .
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and forcing the radial electric field to vanish near the surface with a
characteristic length c/w s where wp is the time dependent p]asma fre-
quency (This method was used in an earlier report.*) A representatlve
surface current density due to this effect is shown in figure 10.

To obtain more complete estimates we have developed a computer code
which calculates the self-consistent fields and currents for our situation.
le assume both the air photoelectrons and secondary electrons may be approxi-
mated by the cold fluid equations. For low energies (< 20 keV) photoelectrons
have a velocity distribution which is strongly peaked in the transverse
direction, in the direction of the incident photon electric field. In a
uniform medium these currents from adjacent volume elements will cancel
due to symmetry. Near the metal surface, however, there will be a strong
transverse current source after the end of the photon pulse and we have
approximated this source in our numerical model.

A
4
- 200 -t
S
(%)
[= 8 -
E
=
e
=
m -
E 100 4+
(&
[+
(5]
-
Y=
| &%
=
m .
0 ) | -
50 100

Time (nsec)-

Figure 10. Typical Late Time Surface Current Density

*GiTbert, J. L., W. E. Hobbs and H. J. Price (to be published).
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2. TIME VARYING PLASMA DENSITY

We now proceed to allowing the density to vary with time. ye will show
that there will be a small perturbation to B which oscillates at' the plasma
fréquency, unlike the solution for a time independent plasma. Unfortunately,
intthis regime the time and distance dependences are coupled, and the re-
sulting equations must be solved numerically.

We will assume that the plasma density varies much more slowly than
the other variables, specifically, we require that

. e\ 2
w w
£ and (EE) << ? (98)
p p P
In cases of interest the left-hand side of (98) is typically 1017 sec'2 and
the right is 10'8 sec™®. Then defining
.2
h(t) = 5 2a(Ng(t) (99)
and
G(t,z) = Ez(t,z) + B(t,z) (100)
for notational convenience, the problem is governed-by the same five
equations as before, where J_ = Jpx’ Jx = Jsx and Jz = Jsz’
2 3d 3J 3d )
88 _ _4r)”7x 1 _z( Ar_p
;:Z"c{az+c at} ¢ 5z (101)
oF
X o &m
=z ¢ 'z (102)
6 _ _ :
—aTt' = <47 JZ (]03)
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BJZ :
¢ aJx N e2
T -?T_ Ex (105)

Taking the time derivative of equation (101), and substituting, we have,

2 2 2
B 4“{Ne OE, +1_1[1“3e_(e-3)]}_4_1ra__‘12
Bzzat c m oz C ot m ¢ azot
(106)
w2 mz w2 w2
=-..1 _.L ' __._.._ _.L_B
c{ I, + gg h(t)(6-B) Yz = Fne t}
2
_anlh
¢ ozot
Collecting terms and integrating in time the equation reduces to
2
2 w2 w N}
_a_g,-_&zahj ¢t G- h(t)e - LL - (107)
3z c c
To close the system of equations (assuming that the plasma density and
photocurrent are given), we differentiate and e]iminaté*dsz to get
2
-G 2
—=-uw"(G - B) (108)
at? P

For small h, the first term on the right in equation (107) will be much
smaller than the other terms (which all appeared in the solution for the
constant density problem), so the natural modification is to let

B = B * By (109)
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and rewrite equations (107) and (’108) as three eguations

. 2 w 2 9J ¢
: P \g 4P ’ (110)
. 322 c2 L c 9dz :
2
(;??‘ + mpz) 6= mpzsl_ (111)
Wl W 2 w 2
( % - —Lz B, = | dt -5 h(t)e (112)
3z c c

Now the solution to equation (110) will be the same as for B in the con-
stant density case. If Jj = £(t) {6(2) - 6(-2)} we have

B, = =" f(t) e P (113)

Mow however, eguation (111) for G cannot be solved exacﬂy, and we instead
use a WKB approximation to handle the homogeneous equation. As a first
cut we choose

{Cup(t)d
-iy wy(t7)dt”
G =e ©OF (114)
0 |-
which yields
2
) 2 .o
“_+ )6 = -in G (115)
(atz p) 0 po
Introducing a perturbation to improve the approximation, we have
t l Pl ~
4§50y (£7) + wy (7))t
G, =e (116)
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so that

_3?.;, 2)a. = (-2 -l - ik - 0 )G (117)
11’5-(».I is chosen so that
.2wpw1 = -iwp (118)
then we may solve for 61 and obtain
t
-ifw (t7) dt-
G, = —— e JP (119)

T [a®

which will satisfy the homogeneous part of equation (111) to the first
order in the approximations on Ub and ép.

