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1. INTRODUCTION

14
*

: This report presents analytically derived estimates of the radi-
%tive and hydrodynamic phenomena that would occur following the burst of a
f-megaton bomb in the MX tunnel. It shows that about 9 kilotons is trapped
in each half of the tunnel at times of a few hundred microseconds, after

venting in the neighborhood of the burst.

The reason for this effort was two-fold. First, we needed esti-
mates of the hydrodynamic phenomena to use in the prediction of the EMP
sources. Second, we thought it would be good to go through the analytical
estimates to provide a check on the detailed computer calculations being
made at the same time, and to provide some understanding of the results of
those calculations to those unable to examine the computer calculations 1n

minute detail.

The reason why a check on the computer calculations is useful is
that the phenomena involved are quite complex and significant effects occur
in distance and time scales very short compared to overall dimensions and
times. It is difficult, especially in two- and three-dimensional computer
calculations, to zone fine enough to resolve all of phenomena well.
Fortunately, the problem at hand ié quite forgiving of errors made at
early times, because of continual degradation of that part of the energy

which is important for later phenomena of interest.

" Qur results, insofar as we went, agree fairly well with the
computer results. We are indebted to Dr. Bud Pyatt of Systems, Science,
and Software, Inc., for going over the results with us. In view of his
long experience with problems of a similar type, it is no surprise that we
find ourselves in agreement with him; but we, at least, find it conducive

of confidence in the answers as far as we went.

3
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2. PROPERTIES OF MATTER AND RADIATION
— We collect here some useful formulae relating to matte% and

radiation at high temperatures. First, the definition of the megaton is

1 megaton = 10->calories = 4.18x10*° Joules (1)

We may assume that about 3/4 of the energy comes out of a bomb in the form
of radiation (thermal x rays) in a few tens of nanoseconds, and that about
1/4 of the energy appears as kinetic emergy of the expanding bomb debris.

Then, if the 1 megaton bomb weighed 1000 Kg, its average expansion specd

would be

Vieb ¥ 1.4X106 m/sec , (2)

and the outermost debris could be ekpected to go two or three times faster.

Blackbody radiation in a cavity at temperature T keV has energy

content
é}(Joules/ms) = 1.37x1013T4(keV) . (3)
The pressure of radiation is

2 1
pr(Newton/m )= 3% é} . 4

Air is almost completely ionized at temperatures greater than
about 0.1 keV., Concrete (SiOz) and typical soil are similarly stripped
at temperatures above 0.8 keV. In the stripped condition, the internal

kinetic energy of matter is
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E, (J/ke) = 7.2x10%0 (?-%-'i)—) T(keV) (5)

and the internal potential energy (of ionization) is .

| B (/ke) = 7.2x10821 %7 (_21\2_) , (6)

where Z is the atomic number and A the mass number., The factors

involving Z and A are close to unity for all but the lightest elements.

1,37

In case of mixtures of elements, Z is to be averaged over the mass

fractions of the various elements. Thus for air and concrete:

air: E_ = 1.1x10%0 3% |
P (7)

concrete: Ep 1.9><1010 J/kg}

[}

The internal energy density of matter at mass density p(kg/m3) is

&y = PEFE) = PE, | (®)

and the matter pressure 1s

_2

P, =% P E (9)
By comparing Eq. (3) and (8), one can find the temperature Tc-

at which radiation and material energy densities are equal. For air and

concrete we have:

u

1.3 kg/m>, . T~ 0.22 keV
¢ (10)
2.3 keV

air: ©p

2000 kg/m>, T

concrete:

R

C

At higher temperatures the radiation energy is dominant. Note that for
both air and concrete Tc is high enough to ensure complete stripping,

so that our approximations for the material energies are valid.

5
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3. RADIATIVE PHASE

According to Eq. (2), it will take about 1.5 psec for the bomb
déBris to reach the tunnel wall, if the tunnel radius R = 2.5 m. In this
time the x-rays can travel 450 m. Since the wall material can hardly move
f%ster than the bomb debris, it is clear that there will be a phase, lasting
on the order of microseconds, in which significant energy transport occurs
by radiation alone. In this section we shall assume that the radiation
which falls upon the tunnel wall heats a thin layer of the wall to a tempera-
ture such that it emits radiation approximately as fast as it receives. The
radiation spectrum will then continue to be approximately Planckian, in
equilibrium with the local wall temperature, and radiation will diffuse

along the tunnel,

Let us at first ignore the presence of air in the tunnel, and
assume that the radiation occupies uniformly a length 2L of the tunnel.
The half-length L will of course increase with time. Since the cross

sectional area of the tunnel is about

A=20m , (11)
the volume occupied is
;
V=40Lnm" . (12)

Putting 0.75 megaton in this volume gives, from Eq. (3), a radiation

temperature
T(kev) = 1.55/L174 (13)

This formula leads to the following table:



L: 10 20 40 . 80 m 3
(14)
T:  0.87 0.73 0.62 0.52 keV | .

