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1. INTRODUCTION

r

In using the 2-D finite-difference method to solve the%EMP response
iﬁduced on a body of revolution, the cross section of the conductor is re-
qéired to be electrically thin [1] so that only axial current dominates and
a completely symmetrical situation exists. In some applicationms however,
the radius of the antenna is extremely thin and it requires excessive cost
to compute the current. The problem is that when the wire is very thin, the
minimum Ar is very small so that the time step At is limited to be a small
number. It then requires a large number of time cycles to compute a curve.
This note suggests an approximation to solve the problem. In the following
discussion, we shall assume the reader has some knowledge of the existing

2-D finite-difference technique.
2. THE THIN WIRE APPROXIMATIOHN

In order to remove the restriction on the small Ar and small At
for thin wire and maintain the accuracy of the computation, we need to find
an effective Ar for the cell nearest to the antenna. If one knows the rela-
tive distribution of the field very near the wire, it is possible to select
an average Ar based on this distribution. It is well known that very near
the antenna, the electromagnetic fields are dominated by the static field
solution in which Be ~ 1/r and Er ~ 1/r. We shall make use of this approxi-

mation in the following to derive an equivalent radius Ar for the first cell.
Consider Maxwell's equation for the scattered fields in space,

9B _
-ﬁ_..VxE . (1)

In a two-dimensional, cylindrical coordinate, Equation (1) becomes (with

only BB’ E,, E. components)
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The integral form of Equation (1) is given by
+ 3 > .

- = jAﬁ’-dA-gSCE % .3

Consider a sample cell near the antenna where A is the surface bounded by
A,B,C,D in Figure 1 and C is the close loop AB, BC, CD, and DA. Explicitly,
Equation (3) can be written as
-%IRZ(Z)IZZ By drdz = [ Eedl + [ Eedl,+ [ Eedal,+ [ E-af,
a z1 AB BC CD DA
4)

where Rz(Z) is the radial distance of Ezz; Rz(l) = 0 is the axis of the antenna
(z-axis) where Ezl is located, and a is the radius of the antenna. Assuming BO’
Ez and Er is uniform in Az, Equation (4) becomes (where B9 = uoﬂe)
R_(2) R (2)
d z _ z% _
- 3 fa u Hedr)Az = (B, - E ,)Az + fa (E., - E )dr
(5)

Very close to the antenna, the magnetic field and the radial electric field

is approximately related to the current and charge per unit length on the wire

by

Hy(r,z,t) = 22t (6)
E (r,z,t) = UL ™

where I and q are functions of z and t, but not functions of r. The current
and charge per unit length (and the fields near the wire) can be solved in
terms of some known fields at particular locations. This will enable one to

evaluate an effective radius relative to the fields at those locations.
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Figure 1. The Integral Path for the Thin Wire Approximation




At r = Rh(l), z =z (see Figure 1), from Equation (6) we have

I{Zo,t) '
Hel(Rh(l)’zD’t) = E.,FR;_(—lT . (83)
@hich can be written as,
I(Zo,t) = ZﬂRh(l) Hel(Rh(I)’zo’t) (8b)

Substituting Equation (8b) into Equation (6), one obtains

R (1)

Hel(r’zo’t) = T Hel(Rh(I)’ZO’t) (9)

where Hel(r,zo,t) is located at (r,zo). Similarly, at Rh(l), z =24 and z,

(see Figure 1), we have from Equation (7),

q(zl,t)
Ep(Rp(1),24,1) = 77k, (1)

—

B (R (1),2,,) = 2R, (1)

These equations can be written as

q(z,,t) = 2mR, (1) E (R, (1),2,,1) (10a)}

q(z,,t) = 2mR, (1) E_, (R (1),2,,t) (10b)

Substituting Equations (10a) and (10b) into Equation (7), we have

R, (1)

Erl(r’zl ’t) = _IT-— Erl (Rh(l) szlxt) (lla)
(1)

ETZ(T’ZZ’t) =_"'i.'_ EI’Z(Rh(l) ,Zz,t) (llb)

;
!




where Erl(r,zl,t) is located at (r,zl) and Erz(r,zz,t) is locateg at (r,zz).