From this we need to construct a Green's function for equation (111);
following the form of the solution for the time independent case we write

t’

ey . ([t '
6 = ﬁ;—(i—)- smU mp('r)d'r) (120)

and solve for g(t”) in equation (111). This yields

t
G.(t,t°) = 1 i I d 121
5 ~/wp(t)wp(t') sin wp(t) T (121)

so that the solution for G will be

14 (122)

t 2Lzl (e t ~
- _Anm - . cp : -
G(t,z) wp(t) Lpr(t ) F(t7) e sin (f wp(-r)dr)dt
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We are now in a position to solve for B » the correction to B due to
the time dependence of the plasma. The Green s function for B will be
w |
- Llz - 27
B.=-5— e °©
G 2w (123)

e .

and this produces a solution

£ e
——(—) dt w 3/2(1: )h(t” )J- dt”” /mp(1:")'|"(t")s'in(jC wp(T)dT)
o -
- (t)z/c -w_(t"")z/c (124)
w(t”) e P -ty e P

wpz(t) - wpz(t“)

The electric fields can now be determined, although numerical inte-
gration is required. '

Ez =G-8
4 t =7 e _EgL(f_l . ot
,\/-prt)-J; /wp( (t7) e sm(f mp(-r)d-r)
t”.
20_(t) )
—: f(t)e © - B, (125)

An equation for Ex may be derived from the Ampere and Faraday laws in
retarded time, and the equation of motion for a particle

13 ' w 2
_ X _4m, . .
577 'fJé—(G - B)dt (126)
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Thus

p

t o "(t i
=f dzj —P-(—E(t “)dt” : (127)

= The relevant fact to note from this solution with a spatially uniform
time varying plasma is that the magnetic field has a small part, of order

-l--ﬁL (Toa N ), which oscillates at the plasma frequency. The previous

sglut1on w1th N held fixed had no hiah frequency components to B and

the surface magnet1c field was simply proportional to the time integral
of the X-ray pulse. In both cases we observe hich frequency oscillations
in the normal electric field and in the electric field parallel to the

surface away from the surface.
3. COLLISIONAL DAMPING

We return now to the case of a time independent, spatially uniform
plasma over a conductor, to investigate the effects of a damping term
in the equation for the secondary electron current. Unlike the time
dependent plasma case, the derivation of an integral solution for B re-
quires no further approximations, and as may be expected, the oscillations
in B disappear.

The behavior of the plasma is now governed by equations (101), (102),
and (103) of the previous section, and the following two equations for the
secondary current. “

2, Ez

—Bt— = (G - B) -V JZ (128)

.Efl; _Ei 129
at 4 E Jx ( )
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To obtain an equation for B, first differentiate equation (129) by z to

obtain ?
: 2 2 _
: 523w © o 3J
. X = P _X_ .S
s stz Or 9z ° oz (130)

which can be substituted into equation (101) of the previous section after
taking the time derivative of the latter.

2 52 2
28 =__41_‘3Jx 199 ] el N (131)
azzat c lazat c a,;2 ‘ ¢ ozdt

After substituting for aszlazat from equation (130) and for azoz/at2
from equation (128), we have

2; wz L. 3J
R
3, | 2

The last term in brackets may be eliminated by substituting from equation
(104) of the previous section, while the time der1vat1ve of G will cancel
the Jsz term inside the first bracket. Thus our equation for B is

2
2 w 2
9 p_\a 9 4 9 43
—_ - B+\J—-B=-—-—(J + vd) 133
(az2 c2) az2 c oz P P (133)

2 . 2
(—"’—f - kpz) B +v 2B =88 5(2) Flt) (134)
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since the photocurrent is homogeneous for z > 0, and matched by an image
current beneath the surface of the conductor. .