Notice that all of these temperatures are gréater than Tc(air), so that
the energy of the air is negligible compared with that of radiation. Also,
the air will be well stripped at these temperatures. We need to consider

how the air gets "burned out'.

For x-rays at quantum energy ~ 2 keV (appropriate for T = 0.7 keV),
the absorption length in cold air is about 0.002 gm/cmz, or about 1.5 cm at
normal air density. The absorption length remains this short until the
Keshell electron disappear, which begins at T = 0.08 keV, and is essentially
complete (for opacity purposes) at T= 0.4 keV, where the opacity is domina-
ted by Compton scattering. The result is that air exposed to radiation at
temperatures of the order of those above is brought to equilibrium with the
radiation in times very much less than a microsecond. The shortness of the
cold air absorption iength has the result that the radiation front which

moves into the air is quite thin with a steep temperature gradient.

We can estimate the rate at which the radiation front burns into
cold air as follows. Given the radiation energy density é; just behind the
front, the flux of radiation energy per unit area is twice the black body

flux

c
'FI‘ - Zbe = 2( Z éar), (15)
where ¢ is the speed of light. The factor 2 comes from the fact that
there is a temperature gradient behind the front. If there is no flux
coming back from the front, then the flux due to the gradient equals the

black body flux (in diffusion theory approximation).
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If the front advances a distance &z in time 6t, then Fr has

to supply the radiation and material energy in &z, i.e.
Frét = (é’r + é’m)(‘iz . (16)

14
Therefore, the speed of the front is

_ 6z - F

—1 r -
t & r+¢5°m

Ve

(=]

Cc
e a7

Using the expressions given above for éh and g} we obtain the following

" results:
T = 0,10 0.15 0.20 0.25 0.30 keV
1
— = 007 I24 . » -
1+é%/é} 0 0 0.46 0.65 0.78
(18)
AR = 0,8 2.6 5.1 9.6 12.8 m
AP = 0,01 0.25 1.1 4.5 11.0 m

This table also gives the Rosseland and Planck mean free paths, AR and Ap,

in normal density air at the temperatures indicated.

We see from the table that v, is close to ¢/2 for driving
temperature greater than 0.3 keV. Since the energy to drive the front must
diffuse from the region of the burst up to the front, it cannot support a

front that moves at speed too close to c¢/2,

Let us examine the diffusion along the tunnel. Table (18) shows
that for temperatures greater than about 0.25 keV, the radiation mean free
path in air is greater than the tunnel diameter. It can be shown that the
effective mean free path in an empty cylinder, the'walls of which are black,
is the tunnel diameter D = 2R. Thus, when the matter energy is negligible,
&, satisfies the diffusion equation

8
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_cbh 3
T—T—'i‘g . (19)

. . 3x° .
) é’r = & exp (- —) s (20)
vhere éb is the value at x = 0,

éb - s B a constant. (21)
vct
The radiation flux is, according to diffusion theory

F=-—-_-.-é"=

X
T 3 9x T 7t 6r ° (22)

The maximum value of the gradient flux is that from a black body, given in

Eq. (15). Equating (22) to be, we find

(23)

FNTS)
3
>

n
|

= =
2t

Thus, without the necessity of heating material, diffusion can bring forward
energy at a sufficient rate to make the radiation front move at speed c¢/2.
With material present, the burnout front will move at speed close to c/2,

provided éh is small compared with g} at the temperature given by dif-

fusion theory at the front, For our case, the constant B in Eq. (21) is

B = 3.43x10%° —Jg /i (24)
m

From Eqs. (3) and (20) one then obtains a formula for the temperature as a

function of x and t,



2
1.26 3x
T(keV) = ——= exp (— ———) (25)
(Ct)I/S 16Dct

Agraph of T versus x at various times is shown in Figure l.? The
Géussian is truncated at x = ct/2, which is valid as long as the tempera-
ture at the point of truncation is such that éh is small compared

with é}.- Since éh and 6} are equal at 0.22 keV, and the truncation
temperature is equal to this value at 0.4 psec, the burnout front will
move at speeds less than ¢/2 after about this time. This will give the
main portion of the radiation energy time to catch up with the burnout
front, so that the temperature distribution will become flatter. At

x = 0 the temperature will continue to fall as

TN‘__l._Z_()_ (26)

(ct)1/8

for some time, in fact, until energy loss into the walls becomes important.

10
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4, RADIATION DIFFUSION INTO WALL: EARLY PHASE

In this section we examine the energy loss into the tunnel wall at
edrly times, during which this loss is small compared with the energy in the
tunnel and the motion of the wall material can be neglected. After we have per-

! - » . .
fermed our calculation, we shall see how long these two conditions remaln valid,

The flux of radiation energy in the wall is

_ K-
F =3k 3y ¢ ° (27)

2
where y is the depth into the wall and K ( %E-) is the opacity. The
opacity depends on temperature and density, and can be fitted quite well

over substantial regions of these variables by the formula

K=Knym™ (28)
where K* is a constant, n is the ratio of the mass density to, say, the
normal density and T is again the temperature in keV, The exponent m
is not far from unity over the range of interest to us,” The exponent n
is about 4 in the temperature range 0.5 to 1 keV, and about 1 between
0.2 and 0.5 keV. With the form (28) of the opacity, the flux can be

written

Here we have used the fact that 6}.v T4.

