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Abstract

This report calculates, by approximate analytical methods,
the EMP from a nuclear burst reflected from the ground and then
reflected from the conductivity front made in the atmosphere by
the gamma rays from a second nuclear burst. It is shown that the
re-reflected pulse is small in amplitude compared with the original
EMP. However, the Fourier ampiitude of the re-reflected pulse is
less than that of the original EMP at all frequencies of interest,
and probably at all frequencies.
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Geometry of the burst.
Geometry of the z-T plane.

Shape of the reflected pulse for gamma pulse rising
as exp{t/T).
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SECTION 1
INTRODUCTION

The gamma rays from a high-altitude nuclear burst interact with the
atmosphere and create a downward-moving conductivity front traveling at the
speed of light.! It is possible then that the upward-moving EMP from the
ground reflection of one nuclear burst can be reflected from the downward-
moving conductivity due to a second nuclear burst. A question has arisen
concerning frequency enhancement of EMP reflected in this way. It is the
purpose of this report to investigate the magnitude and time variation of

the reflected wave.

Since the moving conductivity travels at the speed of>iight, it is
not difficult to show that if the conductivity were an infinite step (analogous
to a perfectly-conducting, moving surface) the reflected EMP, regardless of
the incident waveshape, would be an impulse. In effect, the moving surface
integrates the incident pulse to create the reflection and considerable

frequency enhancement can occur.

In the actual situation, the conductivity is finite and varies
with time, space, and the net electric field, so that analysis of the time-
variation of the reflected wave is considerably more complex. It will be
seen in the following material that the magnitude of the reflection is still
related to the time integral of the incident pulse; however, the time varia-
tion of the reflection is strongly related to the time variation of the
conductivity. We shall see that the amplitude of the wave reflected from the
conductivity front is small compared with that of the upward-moving incident

wave.
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SECTION 2
ANALYSIS

Figure 1 illustrates the geometry of the problem. It is assumed
that EMP (W1) from a high-altitude nuclear burst is reflected from the
ground (W2) and coincidentally another high-altitude burst occurs creating
a downward-moving conductivity front. Interest centers on the reflection

(W3} of the upward-moving wave from the moving conductivity.

For convenience in analysis, a planar geometry is assumed; that
is, it is assumed that the ground is flat and all wavefronts are homogeneous,
planar, and moving along the z axis. Furthermore, the residual conductivity
remaining from the first burst is neglected. Inclusion of this conductivity
would only further reduce the amplitude of the conductivity reflection. It
will be seen that the assumption of a planar geometry, while preserving all
of the pertinent features of the problem allows a clear picture of the

reflection physics to emerge from the analysis.

In the following material, all units are MKS. Maxwell's equations

for the geometry assumed; i.e., for the transverse waves, are

Yoot < T Bz 0 (1)
3E_ _ 31}_ .
€ 5t T %Bx T - S | )

where

Hy = 4T X 10"7 henries/meter ,
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107 .
€ = 3w farads/meter ,

g = o(z,t —%ﬂ = conductivity (mhos/meter) ,

¢ is the speed of light.

Since the conductivity, ¢, is a function of t -z/c, it is convenient
to define time in this form; that is, define T as

Tl:t—i
c
It‘follows that
3 3
3 9T’

—_—— D — o

9
ot

O

and Equations 1 and 2, in terms of T, become

oH oE 93E
Y o _ X, 1 "x
u0 9T 0z c ot ' :
(3}
oE oH.. oH
_Xx e .Y, ,1_¥
€ 37t * 9B * - B f o5t ¢

It is convenient to define functions F and G as*

F = EX + nOHy E =

’ [%0 (F - g “
G=E_ - H. =4 — 0
X nOHY y Ho 2

»
1Y

* These functions have been used by us before in EMP analysis. We derive
them here in MKS units. - :




where .
no = V uo/eo and e= 1/‘\' ].1060 .

It turns out that F and G are outgoing and ingoing waves respectively; that is,
F is a wave traveling in the pasitive z direction, while G is a wave traveling

in the negative z direction. In terms of F and G, Equations 3 and 4 become

2 3G _ 3(F+G) | -
c oT oz ’ :

2 3G 3(F-G)" -

22+ ngo(F+6) = - —““(az ), (6)

Finally, adding and subtracting Equations § and 6 and rearranging terms, the

~following equations emerge

oF O o _ g

gz—q-no-z-}'-'——no-z—G,. (7N
9G 2 9G o] .