 To derive the Green's function, first transform equation (134) in time
to:give, with a time delta function driver, 4F(t)/c = §(t)

3% 2
(=iw + v) —5 B + jwk “ B = &§(z) (135)
Y4 P

This equation has the same general solution in z as the equation for B in
the time independent, undamped current case, so solving for coefficients

we have -
-iw
"kpz\/-'iww
1 e

2ky J (iw) (-iw + v)

A

(136)

B{w,2) =

Note that we have essential singularities at w = 0 and w = -iv, but the
branch cut of the function can be run between them as we do not have an
essential singularity at infinity. As noted in the last section the
path of integration should be taken as shown in figure 11 so that B = 0
for t < 0 and the contours can be closed with semicircles at infinity as
shown.

- e m e v m————— s

: t<t”
C o ﬂ.: 0 . j
»— > *l
Tt>t”

Y

Imw

7.

Rew w = -fv

Figure 11. Integration Contour for B
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For t > t°, the integral may'be shrunk down to the branch cut and re-

T

written as

) Altt) oy 4 [
- B(t - t‘) = -_e_(.:_;t_)-fv © COSEPZ N v=A )d)\ (]37)
P A JAv = A)

since the exponential term may be kept on the part of the branch where it
is bounded, and the contributions at the endpoints will vanish. The solu-
tion for equation (134) is then

B(t,z) = f—j

t v - cos(k z A )
dt F(t')j e Mt-t7) p- NV-X T 4y (138)
P 0 0

[X(v = 2)

Since the electric fields may be expressed simply in terms of the per-
pendicular current, let us solve for it before dealing with the fields.
The equation governing it may be obtained by differentiating equation (128)
and substituting for G from the previous section, so that

2
2 w
9 2 2Y 3 = . P &
(3t2+vat+wp)dz 7 B (139)

By Fourier transforming the left side of equation (135) and inverse trans-
forming the resulting equation, we obtain the Green's function for J,

17 -iw(t-t7)
Je'z_nj e duw (140)

2 . . 2
=00 + -
w TV (.Up

This may be evaluated by closing the contour and evaluating residues, but the
contour must go above the w axis for t < t” and below the axis for t > t~.
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= 0 for t < t* since both poles 1ie below the w axis {assuming

{4w 2 vz
____%___ (t - t7)

Thus JG
Wy > v/2 > 0). Denoting the poles as Wy and Wo s where
: -jv + \/4w 2 _ vz
- Wy = 2
1 2
and
«jv - 4mp2 vz
Wp T 2
the equation for JG will be
-iwI(t-t‘) -imz(t—t‘)
.)e e
Jg = -1 +
(0 - wp)  (wp = wy)
N -
- >(t-t7)
S — e 2 sin
~/4‘*’p2 -V
To simplify notation; let
2 2
4y & -
Y s -
0 2
so that
v -
oy ~plet)
-JG = E; e sin mo(t - t4)

To-complete the solution, note that
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f F(t')J -A(t-t )cos( )J 'd)\ dt”
v-

)
= —|ne” |Z|F(t) f F(t~ )I -A(t-t )cos(k z ) -2—dadt”

w P p / /

p v=A I v-2

(146)

and for convenience, denote the term in brackets as r(t,z). Then

v
w. 't - #(t-t7)

I () = =2 | datv e 2 sinw (t-t")T(t",2) (147)

Recall that Ez

Tw
00

G - B, so that we may use equation (128) and (147) to

solve for Ez

To

a [t -3t
j e 5 51nw0(t-t‘) +w coswo(t-t’))r(t‘,z)dt‘

Wp¥o ° (148)
0 .
evaluate E, we use equation (102) and write
_am (.
=< dz Jsz
()
, y ) ;
_4% rdt' ALk )sinwo(t-t‘)f dz°T(t",27) (149)
cw
o .
)
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There are two relevant points worth learning from this calculation;
the first ic that the oscillatory electric fields decay as e'“té? after
the end of the X-ray pulse, but that the magnetic field arising from the
13* 0 portion of the integration in equation (138) decays slowly. The
sécond point can be seen directly from equation (136); whereas the mag-
netic fields in the basic solution decreased exponentially in space with
a distance scale 1/kp, the 1ow frequency (|w| << v) fields in the dissipa-
tive plasma fall off more slowly. This process is the same as the diffusion

of magnetic fields through an imperfect conductor.