The constant flux approximation assumes that the flux is constant
in y, from the surface of the wall to the position Y1 of the hcad of the
radiation wave, while at the head the flux is used up in heating the

material to a temperature approximately equal to the driving temperature

12
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TO in the tunnel. Under the assumption of constant flux, if p is

constant, we would find the temperature profile by integrating Eq. (29},

3

f' _ y ,1/(4+n)
; T = T0 (1 - 57—) . (30)

1

t

fius the temperature varies only slowly with y up to points very close to
Yy where it drops shortly to zero. Since the material energy Em is
roughly proportional to T, Em also is nearly constant in y up to points
quite close to Yy and then drops shortly to zero. Thus indeed the
material receives most of its energy near the head of the radiation wave,

and the constant flux approximation is well justified.

Since the constant flux approximation implies that ™ €r is a

linear function of y, the flux into the wall is

4 ¢ €ro
F_ = ; . (31}

r 4+n 3ph0 Yi
Here KO and 6}0 are the values of K and &, at the tunnel tempera-
ture TO. Thus the opacity at the lower temperatures in the radiation wave

affects the flux only through the exponent n in the factor 4/(4+n), In

our case

4 ”
ZTE”O‘S for 0.5<T<1 keV,

(32)
~ 0,8 for 0.2<T<0.,5 kev ,
We now equate the flux to the rate at which matter is heated
at the head of the wave,
. N
oo dT - Fr - (33)

13
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Using Eq. (31) and integrating in time, we find

- . - [8 o ct ]1/2 . 549
R 1 4+n éhO 3pk0

Since Y, ~ ¥t , dy/dt ~ 1/V/t , and the speed of the radiation wave is

arbitrarily large at early times (though not, of course, larger than c).
Thus at sufficiently early times it is justified to neglect the wall
motion

At T = 0.7 keV, we have

3.3X1012 J/m3 ,

6}0 =
(ng = 1.3X1014 J/m3 s (35)
3pK0 = 1.5x104/m .

With these values, we have

Y 0.0x10"° vet m , (T, = 0.7 keV)
(36)

0.5cm at t = 0.1 usec .

The ratio of the energy Ww in the wall to the energy wt in

the tunnel is

E_ _ ZTTRy1 éﬁo _ 2y1 ého (37)
= = -,
W nRZ 6}0 R érO
= 0.071 /et (Ty = 0.7 keV),
(38)

0.4 at t = 0,1 psec .

14



Thus Ww and Wt would be equal at t = 0.6 usec, for T0 = 0.7 keV.

The temperature dependence of Ww/h’t can be found from Eq.s (37) and (34),

: Y ["lo g]”z
W €ro %o

Since éhO is approximately proportional to T, this is

W

LN T(()"“3)/2 /ot . (39)
t

This quantity is almost independent of temperature over the temperature
range of interest here., Thus over the time frame 0~0.4 psec of the dif-
fusion problem of Sec. 3, a fair approximation is to regard the heat
capacity of the tunnel as being about 1.6 times larger than we assumed.
This would lower the temperatures in Fig, 1 by a factor (1.6)1/4 ~ 1,12

and increase the times labeling the curves by a factor 1.6.

The heated wall material will blow off with velocity of the

order of

v~ VE
m

- %ﬁm/p:v 2.5x10° m/sec (40)

This speed should be compared with the speed of the radiation wave, which

is from Eq. (36),

-3 5
) - 1 0.9x1077c _ 1.3x10° ... (41)
/et /et

(Both speeds are for T0 = 0.7 keV.) We see that &1 falls below Vo at
very early time, and the material motion is never really negligible in our
problem, We consider the effect of material motion in the next section.

~We shall see that the effect is not great.

15



5. RADIATION DIFFUSION INTO WALL: RADIAT ION-HYDRODYNAMIC PHASE

~ The results just obtained suggest that, after a neglig;bly short
ﬁime in our problem, the wall material will blow off as rapidly as it is
neated by the radiation. Thus we must account for the changing mass
é;nsity in the diffusion problem. In addition a shock wave runs ahead

of the radiation wave into the wall, increasing the initial density as

seen by the radiation wave by a factor

i 42 P8
nl - Y-l 5 . (42)
Here Y is the constant that appears in the equation of state
p, = (v-1) &, (43)
and is approximately
y ~ 1.5 (44)

in our temperature and density range.

