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Abstract

Analytic estimates of time-domain electromagnetic fields produced
by a highly space-charge-limited SGEMP boundary layer are made using a dipole
source current distribution. Near-zone and radiation-zone field terms are
explicitly separated to show the importance of current density rise time
and pulse width on the resulting EM waveforms. Both point sources and ex-
tended source regions are considered.
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SECTION 1

INTRODUCTION

2 a thin, highly space-charge-

In high fluence SGEMP situations?!>
limited boundary layer may be created near emitting surfaces. In many
particle-following SGEMP codes, the presence of the boundary layer creates
the necessity for very finely gridding up space near the emission surface.
This small spatial grid can cause code running times to be excessively long
or create problems in properly gridding up the rest of the system under

consideration.

Proper treatment of this boundary layer is important not only for
obtaining realistic electron trajectories but also for calculating correct electro-
magnetic fields. The thin boundary layer may be relatively inefficient
(compared to electrons escaping to infinity) in creating satellite replace-
ment currents, but, in high-fluence cases, the total aﬁount of charge in the

boundary layer may greatly exceed the charge that escapes.

. It is thus useful to have some basic understanding of the electro-
magnetic fields from such a boundary layer. This report describes an analytic

method for calculating such fields from known current and charge densities.
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SECTION 2
ELECTROMAGNETIC FIELDS FROM A KNOWN SOURCE DISTRIBUTION

Maxwell's equations can be combined into the two vector wave

equations
2
2+ 3°E . 3 1
V°E - e 5—5'- L vl = Ve (1)
t
and
) - ‘ »
VH- e 20 v xT . : 2)
ot

. + + : > =
The solution for E and H can be written as the integral equations

->
aJ 1
ae + = Vp] :
> > 1 (Mgt e 3>
E(T,t) = - 4= LA o, (3)
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_ﬁ(;’t) = - L .[_M]_ds;l , ‘ (4)

4m l; _ ;,I

. . o >
where the integral is over the source region specified by r' and the
integrands are evaluated at the retarded time t' where

> -
ereg Jr-T'

< . (5)

Equations 3 and 4 can be written in a variety of other forms by
integrating by parts, taking care to properly treat the retarded time
dependence.



One form is just

=Y
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These equations just agree with field expressions in terms of the vector

potential,K,and scalar potential, ¢,where

AE,t) = ilfv <k, (8)
: b d
> > oA
EF) = Vo -5 | (9)
> 1 [ oE,t) 3=
¢(r,t) = 702 S5 dr', -(10)
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Equations 6 and 7 can be further transformed to the forms
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and

> >, >
HE,t) = Z%f[.?("r’-,t-) . J%-L-g% @',t")] x . (13)

(xr - 1) 32,
> + 13 r
[r - x|

Equation 12 can be further transformed, using the charge continuity

equation to obtain

EGE.t) = 5= {%[ﬁi&—g—ﬁg G-#-Lddne om L2

> > ->
. n (r-r')x[(r-
T

T - %] |¥-7

The forms of Equations 13 and 14 are convenient in that the radi-
ation terms (i.e., the part of the field that falls off as I?I-l as |7|
goes to infinity) is readily identified. In each case, the radiated field
depends upon.ajlat, since the contributions of the other source terms fall

m~~ . -1
OIf xraster than lr]



SECTION 3

ELECTROMAGNETIC FIELDS FROM A POINT DIPOLE SOURCE

A. GENERAL FORMULAS

A reasonable starting point for calculating the EM fields from
the SGEMP boundary layer is to consider the fields from a point dipole
source. Such results should well represent the fields far from a finite
size boundary layer region, and even nearby fields can then be written as
a summation over the source region of point dipole fields. The solution
for fields from a point dipole is thus a Green's function that can be used

in further calculations.

For these calculations, let us assume that the observer is at
the origin, 0, of a Cartesian coordinate system and that the dipole is

+
centered at ' = (X

R4t 0). The dipole is then described by
> ~
J=1 G(x-xl) G(y—yl) z, -a<zsga
=0 otherwise ‘ (15)
and Pp=Q 6(x-x1) S(y-yl) 8(z-a)

- Q 8(x-x;) 8(y-y,) 8(z+a) (16)

Note that Q and I are arbitrary functions of time and it is

also assumed that



- (17)
For the calculations it is also assumed that Q =0 at t = 0,

Note also that this choice of J and p 1s equivalent to
electron emission from one point of a perfectly conducting plane that
coincides with the x-y plane. Currents and charges below the plane are
just images of those above the plane. It is apparent from symmetry con-
siderations that E and H have the proper values (i.e., the proper

boundary conditions) to consider the xy-plane as a perfect conductor.