A few comments on the field quantities are in order. In the aboye manipula-

tion, the fields near the wire are expressed in terms of those field elements
c§mmon;y used in a unit finite difference cell. These field elements are

(5ee Figure 1):

H, (R, (1),2_,t) located at (R (1),2,)
E, (R, (1),2,,t) located at (R, (1),z,)
E_, (R, (1),2,,t) located at (R (1),2,)
E (R (1),2,,t) located at (R (1),z,,t)

EZZ(RZ(Z),zO,t] located at (Rz(2),zo,t)
where z, is related to N and z, by (assuming uniform grid in z direction),

2z, = (z1 + 22)/2

and Rz(l), RZ(Z) and Rh(l) are given by (assuming nonuniform grid in r direc-

tion),

R (1)

R, (1)

R (2) = a; Ar

0 (z-axis)

0.5 Ar

where Ar is a properly chosen number (usually of several antenna radius) that
represents the mesh size in the r direction and oy is a constant factor used
for expanding mesh (usually Oy < 1.35). When o, = 1, it is a uniform grid in
the r direction and Rh(l) = O.S(RZ(Z) + Rz(l)). Put Equations (9) and (11)
in Equation (5), and we have

RZ(Z) BHel RZ(Z)

- K, Az Rh(l) n 3 -5t (E21 - Ezz)Az + Rh(l) in

a— (Epp - Ey)

(12)
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Rearranging the above equation and writing aﬂel/at in finite-difference form,

the final result becomes :
n+1 n ) _ (gl _ n At n _.n At
: (He1 "~ Hgy) = By - Eyp) R, )" Erz2 ~ Frd) (quz)
¢ M, R (1) 2n £
(13)

where the superscript n is used to indicate that the fields are evaluated
at time t = nAt. It is instructive to compare this result with the one
without thin wire modification. From Equation (2), the ordinary finite-

differencing scheme gives

n+l _yn At At
(Hﬁl H91)= (E,5 - Epp) (B, - E

- = ) - (14)
uoﬂr z quz 1

T
A comparison of Equations (13) and (14) shows that Equation (13) is using
an effective Are with

R_(2)

Ar_ =R (1) n za ' . (@5

This approximation is somewhat different from the one discussed in Reference
2 in two respects: (1) We are solving the scattered fields, not the total
fields, and (2) the He

charge source. The thin wire approximations in the finite-difference method

and Er is one-half cell away from the current and

can be summarized as follows (let r = (J-1)Ar, z = IAz, where I and J are

integer indexes):




I 7,

1. For J =1 and 1 < I < IHI where IHI is the index
denoting the height of the antenna, using Equatioﬁ

(13) to calculate He sequentially in time.

2. For I and J not in the above range, using Equation
(14) to calculate He sequentially in time.

3. Calculating Er using an ordinary finite-difference

equation.

4. Calculating Ez using an ordinary finite-difference

equation

5. Set EZ(I,I) = -Einc(t) for 1 < I < IHI, where Einc(t)

is the incident field.

6. Repeat the procedures from (1) to (5).




3. NUMERICAL EXAMPLES
The first example is to calculate the short circuit current at
the base of a monopole with a half length of h = 0.58 m and a radius of
4 = 0.004 m. The incident field is an idealized AURORA field given by [3]:
() = 7500 x sin’ T
o T + 2+ 6xp(-0.6931 X T

with T = £/120x10°°, B

By

1.45.