The fact that the material is moving suggests that we change the
independent variable in Eq. (29) for the radiation flux from y to a new

variable z determined by
m
e, dz = pn dy , (45)
where Da is the original, unshocked density of the wall, All of the

density varying terms have been included in the variable z, and Eq. (29)

with this variable reads

16
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Fseoe—— T & . (46)

r

Again, the arguments for the constant flux approximation are valid, and

the flux is to good approximation

X n .
s 4 STo ¢xo
Fr = Zm * oz ? (47)
Ip K 1
a
where zl is the value of 2z at the head of the radiation wave. Now we
can relate Zy to the mass M1 of wall material, per unit area of wall,

that has been penetrated by radiation. Let us assume that, due to blow off,

the density distribution of the heated material is

-Gy, /A
n=n e : (48)

where A is some scale length. Then, from Eq. (45),

Y
1
2 " J{‘ ™y = A} (el (49)

-0

But with the same assumption (48), the mass penetrated is

Yy :
uy = [ og may = o, (50)
-0
so that
m
N
p.z. = M (51)

The flux, Eq. (47), therefore becomes

&
_ 4 (m+l)c "x0
Fe = %m _m M (52)
3n1 KO 1

17



Here KO is the opacity at the driving temperature T0 and the original

unshocked density P s 88 before,

We are now ready to rewrite the energy equation (33). This time
the radiationrflux must supply enough energy to heat the material and give
it the blow-off kinetic energy. The kinetic energy is developed in the
ravefaction wave that follows the radiation wave. We shall show in the

next section that the kinetic, energy per unit mass is approximately

KE

13 -
== (-DE (53)
Thus the total energy that must be supplied by the radiation flux is

KE + Em = oF (54)

0 m0

where
o =32 (-1 + 1~ 2,625 (55)

The energy equation is therefore

My 4 @meDe €xo0
oE = (56)
mo dt 4+n o M o M1
M1 %o
Integrating, we obtain
v o [-8 @D Ero ct |2 57)
1~ |4+ m E . 3K *
o ny m0 0
We can define an equivalent depth of penetration,
y = My [ s (mr1) Gro ct_ M2 (58)
=5 T )
. eq .pa 4+n o n? ého 3paK0

18
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where ého is evaluated at the original density P This result can be
compared with Eq. (34) for assumed constant density. The only difference

is in the factor (m+1)/an? inside the brackets in Eq. (58). Since m= 1,

Wé have
. 1/2 1/2
- m+1 N 2 _
[ rn] “[2.625x5] = 0.39 . (59)
oamn
1
Therefore,
yeq(t) ~ 0.39 yl(prev1ousJ . (59)

At a given time, the radiation penetrates only 0.39 as much mass as we found
in Sec. 4. The energy in the wall now contains the factor a, to account
for the kinetic energy. Thus Eq. (38) is replaced by

W

W

W

0.39 o x (previous result)
t (60)
1.02 x (previous result)

I

Thus there is very little change in the net energy loss’ to the wall., The
scaling of the temperature curves of Fig. 1 that was stated in Sec. 4 is
therefore still appropriate: scale the temperatures down by a factor

1.12 and the times up by a factor 1.6. This scaled solution is valid
until about t = 0.6 psec, when the wall and tunnel energies are about

equal,

19



6. PROPERTIES OF THE BLOW-OFF

.
. The head of the radiation wave brings each element of the wall
@gterial to approximately TO in a very short time, This rise in tempera-
ture occurs at approximately constant pressure, since the sound speed is
greater than the speed of the radiation wave. Thus some expansion of the
material occurs in the radiation wave head. But even after this expansion,
the material pressure is still higher than the radiation pressure in the
tunnel, so the material expands into the tunnel in a rarefaction wave.

This wave keeps up with the radiation wave, which is subsonic, We shall

find a similarity solution for the rarefaction wave.
In this wave the temperature and material internal energy are

approximately constant. Thus the hydrodynamic equation of motion for the

material velocity Vv is

ot v X

2
v v C ap
=-% - (61)

where C 1is the isothermal speed of sound
C = J(Y—l)EmO . (62)
The conservation of mass is expressed by

—+ —pv =0 . (63)

In these equations x is the distance mcasured from the radiation wave

head into the tunnel.

20



We are looking for a solution in which the total mass in the
rarefaction wave is proportional to Yt . Since the thickness of the wave
is likely to be proportional to t, we expect the density to beéproportional

to 1//%t. Accordingly, we look for a solution of the form

v(x,t) = Cu(&) , (64)
F)
p(x,t) =y &8 . (65)

where the similarity variable is
X
E=7r o (66)

and t1 is a constant. Substituting these forms into Eq.s (61) and (63),

we obtain

(u-£) % = - é%g‘ , (67)
~tg-eLa o . ' (68)

On working out the derivative of gu in Eq. (68), we find this equation

can be put in the form

w1 ‘ |
leg ¥ 2
g dE ot (69)

We can use this equation to eliminate g from Eq. (67) with the result

I S
1- (u-£)

du

aF . (70)

1
2

21



The general solution of Eq.s (69) and (70) could be discussed rather easily,
but we shall find a particular simple solution adequate for our purposes.
This solution of Eq. (70) 1is . ;

, u=-—+E . (71)
= V2

With use of this relation, Eq. 69 becomes

dg _ _ L
2 vz

from which we obtain

L]

o=

-E/V2 (72)