Now, from Equations 12 and 14, the electromagnetic fields can be

written as

E(r,t) = -l:}PI}-[p(?',t') RES iﬁl.(;i,t,)] (r-r")

720 ]°
S O S (—;',t')l a3z (18)

and

(19)

For the case in question, these integrals are easily evaluated
if one assumes that the dipole thickness, 2a, is small compared to
other dimensions of interest. Then signals from all parts of the current
filament will arrive at the observer at approximately the same retarded

time, and one obtains

'ﬁ(o,t)=-[zaQ(t')+ 22__ ()

4te R3 41me ch at!
0 0
2a JI(t! A
et



ﬁ(O,t) - 22 [ I(e') . l.EILEll_](g % ﬁ) (21)

47R R ¢ ot!'
where
2 2
R'“/"l*)'l
z = unit vector parallel to z-axis
and

= - = unit vector along -r'

=1
l

Note that the electric field, E, is made up of three distinct
terms: a static field, proportional to Q (fIdt'); a quasi-static field,
proportional to 3Q/dt' (I); and a radiation zone field, depending upon
BZQ/Bt'2 (9I/9t'). Similarly, the magnetic field, ﬁ, has a static part,
depending upon I , and a radiated part, depending upon 3I/3t'.

Note also that the electric field vector is parallel to the

.
~

z-axis while the magnetic field vector is in the x-y plane. More exactly,

the direction of the magnetic field vector is given by

y X
~ I\__l’\__-l/\
zXn=—_4X R Y . (22)
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B. . FIELDS FOR A TRIANGULAR CURRENT TIME HISTORY

-—

Figure 1. Triangular time history.

Let us assume that the current in the dipole follows the triangular

time history shown in Figure 1. This time history is described by

_ [t .
I(t)—Io(Tl) s 0<t<T
t-Tl
I(t) =IO(1 —W) > TIST.STZ- (23)

Equation 21 is then easily evaluated for H with the result that

I
- 2a 0 1 ct! ]
'H(O,t)l 4." R cT [ R + 1 ] 0 S t! S T].

- 2a I_O 1 T [ eTptD 1 T, <t' <T
41 R c'r1 Tz-'r1 R - (A =

where t' is the retarded time t-R/c. For t'< 0 (i.e., for t < R/c),

the fields are zero.

11



Note that because the assumed triangular current time history has
a discontinuous slope, the magnetic field waveform has several step-function

discontinuities (at t' =0, T Tz). These step-function discontinuities

1’
correspond to the radiation zone field (which depends upon 3I/3t).

Equation 20 can also be evaluated for the electric field, using

atQ' = I(t") (25)
tl
and Q(t") = f I(t)dt . (26)
0
From Equations 23 and 26
Iot2
Qt) = —— 0<tsT,
I 2 T,T
= =2 j--'f—wr,t- 120 7 ct<T, (27)
Tz-ll 2 2 1 Z :

u I 2,2 -
> 0 0§t et
B0, =58 T =2+ * 1} ; (282)
1 | 2B
for OStSTl
and '
> Po 2 1o c2 ¢1? LY
£0,t)| == 2= {5 |- S+ Tt - 5=
T R, T) | g2 2 2 7)

+ % [T,-T'] - 1} (28b)

for T1§t<_T2
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Note that these expressions imply that at the end of the current
pulse (i.e., at t' = Tz) there exists some total charge, QT’ at distance
a above the x-y plane. This charge, which is given by

IT
0°2
o = 22, (29)

just represents the total charge in space once the steady-state space-charge-
limiting situation is set up. The electric field at t' = T2 is thus just
the static field from the electric dipole layer.

Waveforms for the electric and magnetic fields are shown in Figures
2-4, where the triangular time history was assumed to be symmetric with
T1 =T and T2 = 2T1 = 2T. In these figures the normalized waveforms are
plotted for several values of cT/R. Changing the value of this ratio
can be thought of as varying either the pulse width (T) or the distance

to the observer (R).

Note that there is a distinct change in waveform shape as cT/R
increases. [Waveform magnitudes can not be directly compared since the
normalization factor contains both R and T]. For c¢T/R<1, the field
waveform is bipolar and the step-function jumps are of primary importance
in determining waveform shape. These values of cT/R correspond to the
observer being in the radiation field zome. For large <¢T/R, on the other
hand, the waveforms are more monopolar and the step-function jumps are
less apparent. Thus, for cT/R >> 1, the observer is in the near field

zone.