The air conductivity o(t) is taken to be [3,4]

12

o (t) ¥ 2x10° x D(t)

D(t) = DOSE x PEAK X F(t/t ) X y/RS

DOSE = 4000 rads
PEAK = '7.5x106 -
y =4.0m
R=4.38n
t_ = 100 nsec
P 2
F(t) = sin” [n1/(1 + 2 exp(-0.6931 TB))]
B =1.77 (peakti)l'g

The resulting base current is shown in Figures 2 and 3. Figure 2
shows the base current calculated without using thin wire approximation (up
to 200 nsec). Figure 3 shows the base current for the same problem calcu-
lated using theé thin wire approximation described in the previous section
up to 360 nsec. In this case, RZ(Z) = 0.048 m, Rh(l) =0.02m, a=20.004 m,
Are = Rh(l) En(Rz(Z)IZa) = 0.050 m which is slightly larger than Rz(Z].

The actual running time, cost, accuracy, et cetera are compared in Table 1.
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Base Current Calculated Without Using Thin Wire Approximation,
h=0.58m, a=0.004dmy 0 =o(t).
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Base Current Calculated With Thin Wire Approximation,
h=0.58m a=0.004m o=o(t) with RZ(Z) = 0.048 m,

Rh(l) = 0.02 m.
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Table 1. A Comparison of Results Calculated With and Without
Thin Wire Approximations for h = 0.58 m, a = 0.004m,,
and o = o(tg .

i} Wwith Thin Wire Without Thin Wire
Approximations Approximations

Run Time 103.9 sec 545.1 sec

Time Cycle Nmax 4050 40499

Exit Tmax 360 nsec 200 nsec

Accuracy Ip1=6.038 at t=114.5 ns Ip1=6.108 at t=114.0 ns
Ip2=4.985 at t=114.5 ns Ip2= 5.026 at t=114.0 ns
Ip3=1.548 at t=114.0 ns Ip3=1.539 at t=114.6 ns

Cost $4.36 on CDC 6600 $22.89 on CDC 6600

Notice that in Table 1, the value calculated without thin approxi-
mation is only up to 200 nsec. Assuming the cost and running time are linearly
proportional to the exit time Tmax’ then to obtain the result up to 360 nsec,
the running time would need to be near 981.2 sec and the cost will be near
$41.2 . These are about a factor of 10 times that with thin wire approxima-
Ipl’ Ip2 and Ip3
are peak values at three different locations on the antenna.) This comparison

tion. From Table 1, the accuracy is within 1.5 percent. (

shows the advantage of using thin wire approximation in this case.




A second example is to calculate the short circuit current at
the base of an antenna with h=1m, a = 0.003 m, using 0 = 0.0 épd Einc(t)
in the first example. We use Rh(l) = 0.015 m, RZ(Z) = 0.036 m, a = 0.003 m,
Age = Rh(l) ln(Rz(Z)/a) = 0.037 m in this case. The resulting currents are
shown in Figures 4 and 5. A comparison of the run time, cost, accuracy is
given in Table 2. It is seen that the accuracy if Ipl is within 0.5 percent
and the peak time is within 0.3 percent when the thin wire approximation is
used. The cost and run time are reduced by a factor of 10 using this method.

When the radius a is given and RZ(Z) is selected, the effective
radius Are is determined from Equation (15). How much difference is intro-
duced in the resulting current if the Are is selected slightly different
from what is specified by Equation (15)? In Table 3, a comparison of several
calculations is made to study the sensitivity of the result. We use the
parameters in example 2 for this purpose. It is seen from Table 3 that the
effective radius given by Equation (15) indeed gives the best result (0.37
percent deviation from the one without thin wire approximation). Notice
also that, if we use Are = Rz(2), the error is only 1.31 percent. This is
because, in this case, RZ(Z) and Rh(l)zn(Rz(Z)/a) are quite close to each

other so that the difference in the result is small.
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Figure 4. Base Current Calculated Without Using Thin Wire Approximation,
h=1.0my a=0.003m, 0c=0.
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Figure 5. Base Current Calculated With Thin Wire Approximation,

—
.

h=10m, a=20.003m, 0 =0, Rz(z) = 0.036 m,
Rh(l) = 0.015 m.