Thus the density falls exponentially with increasing & or X. The complete

solution is

t
‘., J_l_ E/72

o
i}

t X
1 €= (73)
v=C0(-—+8)
V2
Let us calculate the total kinetic energy in the rarefaction wave,
This is
k= | LovZax=L1g vExc® [ (L« £y2e 577 4
2 2°1 71
JZ .
0 0
R R o S (74)

22



The time derivative of the kinetic energy is

-

Now g1¢t1/t is, according to Eq. (73), the value p; of p at x =0,
j.e., just at the back of the radiation wave head. Also, c/V2 is the

value v1 of v at x = 0., Now

-
vy =M = (76)

the rate of increase of the mass of wall material heated by the radiation
wave. According to Eq. (57) of Sec. 5, M is proportional to 1//t , as

our solution provides. Thus we can write Eq. (75) as

, _ 13 » _ L’S— _ .
I KE = My =3 (y 1)Emol\11 . (77)
This shows that the kinetic energy given per unit mass engulfed by the

radiation wave 1is (13/4)(Y-I)Em0, as stated in Sec. 5.

It can be shown.that the simple solution found above is the only
solution that behaves well for large £. Further, if one starts at large
£ with p and u which deviate from this solution and integrates towards
£ =0 (i.e., towards later times for the same X), the deviant solution
approaches the simple solution. Thus it appears that the simple solution

is hydrodynamically stable, and is the correct solution.

We can calculate the material pressurec at x = 0. This is

i
= = (e S
(y-1pgEpo = (y 1)Emo vy

o
|

1
1 _ .
/2 (y-DE_, & = V2 My (78)

23
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This pressure is supplied by recoil from the blowing-off mass. The total
pressure at the radiation wave head, which drives the shock wave ahead of
the radiation wave, is the sum of this pressure and the radiation pressure

6;0/3. We can also write Eq. {78) as
t

pm 11 .
— - —= /2 .
(Y'l)paEmo V2 paC 2 yeq/C (79)

Thus the ratio of P, to the pressure, which would exist in material at
temperature T0 and the original density Py» decreases as the speed of

the radiation wave becomes smaller compared with the speed of sound.

For T0 = 0.7 keV, we find the following numerical results

- - 13 . 2
Poo = (Y-l)paEmO = 6.5%x10"~ Newtons/m",
c 1 _ 12 3
P = 3-‘€r0 = 1.1x10"“ Newtons/m"”,
C = 1.8x10° m/sec , (80)

(p/P) = 0.40/Vct = 0,073 at t = 0.1 usec, -

n

P = Pro at t = 1.9 usec.

In our energy equation we neglected the energy put into the pre-

radiation shock wave, This energy per unit mass is small compared with

E because p_ is small compared with p .. The speed of the shock
mO m —— m0
wave is roughly the geometric mean \’yeqc‘
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7. CHOKE-OFF OF LONGITUDINAL RADIATION FLOW

The wall material that blows off into the tumnel impeé?s the flow
df radiation along the tunnel. The opacity of the wall material is such
éhat a density of about 6 kg/m3 reduces the effective photon mean free
ﬁgth in the tunnel by a factor of 2 when T0 = 0,7 keV, At lower tempera-
tures the critical density required for the factor 2 reduction is roughly
proportional to TO.

In Sec. 6 we found the density profile of the blow-off material
for a planar wall., In the cylindrical tunnel, the material at the toe of
the rarefaction wave is compressed by convergence, and speeded up to some
extent. We shall assume that the critical density is reached on the average
at that time when the amount of mass at distances x > 1 meter in the
planar solution reaches the critical density when spread uniformly over a
cylinder of radius R-1 = 1,5 meters., Using the formulae developed in
previous sections, we find the following times to reach the critical

density:

To

Time

0.2 0.3 0.4 0.5 0.6 0.7 keV
. (81)
7.3 5.7 4,7 4.0 3.3 2.8 psec

These times are considerably longer than the times labeling the
curves in Fig. 1, even when scaled up by the factor 1.6. Thus we could
consider extending those curves to later times, up to the time at which
the critical density is reached. lowever, as Eq. (38) shows, the energy
loss to the wall is equal to the energy in the tunnel by t = 0.6 usec,
Thus Fig. 1 cannot be extended to later times without taking into account
the effect of the wall loss in reducing E,oe We do this in the next

section.
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3. WALL PENETRATION WITH ENERGY COHSERVATION