The result of this is that the presence of damping does not cause the
late time magnetic field shown in figure 9 to fall off at the end of the

X-ray pulse as one might expect.
4, DENSE PLASMA BOUNDARY LAYER

We examine a time independent, collisionless plasma with a density
discontinuity at z = 0 as in the last section. Away from the interface
at z = 0 the magnetic field satisfies

2

2 w
8 __ PZ |B(z)=0 forzz% O (150)
2z? c2 ‘ .

Ampere's law at the interface of the plasmas, then, is taken to manifest
the transverse current driver,

2
_dgdm g, Upr
9z c Jpx+(c * iwe )Ex (151)

2 -] 2 -.[
“p+ a 4n “p- d
1'_P_2_ ﬁB[ * x| T 1"p‘2‘ Er +%T-Jpx (152)
9 z=0_ v z=0_
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or

; 2 2

A 3 % " % 12 4

. 9z B| ¥4 BI -t + W 2 9z Bl T Jpx (153)
- 2=0, z=0_ p- z=0_

Utilizing the continuity of the magnetic field then yields,

“p+ ~ “p- : 2 2
B = -4mJ exp| -w_,1z| /¢ for w_ ~ >>w (154)
PX w px p-

pt p-
This latter result is then time independent and applies to the case where
one of the plasma frequencies (for z < 0) is much greater in frequency
than all other relevant frequencies in this phenomenon. The relevant
point to note in this calculation is, as before, that the dense plasma
layer will not substantially change surface magnetic fields unless it is
thicker than

c
g = =
- ]5
(»Up (156)

This condition is the same one derived for early time fields.
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SECTION V
COUPLING TO LOCAL GEOMETRIES - E

i In the previous sections we discussed the coupling to infinite con-
duéting planes of a plane wave of incident X-rays; in this section we will
review a number of concepts which we developed in those sections and discuss
how they may be applied in the analysis of more complex geometries. Ve
will specifically deal with those classes of problems we expect to be
amenable to analytic approaches, and those which can only be solved by
numerical methods. 1In this section we will draw heavily on experience
in satellite SGEMP and ground level close-in-coupling analysis methods .

We have noted that the analysis of the previous sections has given us
a number of time and distance scales which appear in the electromagnetic
problem. In the early time response which is dominated by the surface
photoelectrons, the distance scales which appear are the characteristic
dimension of space charge limiting at the time of the peak of the magnetic
field (typically a few millimeters), and the characteristic distance into
the plasma over which Tow frequency surface electromagnetic fields vanish.
This Tlatter distance is C/mp and is typically on the order of 30 centimeters.

The relevant time scales are the time at which P (the time derivative of the
dipole moment) peaks in a vacuum calculation of space charge limiting (typi-
cally 0.2 nsec), coseﬂup, the inverse of the freguency-at which the surface
magnetic fields oscillate (also typically 0.2 nsec), and llmp; the inverse
of the frequency at which the longitudinal (electrostatic) part of the elec-
tric fields oscillates (typically 1.0 nsec). The transverse (electromag-
netic) part of the electric fields oscillates at coseﬁnp, the same as the
magnetic fields.

For the Tate time fields driven by the air photocurrents on a siower
time scale, there is only one relevant distance scale, cﬁnp (typically 30
cm). Time time scales are set by the inverse of the collision frequency,
1/vm (which we assume to be long), the duration of the X-ray pulse (typi-
cally 20 nsec) and the inverse of the plasma frequency, l/mp. The
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reason for the relevance of the fatter and not cos8/w_ is that the trans-
verse part of the fields radiates away in external problems but the longi-
tudinal part of the fields persists. This can be seen from the éispersion
refations for a cold plasma (T+0) in the absence of a magnetic field, which
aré} for the longitudinal electric field, from reference 12,

W = wp2 =3 (157)
and, for the tranverse electric field,
czk2 = mz - wpz Eik (158)

For our early time case where the wave is incident on the surface with an
angie 6

ck, = w sing (159)
and, when substituting this in equation (158).

czkz2 = w2c0529 - mpz - (160)

Note that for w < w_/cos8, the waves are trapped near the surface as kz'is
imaginary. For w > wp/cose the waves radiate away at an angle er where

2
k )
cotd . = EZ'= cotze - —Eﬁ-cscze e (161)
w

For w >> w_/cos8, L =0 and the waves radiate away at the spectral angle

as in vacuum SGEMP. One should note that for certain geometries this

can cause a high frequency interaction between different parts of the sur-
face as shown in figure 12. This is one exception to the general rule that
portions of the missile separated by more than c/wp do not interact electrc-
magnetically. The other exception is the diffusion of low frequency magnetic
fields through a resistive plasma as noted in section IV.