3 " ¢ 5T "of (F"_'G) .- (8 .

In terms of the geometry of Figure 1, the outgoing wave F can be
associated with the conductivity reflected wave (W3), while the ingoing wave
G can be associated with the incident or ground reflectéd wave (W2). As can

be seen from Equation 7, oG is the source of the conductivity reflected
wave F. It follows that if o is smallf then F will be correspondingly small,

~and Equation 8 is approximately

o :

76 - 7 (9)
The characteristics of this equation are determined by

S 4r = 2n 96
dz = - §-dT = 2n0 oG °

* We shall verify later that this is the case of most interest.




which results in the independent equations

dz=-%di‘,. (10)

c dG
<_.§dT=2T]0E. ) . (11)

The solutions to Equations 10 and 11 are

T + %? =c 5 7 (12)
and
T :
G exp(%—n0 JPG(Z',T')dT') =c, , (13)
0
where

c1 and c, are constants.

Note that the integration of ¢ in Equation 13 must be done along a character-
istic determined by Equation 12 (in z' and T'), since o is, in general, a
function of both z and t. (It turns out, however, that o depends much more
rapidly on T' than on'z'/c, so that the variation of z' along the characteristic
is not important.) Also, conductivity is a function of electric field; thus,

in obtaining Equation 13, it has been assumed that for the entire reflection
process the fields are either very low, or that they do not significantly

alter the fields already present in the conducting medium, associated with

the EMP ffom the second burst. ‘

From the theory of partial differential equations? the general

solution to Equation 9 is

: T
c 22
S(z,1) = exp(- gny folz',tat) glr+ ), (4
0
where T' + 2z'/c = T + 2z/c and g is a general function. The function G

can be interpreted as a wave traveling in the negative z direction, since



T+ 2ot
c

aln

Eurthermore, since for all practical purposes, no gamma radiation penetrates
to the ground, it 1s apparent that o = O when z = hb (the burst height). It
follows that the function g is equal to the incident EMP function (W2).

Equation 14, then, indicates how the incident.EMP is attenuated as it pene-

trates into the downward-moving conductivity.

From Equations 7 and 14, the reflected wave W3 is the solution to

T
%5 -1y E(ZT’T')" exp (- %no ch(lz','t')d'r')g('[ + _Z?Z) ,
which is
Z T 7
F(z,T) = _f nO chz,T)_ exp(— %no fo'drl_-i)g(.l_. + %)dg. (15)
E:-m ! 0

Here we have temporarily neglected the attenuation term nOUF/Z in Equation 7.
The £ integration of Equation 15 is done at constant T. Figure 2 is a
portrayal of the z-T plame which aids in the interpretation of Equation 15.
For illustrative purpoées, it is assumed that the incident pulse is of
length 6.

The'integrai of Equation 15 can be simplified, with certain realistic
assumptions. Suppose that the pulse length, 8§, of (W2) is on the order of a
microsecond (or less). and consider the reflected pulse (W3) over this same
time span. The range of oG along the z axis is 150 meters. At fixed T, the
distance in which d'cﬁanges appreciably is the gamma ray scattering length A,
which is of the order of one or a few kilumeters. The variation of o over 150
meters (at fixed T) can theréfore be neglected; -and we may approximate Equation

15 as
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Figuré 2. Geometry of the z-1 plane.
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Gl(z T)

T Z .
F(z,1) ~ - ny 28 exp(- §ny fo(z,mar)f gt + 24t
0 -0

T
~_pn 9(z,T) _c 1y g
~- Ny —5— Acexp(- 7Ny fo(z,r ydt'y ,

: 0
where A is the time integral of the incident EMP pulse. The F wave is

further attenuated (by the term nOGF/Z in Equation 7) in traveling from z to

the surface of the earth; therefore, the reflected wave at the ground is

o(z;,T) T
F(0,T) ~ - ny —5— Acexp(- 5 nofc(z AT ) exp(- —no fo(z )dz) .