We now take account of the material energy in reducing the
ﬁgdiation energy and flux. Previously we assumed that most of the energy
was in radiation in the tunnel. Now we assume that most of the energy is
in the material that has been heated by radiation flow. Thus the energy
is still in the tunnel, because of the blow off of the heated material.
At first the hot material is fairly close to the wall, and a substantial
part of the energy is in the form of kinetic energy of the inward-moving
material. Later, the blow-off material reaches the tunnel axis, creating
one or more back shocks which move out toward the walls and convert the
kinetic energy back into internal energy. We need to distinguish these

two phases.
In the first phase, the energy in kinetic energy is not available
to drive the radiation flux, The total internal energy available to drive

the flux is, per unit length of tunnel,

W (82)

el

internal energy =

where o 1is the parameter defined by Eq.s (54) and (55), and W is the
total energy per unit length of tunnel. The relation between W and the

quantity é;o previously used is
W= TR% & (83)
0 °

We shall continue to use 5}0 for the radiation energy density if all of
the energy were in radiation in the tunnel, and introduce the symbol éft
for the actual radiation energy density in the blown-off material in the

tunnel. We also let Emt be the internal energy per unit mass of the
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blown-off material and Kt be the opacity at density P, and temperature
Tt in the blown-off material

r

The energy equation (56) now becomes, for the new probiem,

: dMl _ 4 (m+l)c g}t

- ok = (84)
mt dt 441 3nm K Ml
1t
The conservation of energy requires that
2TRM.0E . = W = ﬂRz
1%mt éro
so that
RE
W 0
OF = =
Ent © 2 RN, - M ' (85)
1 1
Thus, Lq. (84) becomes
dM1 _ 8 (m+l)c é;t
dt  4+n _m_. &
3n1R}\t r0
_ 8 (e (L) (86)
441 3 mRK TO )
M™%

Here T0 is the temperature that would exist in the tunnel if all the
energy were in radiation and KO is, as before, the opacity at density
P, and temperature TO. Now because most of the energy is in material
and the internal energy is approximately proportional to temperature, we

can write

~3
=

oM T, = aMTy , or L0 (87)

(]
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where MO is the mass per unit area of wall required to hold all of the
energy (kinetic and internal) at temperature TO' Thus MO is the value
reached by M1 at t =~ 0.6 usec in the previous calculations, wh@n the
wall energy became equal to the radiation energy originally in the tunnel.

Ed. (86) can then be written as

§1_4+n d Tl_ _ 8 (m+l)c (88)
M dt MO T 4+n *

My,
0 3n1Rh0M0

Integrating this equation from the time to = 0.6 psec to arbitrary later time

t = t0+At, we obtain

Mo, L B(m) (D) cbt 1/(5+n) (59)
MO 44n 3K M -
" %"0

ke see that the blown-off mass increases quite slowly in this
phase. Over most of this phase the parameters n and m are n = 1 = m. The
product KOMO is of the order of 100 (dimensionless) for T0 between 0.4
and 0.6 keV. Numerically, Eq. (89) becomes

M 1/6

1 _ cht i
i {1 . —ZOOm] , 0.5 T, < 0.6k . (90)
By the time At =~ 4 ysec required for the blow-off material to reach the'

critical density (see Eq. 81) we have

— =~ 1,4 . (1)

Now, the present solution provides 1less blow-off material at each time than
the solution of Sec. 6 which led to the numbers in the Table (81). There-~
fore, we should check whether the present solution provides enough mass to

reach the critical density. If the mass M; is averaged over the tunnel
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it leads to a density 2M1/R. From the definitions of MO and the critical

density (Sec. 7) we compute the following nunbers at At & 4 useq:

T, = 0.4 0.5 0.6 ke
- M - 4.0 9.0 15 kg/m°
0 . (92)
M /R = 4.5 10 17 kg/m
3
bepie = 34 4.3 5.1 kg/m

We conclude that radiation will continue to diffuse along the
tunnel until about At = 4 usec, and somewhat longer in the wings of the
distribution. Let us estimate the degree to which the last temperature
profile in Fig. 1 spreads in this time interval. Actually, we shall esti-
mate directly the spreading of the profile of W, the total energy per

unit length of tunnel, W satisfies the diffusion equation

AW _ cD 2’

= W

ot 3 8x2

, (93)

where Wr is the total radiation energy per unit length, By the defini-
tions of quantities given above,

Tt 4 MO 4

W, = w(?-) = w(ﬁz) . (94)

Now, if we write Eq. (90) as

M 1/6
i [1 ' ——Cét] » (95)
0
we find that Eq. (93) becomes

2/3 2

At aW _¢D 3
o] R D (96)

ax
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In writing the last three equations, we have assumed that the radial and
longitudinal diffusion can be decoupled approximately. Eq. (96} takes

the form of the standard diffusion equation if the time variabl€ is changed

to

. At
= 1/3
' __ . dt _ 35 cht
T f [1+ cAt]Z/S - "E"[(l 7S ) ‘1] (97)
At=0 S

By analogy with Eq.s (19) and (20}, the solution is

W= exp[-x2/£%] ‘ (98)
where
1/3 . 1/2
£ = 2/B8 [(1 + 5%3) -1] (99)

Evaluating this expression at At = 4 usec, S = 200 m, gives

L =60 m,
Actually, to include the width 20 = 28 m of the energy distribution already
present in Fig. 1, we should set

2= [28)% + (60) =66m . (100)

2,1/2
]

We see that £ increases only very slowly with time., The blown-off

material will stop the longitudinal flow of radiation at a value of £

quite close 66 m.