12. Krall, N. A. and A. W. Trivelpiece, Principles of Plasma Physics, McGraw-
Hi11, New York, 1973. :
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Figure 12. High Frequeﬁcy Surface-Surface'Interaction

We now turn our attention to the early time regime, dominated by

surface photoemission and discuss methods applicable for the calculation

of the electromagnetic response of complex objects. If the object di-
mensions are comparable to the space charge limiting dimensions, in general
it is necessary to perform numerical computations to determine the electro-
magnetic response. These numericai calculations generally need to be
multidimensional, and the electromagnetic fields and photoelectron tra-
jectories need to be self consistently calculated. If the object radii of
curvature are larger than c/wp, we may treat surfaces as locally fiat. Be-
tween these regimes we use composite methods as we will shortly show.

In the late time regime, separations of larger thaﬁic/wp are essentially
isolated from each other. As we no longer have the necessity of calcu-
lating the space charge limiting of surface photoemission, it should be
possible to make relatively good analytic models of simple geometries.

. As an example of a calculation of the response of a local geometry,
we estimate the response of a short (~10 cm), thin (<1 mm) monopole antenna
protruding from the surface as shown in figure 13. We assume that the
radius, res of the transmission line is much greater than vhd (where h is
the monopole height and d is its diameter) so that the antenna capacitance
is not strongly dominated by the portion about its base.

S0



X-Rays
Monopole T
///// Dielectric '

Transmission Line

// Z =R

c L

‘\::EE

"n- ..

R

Figure 13. X-Ray Excited. Thin Monopole Antenna

e will consider the following physical effects on this antenna:

1) Normal electrostatic field caused by photoemission from
the surface.

2) Normal component of the transverse electric field caused
by photoemission from the surface.

3) Photoemission from the monopole itself:

4) Modification of the antenna jmpedance by the surrounding
plasma.

We have chosen this particular geometry as we can use an analysis method
similar to the close-in-coupling analysis of reference 13. As this dipole
is short compared to the wavelengths involved, we can make the electro-
static approximation for the electric fields involved,<and use the equi-
valent circuit shown in figure 14, where C is the (frequency dependent)
capacitance of the antenna in the plasma, as we will discuss shortly. V
is the open circuit voltage caused by the electric field drivers, Ie is
theé current emitted from the monopole itself and RL js the load resistor,

equal to the characteristic impedance of the feed geometry.

i

/

13. Longmire, C. L., "Direct Interaction Effects in EMP," AFWL Interaction
Note 69, Air Force Weapons Laboratory, Kirtland AFB, NM, 1973.

51



Figure 14. Equivalent Circuit of X-Ray Excited Monopole

We first consider the electric field driving terms to determine the
open circuit driving voltage Vi' As mentioned above, there are two con-
tributions to this, the electrostatic voltage across the space charge
1imited layer of photoelectrons emitted from the surface, and the voltage
caused by the electric field of the radiated wave. As the effective height
of our antenna is h/2, we can write

= 1
V.=V +3 Etzh (162)
The first term, in practical cases where the emitted photoelectron density
greatly exceeds the ambient plasma density,is little changed from its vacuum
value, and if P(t) is the vacuum dipole moment time history,

) = P(E) _f
Voelt) = = (163)
)
Etz can be determined from the surface magnetic field which we calculate

in section 3 and

1 2 - _ 9

T3t Etz = 7 Bx By (164)
but

9__ sing 3
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E,, = -siné By ; (166)

As ‘the monopole radius is much smaller than space charge 1imiting dimensions,
Ieéis the total photocurrent emitted from the monopole and has the shape of
the incident X-ray pulse.