T o(16)

In this equation zy indicates the approximate altitude at which the wave W2

interacts with the conductivity front.

It is seen from Equation 16 that the reflected wave magnitude is

dependent upon the area of the incident pulse, while the time variation of

the reflected wave is strongly related to the time variation of the conductivity.

-

The exponentials in Equation 16 can be approximated as-follows.
Assume that the gamma pulse from the second burst, and therefore the
conductivity, rises exponentially with time constant T, i.e., as exp(t/T).
Then the argument of the first exponential in Equation 16 is —(cT/4)n00(zi,T).
Further, assume that the gamma attenuation (scattering) length at the inter-
action altitude, and thergfore that of the conductivity, is A. Then the
argument of the second exponential in Equation 16 is —(A/Z)noo(zi,T);
Since cT is of the order of a few meters while A is of the order of kilo-
meters, the flrst argument may be neglected compared with the second
Finally, since, for small o, little G wave is generated in W3 (G << FS)

we have from Equatlons 4
E; ~ F/2 .

Thus Equation 16 becomes, for the electric field at the ground surface,

12
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o(z.,T)
By(r) ~ Ny —5— Acexp(-ny 5 0(z;,1). (a7

The area A in this exﬁression is that of the pulse W2. However, because the
reflection factor of low frequency waves from the ground approaches unity,
the area of W2 is nearly the same as that of the original EMP, Wl. W2 is
generally smaller in amplitude but longer in duration than W1. Since we will
want to compare the reflected pulse W3 with W1, we shall relate A to the
amplitude and duration of W1. Let us assume that the electric field in the

wave W1 has peak amplitude E. and effective duration AT. Then the time integral

1
of the G wave in W2 is

A 2B/ AT , (18)
and we can write Equation 17 as
B, (1) ~ - E, zﬁfT u(zi,T)e-U(zi,T) , (19)
where |
u(z,,T) = n A-c(z.,‘r) . (20)
i 0 2 1

Now the maximum value of ue™™ is e ' and occurs at u = 1. Thus the peak

value of E3 is

2cAT E (21) |

peak Ep = - =95 By

provided the function u(zi,T) reaches the value unity during the rising ;f

part of the gamma pulse. : !

Since AT is qf the order of 0.2 usec, cAT is of the order of 60
meters. Since A is of the order of kilometers, it is clear that the peak

E3 is relatively small compared to E Further, since A is shorter at lower

1
altitudes, it is clear that the largest peak E3 will occur for the lowest

interaction altitude 25 for which u(zi,T) reaches the value unity. Accord-

ing to Equation 20, this is the altitude at which o just reaches the value

13



0(z;,T) ® 2/n0?~ ) (22)

during the rising part of the gamma pulse. We shall examine this condition
numerically in the next section. We note here that this value of o
satisfies the smallness criterion assumed above in connection with Equation 9

and the following equations.

14



SECTION 3
NUMERICAL EVALUATION

We wish to examine the conditions under which the conductivity can

reach the value given by Equation 22 before the peak of the gamma pulse.

Suppose we havé a given gamma fluence FY(MeV/mz), integrated up
to the peak of the gamma flux. The energy deposited in Compton recoil
electrons is then %-FY/A MeV/mS, since about half the gamma energy is
transferred in the first Compton collision. Compton recoil electrons lose

their energy to ionization in a retarded time interval
At ~R/5¢c , (23)

where R is the mean range of the Compton recoil electrons. The factor 5
occurs here because the Compton recoil electrons move forward with speed

not much less than c. If the gamma flux rises as exp(t/T), then the energy
deposited in ionization at the peak of the gamma pulse is approximately
%—(FY/A)(T/AT) MeVimS, provided T < At. One MeV deposited in ionization
makes about 3 X 10  secondary electrons; at the low altitudes of interest
here we can assume that this ionization is complete& instantaneously after
the energy is lost by the Compton electrons. Thus, we will have an electron

density Ne at the peak of the gamma pulse

v ]

4

5¢
Ne = 3 x 10

——I-elect/mS,if

Y 5¢T
22 R

R 1. (24)

Since R = 10 meters at 10 km altitude and increases with altitude, 5c¢T/R will

usually be less than unity at altitudes greater than 10 km.