In the wings of the distribution, S is somewhat less than the
value 200 m. On the other hand, diffusion goes on somewhat longer here
(see Table (81)), because the blow-off occurs more slowly. The result is

that the Gaussian distribution holds approximately down to those temperatures
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at which the energy content of the air in the tunnel dominates the radiation
energy, i.e., at temperatures less than about 0.2 keV (or W= 1r.0><1012 J/m),
according to Table (18). The temperature drops rapidly with dié;ance in
fhis range,
1
. Normalizing the energy distribution (98) to a total energy of
1 megaton leads to

WO = 3.6X1012 Joules/meter . (101)
We have included the kinetic energy of the bomb debris here because, within

the present time interval, the debris will run into the wall and give its

kinetic energy to internal energy.

The final distribution of energy as left by the longitudinal
radiation diffusion is graphed in Fig. 2. At this point we could also
calculate the distribution of temperature and of blown-off mass at time
At = 4 usec. It will be more useful, however, to prepare for the final
phase of the blow-off to be discussed in the sections to follow. For that
purpose it is convenient to redefine the temperature To(x) to be that
which would exist if all of the energy W, of Eq. (98) and Fig. 2, were
in radiation, and to redefine the mass Mo(x) per unit wall area as
that required to contain all of the energy W as internal energy at

temperature TO. These quantities are determined from the equations

o 2p o2 134
W= REE = MR°x1.37x107°T] (102)
for To, and
W= 2mRM E_ = 2mRM_%9.1x10'°T (103)
0"mo 0" 0
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for MO once TO is known. The quantities T0 and MO are graphed

in Fig. 3. It can be seen from Eq.s (102) and (103) that
: My ~ W ' (104)

Note that in our redefinition of MO we have assumed that the
blow-off kinetic energy has been reconverted to internal energy. This
reconversion occurs shortly after At = 4 psec, which is early in the final

phase of blow-off.

The actual temperature and mass distributions T(x) and M(x},
at a time just after the reconversion of blow-off kinetic energy, can be

estimated from the formulae

T~ TO/1.4 s M=~ 1.4 MO . (103}

However, it is the quantity W, and T0 and MO derived from it, that

are critical in determining the final phase of blow-off and tunnel venting.
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9. VENTING OF THE TUNNEL

T

From the energy distribution (98} left by radiation fhﬁu we can
egtimate the pressure in the tunnel. This pressure causes two principal
eéfec?s. First, it drives a shock wave into the walls of the tunnel. The
uﬁward going shock wave will eventually reach the ground surface, after
which the roof of the tunnel will 1ift off and the pressure in the tunncl
will be relieved (venting). Second, the pressure also accelerates the
blown-off material along the tunnel, before venting, and the momentum
developed will drive a shock wave along the tunnel, even after venting.
The chief purpose of this report. has been to ascertain the properties of

this longitudinal shock wave,

Let us first estimate the time of venting. The initial pressure

in the tunnel is

W

pO = (y-1) 5 (106)
mR
_ 0
where Yy &~ 1,5, W is given by Eq. (94), and RO is the initial tunnel
radius. As the tunnel radius expands, the pressure falls adiabatically as
R2 Y RS
0 0 -
P=P0 3 =p0_3- . (107)
R R

The material speed in the ground shock is

3
- 2p~R
dR _ |2 B . 1 [.B0 . (108)
dt Y+1 o, R/ 2 (v+1)p,

Integrating this equation, we obtain

5/2 -
[(&)"] - i a0
0 (Y+1)npaR0 0
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Setting R = 2.5+1,5 = 4,0m, we find the time of roof lift off to be

t(1ift off) = 120 psec at x =10 . * (110)

{t other values of x, lift off will occur approximately at
2,552
2
t(1ift off) =~ 120 &* 1287 sec (111)

We have assumed here that venting at x = 0, and release of the pressurc
there, does not delay much the time of 1ift off at other points.\ This is
a plausible assumption out to at least X & £, since most of the momentum

of tunnel wall motion will be established before 1ift off time at x = O.

The position of venting as a function of time is found by

inverting Eq. (111),
x = V2 £[£&n(t/120 usec)]l/2 . (112)

We can also obtain the speed of venting,

1 éz e-xz/Zﬂ2
1.2¢107% X

2 2
5.5”05 %_e-x /285 m/sec . (113)
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10. FINAL PHASE OF BLOW-OFF

We shall now calculate the additional mass blown off the wall
én the period after longitudinal radiation diffusion stops and before
venting. We use the quantities T0 and MO defined at the end of
Section 8., We also define, as before, Ml(x,t) to be the mass blown off

per unit area, and Em and T, to describe actual conditions in the

tunnel. Eq.s (84) andt(85) apply again, except that aEmt in those
equations has to be replaced by Emt’ since the blow-off kinetic energy
has been reconverted to internal energy. In Eq. (85), W should fall
adiabatically as RO/R as the tunnelhexpands, but this is a small effect
since most of the blow off develops early in the expansion., We shall
treat R as if it remained equal to its initial value, Then again the
energy equation takes the form of Eq., (99), and the solution is again
given by Eq. (89). Again mw~ 1 and n = 1, but we must reevaluate the
product KOMO’ for the range of temperature T, in Fig. 3. Doing this,