We now turn to the task of estimating the antenna capacitance. In
vacuum the capacitance would be approximately

- h
Co = 2an(n7a)-2 A (167)
In the plasma we must add the electron current to the displacement current,
19E, &n
= o jd (c 3t T C 'Je) (168)
where
e2 - ,
‘Je = -Nev = =— jdt E (169)
or in the frequency domain
w 2 -
- - __L
C(w) 1 2z Co (170)

The solution for the load voltage is easily seen to be:=(in the frequency
domain)

1mRC(w)V (w) R Ie(w)
V. (0) * Siretey # 7 F STeRC(@) + (171)

We will determine the time history of the response to separate deita function
voltages and currents

V(w) = 5 (172)
_
I(w) = 5= (173)
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The response to other driving time histories can be obtained by a con-
volution. For the response to a deita function voltage we obtaiﬁ

3
-

o 2 2
-1 iRC (0" - w.“) »
v (t) = 2n-J. 7 e Wt gy (174)
-'iRCo(w - ) +w

This integral may be solved by contour integration as before. The denomi-
nator has roots at . \

~/4wp2R2coZ -1 i
w, =2 7RC, T, (175)

with three possibilities for their location in the complex plane. For
2waC0 > 1 we have conjugate poles (see figure 15) whereas for 2w RCo <1
we have the roots on the imaginary w axis as shown in figure 16. Finally
for 2w RC0 = 1 we have a double pole on the imaginary axis at w = -i/ZRCO.
For simplicity we work with the first two possibilities.

Imw

o e 0

g

}*tc/ I ;(-—J %—rRew

(NR 2

t>0

Figure 15. Pole Locations and Integration Contour for 2w

pRC°>1
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Figure 16. Pole Locations and Integration Contour for 2mpRCo-<1

For t < 0 we can close the contour C with an infinite semicircie in the
upper half plane, and obtain VL = 0. For t > 0 we close the contour with
an infinite semicircle in the lower half plane and obtain

. w+2 -w 2 -iw+t _ m_2 -w 2 -iw_t
VL(t) = Gv(t) =+ —G:—:—a%— e - i —E:—:—a%— e . (176)

This expression is obviously real for 2mpRCO< 1, as wy = w_ is imaginary.
For prRC0 > 1 it is real as w_ - w_ is real,and the second term is the
complex conjugate of the first. Similarly for a delta function current

source one obtains for t > 0

w -iw, t w -ig.t
VL(t) = Gl(t) = -cl- (_w_?T_) e + '(w__}w__) e (177)

o I\’+ +

This expression is always real for the same reasons as above. For arbitrary
time histories of Vi and Ie

wo- |

t .
dt- [Gv(t-t‘) v(t7) + 6, (t-t") Ie(t‘)] (178)

[ -}
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For the dimensions given, with a termination of 100 ohms,
RC, ~ 10710 sec (179)
s& that

2wp R Co = .2 (180)

A typical behavior of Vpe which dominates over 1/2 Etzh is shown in figure
17. A typical Ie js shown in figure 18.

: >t

.4 nsec

Figure 17. Typical V e From One Dimensional Particle Calculations

p

le

A =

100 amps -1

i >
10 nsec

Figure 18. Typical Ie Resulting From Emission Off of Aluminum Monopole
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With these typical values, we find the voltage resulting across the load
which is sketched in figure 19. o

*

. A
10 kV 4+
4 kV
} "
.2 nsec 10 nsec

Figure 19. Load Voltage Resulting From X-ray
11lumination of a Monopole Antenna

The plasma oscillations are not seen for this example because(up<<-éf
and the antenna responds much as it would without the plasma. For a load
impedance on the order of 5 kilohms we would see oscillations in the
response.

During the late time period dominated by air photocurrents, the antenna
will respond primarily to Ez with

=h '
V; =5 E, 181)

Features of this calculation worthy of note are the transfer of energy
between the plasma electrostatic oscillations and the load, and the conse-
quént damping of these oscillations as energy is removed from them.
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SECTION VI
SUMMARY )

* In this report, we have presented a number of calculations relevant
toithe generation of electromagnetic fields when weapon X-rays impinge
on missiles in flight in the altitude regime where the secondary electrons'
motion is not collision dominated and electrostatic and electromagnetic
plasma oscillations are seen. le have noted that the problem separates
naturally into two time regimes; the first one being dominated by surface
photoemission and the second one being dominated by air photocurrents. We
have calculated the response of a flat surface in the two time regimes and
we have made a simple model of a monopole antenna exposed to X-rays.
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