Table 2. A Comparison of Results for Example 2

With Thin Wire Without Thin Wire
Approximations Approximations
Run Time 55 sec 483 sec
Time Cycle Nmax 1800 17999
Exit Tmax 120 nsec 120 nsec
Accurécy Ip1=0.6062 at t=56.0 ns Ip1=0.6085 at t=57.6 ns
Cost $2.65 on CDC 6600 $22.31 on CDC 6600
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In fact, if we are free to select Rz(2), then it is always possible

to find a RZ(Z) which satisfies (consider a uniform grid in the following)

R, (2)
a

; R (2)
_ R,(2) = —5—in

Solving the above equation, we have

RZ(Z) = ez' a=7.3 a

For this value of RZ(Z}, the effective radius of Equation (15) is equal to
the first cell size, and Equation (13) is the same as Equation (14). This
may not be important in the 2-D problem discussed here, but in a more com-

plicated 3-D problem, the use of this fact would simplify the formulation.

A question related to the above discussion is that, for a given
problem with antenna radius a specified, "What is a good value of RZ(Z) to
be used?" It is noted that the larger RZ(Z) is, the less running time and
cost will be needed. Hence we tend to choose a larger RZ(Z). However,
when the ratio of RZ(Z)/a is increased, it is expected that the accuracy of
the result decreases since the approximation may not be valid. Thus, it is
interesting to examine the results obtained from several calculations with
different RZ(Z)/a values. Table 4 is a summary of the results calculated for
RZ(Z)/a =2, 5, 7.389, 10, 20 and 30 using example 2 parameters. The dif-
ference between Table 3 and Table 4 is that in Table 4 the ratio RZ(Z)/a is
varied, which in turn changes Are accordingly, whereas in Table 3, Rz(2)/a

is the same in each case and Are is changed arbitrarily.

The second solumn in Table 4 is for the case without using thin
wire approximation, where we use Rz(z) = a. The rest of the results in the
table are all using thin wire approximations. Notice the run time and cost
is decreased as the ratio of Rz(2)/a is increased. The accuracy decreases

as the ratio becomes large. However, even for the case of Rz(Z) = 30.0 a,
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the accuracy of Ipl is within 4 percent of that without using approximations.
The run time is 24 seconds and the cost is only $1.01 for the case with

RZ(Z) = 30 a as compared to the run time of 531 seconds and theécost of
$22.30 for the case without approximation. From Table 4, it is seen that
when the ratio R (2)/a decreases from 7.389 to 2, the run time and cost
{ncreases and the accuracy decreases. Thus, there is no advantage in

choosing a small value of Rz(2)/a below 5.

Figure 6 presents some sample base currents for different Rz(z)/a
ratios. It appears that the difference between these curves are not very
significant. Figure 7 is a graphical representation of the data presented
in Table 4. It seems that the optimal value of RZ(Z)/a is between 5 and 10,
where the percentage deviations of Ipl and tpl are below one percent, the
run time is less than 15 percent of that without using the thin wire approxi-
mation and the cost is less than 20 percent of that without using the thin

wire approximation.
4, CONCLUSIONS

It is snown that the thin wire approximation cut the running time
and cost by more than a factor of 10 when it is applicable, with good accu-
racy. When one selects Rz(2) = 7.39 a, the formulation simplified to ordinary
finite-difference formulation. This could be useful for 3-D calculations.
From the sensitivity study given in Table 3, it is seen that the choice of
the effective radius as given by Equation (15) indeed produces the best

result.

Another scheme which may be useful is to use the three-point inter-
polation formula in Equation (2) and not to introduce the effective radius
Are. At this time, the choice of our approximation seems to fit into the
antenna and scattering problem with less difficulty. The approximation
suggested here is somewhat different from that discussed in Reference 2 al-
though the principle is the same. It would be interesting to compare the

results from these different schemes in the future study.
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Figure 6. Sample Base Currents for Different RZ(Z)/a Using Example 2 Parameters
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