0
we find, in analogy to Eq. (90),

M 1/6
1 _ cht
W, " [1 ¥ s(;ﬂ ’ (114)

where

220 210 180 135 85 50 m
25 50 75 100 125 m

S(x)

at x

(115)

I
o

We shall evaluate Eq. (114) at At equal to the lift-off time of each

X, as obtained from Eq. (111). We then find the following numbers:

at x = 0 25 50 75 100 125 m
At = 120 129 160 230 380 720 u (116)
Ml/M0 = 2.34 2,38 2.54 2,83 3,32 4.04 .
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It turns out that, within a few percent, the ratio Ml/l\l0 is fitted by

the formula r

: 2

K ~ - X

_ M /My = 2.34 exp[D.lS(Z) ] , (117)
where £ = 66 meters. Therefore, noting Eq.s (98) and (104), we have

M, ~ ¥ *7, Therefore, noting the values of MO in Fig. 3, we write

0.9

M, = 98 (—‘,3-) kg/m’ . (118)
W _
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11. BLAST ENMERGY TRAPPED IN THE TURNEL

We can now calculate the longitudinal acceleration of the blown-off
ﬁass in the tunnel. The pressure in the tunnel is given by Egs. {106} and
{107). The longitudipal momentum P developed per unit length of tunnel

is the time integral

p =f'rTR2 %‘1 dt
X
‘R
al 0
~ (y=1) ”a?j ® 9
\
L 0.8 (v-1) ¥ ar (119)

Here At is the time of venting at x. The factor 0.8 comes from

assuming that R increases linearly with time,

The mass M per unit length in the tunnel at the time of venting
is, from Eq. (118),

W 0.

9
M = 2TR.M. = 1530 (—) kg/m . (120)

01 “0

Therefore, the longitudinal velocity V of the blown-off material at

venging time is

" 0.9
v o P 0.80y-1) (_0) ap
M 1530 W 9X
0.1
_ 0.8{y-1) 2x { W\TT
LY Zf(wo) . (121)
Putting ¥y = 1.5, Wo = 3.6><1013 J/m, and £ = 66 m, we obtain the numerical
result 0.1
vV = 2.85x10° At 3 (ﬁ"—‘) . (122)
0
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This velocity increases with x, whereas the speed of venting, Eq. (113),
decreases as x increases, For x greater than some value x;, the moving
material will outrun the venting. On setting V equal to the vénting speed,

énd using Eq. (111) for At, we find

X
(_zl_) exp(O.E)xi/ﬂz) - 16.1 (123)

This relation is satisfied at

X1

7= 1.48, x. = 98 meters . (124)

1

The velocity at X = Xy is

V(xl) = 1.24X105 m/sec = 0.124 m/usec .

Thus in the At = 370 usec before venting, this material will have moved
about 25 meters. This is not enough to invalidate our estimation of the
momentuwn, which neglected the alteration of pressure due to material

motion.

The energy in the distribution W(x}, Eq. (98), which exists
beyond the point X, is (u = x/2, 1.9 = 125/66)

1.9 2
~ \ -u - "7
Yl "'“O £ ‘/~ e du = 0.0258 10 £
1.48

-~

= 6.1X1013 Joules = 15 kilotons . (125)

A substantial fraction of this energy will drive a blast wave down the
tunnel, ahead of the venting. This blast wave will attenuate rather

rapidly at first, as further energy is lost due to expansion of the tumnel.
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In fact, at the point Xy the energy in the tunnel is already reduced

by a factor RO/R = 2.5/4 = 0,625, Thus the energy available to drive

the blast wave to greater distances is no greater than about .

: ! .

. Yl ~ 0,625 Yl = 9 kilotons . (126)
It is not likely that venting at distances less than Xy will
1

reduce Y, by much. Even though the pressure at vented positions must

fall by a large factor, there is too much mass at these positions to allow
an escape route for the energy in the smaller mass ahead. Even after the
original blown-off material escapes into the air, the tunnel will be
effectively choked by material rebounding from the shocked walls as soon
as the high tunnel pressure is relieved by venting. We therefore

conclude that the trapped energy in the contained blast wave will be

about 9 kilotons.
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12. CONCLUSION

We have found that about 9 kilotons of energy is availhblc to
drive a blast wave in the tunnel (in each direction) that outruns venting.
Fhis blast wave will attenuate rapidly at first due largely to work done
on the walls in expansion of the tunnel. This attenuation could be
calculated quite well by further analysis along the lines employed in

this report, but we have not had time to pursue the problem further.

Probably the chief cause of uncertainty in our calculations

is doubt about the opacity used for the tunnel wall material. However,

only the 1/6 power of the opacity enters the critical formulae, so that

this does not appear to make a large uncertainty.

At later stages in the blast wave propagation, attenuation will
be due primarily to ablation and abrasion, and perhaps due to the rib
structure. While these effects pose more difficult problems for
theoretical analysis, we believe it would be fruitful to attempt such
analysis. At least, such analysis should help in understanding and in

scaling of the experimental data.
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