15
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The conductivity is
o= e, , (25)

where -e is the electron charge and Y is the electron mobility. Thus the

condition (22) becomes

F

4 Y 5¢T _ 2

3 x10 B].lz———R——‘n}\,
0
or
4 R '

F = — . (26)
Y 15 x 10% eHeTy

Now R and p are both proportional to the reciprocal of the air density, so R/u

is independent of altitude and can be evaluated at sea level. With
R~2m,

WR 0.3 (5o @)

e =1.6 x 10712 Coulomb , )

Ng = 377 ohms ,

=5 x 1072 sec s

~we find that

- 12 MeV .
FY 2 x 1007 = (27)

m

is needed to reach the condition (22).

As an example, a l-megaton burst at 100 km altitude will put about
1 x 1014 MeV/m2 on the top of the atmosphere (at about 30 km altitude) by the
peak of the gamma pulse. Thus the fluence (27) will occur at n(50)= 4

scattering mean free paths into the atmosphere. Since this mean free path

16
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is about 20 gm/cmz, we seek the altitude above which the mass of air is 80

gm/cmz. This altitude is about 18 km.

At 18 km altitude the scattering mean free path of gammas is about
A~ 1.6 kn . ' (28)

Returning to Equation 21 and using the pulse length AT = 0.2 usec, we then
find

- o 2% 60m
peak Eg = Bz & 575 7600m °1

~0.028 Ey . (29)

Thus the reflected pulse is indeed -small compared with the original EMP.

According to Equation 19, the wave form of the reflected pulse, for

an exponentially rising gamma pulse is

/T

E5(1) ~ Eg(peak)exp(l + pexp(-e™") . (30)

The shape of the time-dependent factor hence is shown in Figure 3. It can
be seen from this figure that the reflected pulse falls very rapidly in
time after its peak, due to the second exponential factor in Equation 30,
which itself contains an exponential. As a result tﬂe pulse contains some-
what more high-frequency content than the original EMP would for the same
amplitudé. The Fourier transform of ES(T) is

imTeT/T

T/T)dT‘

ES(w) = Espf&!.e exp(-e

iwTx - x

= 2.71TE3PJ£.e e exp(—ex)dx .

On changing the variable of integration to u = ex, this equation becomes

17
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o
iwT -u
2.71TE g fur e

0 >

E.(w)

2.71TE3PP(1+1MT)

2.7lin2E3pF(imT) : (31)

From the asymptotic behavior of the T function, we find, for large wT
B )| > 2.71E5 TVITGT exp(- g-wT) ) (32)

Thus the Fourier transform falls approximately exponentially with w. This
result may be compared with that for the normal EMP. For example, for a
pulse of the form

ZeT/T

5T » (33)
1 1+ e2T/T

E(t) = E

which has peak value El, rises with time constant T, and falls with the same

time constant, we have

|E(w) | > 2ME;T exp(- 7 uT) . (34)
R
The Fourier amplitude of Equation 32 becomes higher than that of Equation 34

for

27
~ (2.71 x 0.028)

\

== 1.1 x 10° . (35)

The numerical result here is for the relation (29) between E3p and El'
Thus the original EMP has more high frequency content than the

reflected pulse up to quite high frequencies. Furthermore, at those

extremely high frequencies at which the form Equation 30 has more Fourier

content, it is doubtful if this form is correctly representative. -These

19




frequencies come from the final part of ES(T), when E3 is vanishing rapidly

because it is assumed that the conductivity continues to rise exponentially.

The truth is probably that the original EMP has more high-frequency content

at all frequencies.

20
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SECTION 4
CONCLUSIONS

We have calculated, by approximate analytical methods, the EMP
from a nuclear burst reflected from the ground and then reflected from the
conductivity front made in the atmosphere by the gamma rays from a second
nuclear burst. We have seen that the re-reflected pulse is small in
amplitude compared with the original EMP, but has relatively more high-frequency

content for its amplitude than the original EMP. However, the Fourier

amplitude- of the re-reflected pulse is less than that of the original EMP

at all frequencies of interest, and probably at all frequencies.
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