It is also interesting to calculate the peak replacement current,
IP’ that would flow if the x-y plane were perfectly conducting. In this
case, the peak magnetic field at position O is numerically equal to the

peak skin current density at that point. The peak current is then just

13
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2mR  times the peak magnetic field. From Equation 24, the peak magnetic

field occurs at t' = Tl’ so that

a CT1
=T (Eq)[—a‘ * 1] (30)

Far from the source, ch/R is small and the replacement current
is just a constant fraction of the emission current.

nearby observers, c¢T/R >> 1
linearly with R.

For short pulses and
and the peak replacement current decreases

17



C. FIELDS FROM A SINE-SQUARED CURRENT TIME HISTORY

A somewhat more realistic time history for the current in the

dipole layer can be defined by the expression
.2 (t
I(t) = I0 sin (ET-W) (31)
This time history is shown in Figure 5. It has the advantage over a

triangular time history of having continuous derivatives, a property more

representative of any physical current.

v — —

Figure 5. Sine-squared time history.

18



Equation 21 can then be evaluated for the magnetic field, using

Equation 31, ‘with the result that

1 H E.'.. t
+ T sin (ZT TT)COS (2T w)], 0<t!<2T (32)

In this case, the magnetic field waveform does not have any step-
function discontinuities. Note also that the radiation zone fields come
from the second term inside the parenthesis. The radiation field will be
larger than the near-zone field whenever this second term is larger than

the first term; i.e., when

1
% tan (12:_T 1T) <1 (33)

For this case the integral of the current gives a charge of

I.T : \ :
Q(t") = % [%%— - sin (% n)cos (Pz-f ﬂ)] (34)

so that Equation 20 can be evaluated for the electric field with the result

that : (K) (t_)
My o 1 {CZTZ [t' sin (== wjcos (5w ]

[E@,t)] = 5= & -2 -
’ “2r R T Rz 2T T

+ﬂsin2 Q1r)+1rs:’m chos t—'-n l (35)
R 2T 2T 2T j

Electric and magnetic field waveforms for this time history are
plotted in Figures 6-8, using the same normalization factors as were used
for the triangular time history. A comparison of these waveforms with those

for the triangular time history in Figures 2-4 shows that the waveforms for

19
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Figure 8.
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Electric field for a sin-squared current time
history with cT/R as a parameter (large cT/R).
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equal cT/R values are quite similar. This indicates the step-function
jumps in the triangular time history waveforms simply become steep gradients

when more realistic time histories are assumed.
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SECTION 4

FIELDS FROM EXTENDED SOURCE REGIONS

A. INTRODUCTION

In the previous section of this report the electromagnetic fields
from point sources were calculated for several assumed time histories. In
this section, the fields from extended source regions will be considered.

The fact that the SGEMP emission region is not a point source is, of course,
| most important for an observer near the region. Finite size source regions
can be treated by simply combining the fields from each small section of
the region with the proper time delay to account for retardation. In this
section we will continue to assume that the source region is thin (i.e., a
is small compared to other dimensions of interest). Also, for simplicity,

we will consider only the linearly rising part of a triangular time history.

First consider a half-plane source region as shown in Figure 9
where the region defined by x 2 D, -a < z < a contains a uniform current
density directed in the z-direction. If J_ is the peak current density,

0
then the total peak current from each element of area, dA, is just

I0 = JOdA s (36)

and, from Equations 21 and 24 the magnetic field at the origin (point 0) is

just given by

ct'
U N T O i S 37
y 4 ch R2 1 1771 -~

24
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Figure 9. Geometry for half-plane emission.

The above expression just sums the contributions from each small area of the

half-plane, assuming that the current density is linearly rising with a

slope equal to JO/Tl.

Because of the retarded time term in the integrand, one must be
careful in choosing the limits of the double integral in Equation 37.

Remembering that

ct' = c¢ct - R, (38)

one can reduce the expression for H to

fy = - 7 Jol7 ff 2 2 372 4% Yy o (39)
+y1

where one must remember that Hy is zero for t < D/c. The integration

over y., then extends from -y to +y where vy is determined
1 max max max

25



by the limits of a circle of radius ct; i.e., for a given Xy»

2 2
xl + Ymax = ct , (40)
or
Ymax \[c - . (41)
The expression for Hy then becomes
max y
_ a t max
Hy - TTJO(Tl)f 5> dxy
Xpin X1 *1*Ymax
‘/C t -)(
= d[. Tetx
4
2 \/ 2.2
t) D 1 + 1 - p° /c t
= _— 1 - - &n , (42)
O(Tl cztz D/ct
for t = D/c.

_ It is sometimes convenient to write Hy in terms of the time t_,
which is measured from the moment when the observer first '"sees" the half-

plane; i.e.,

r=t- D/c . (43)

Equation 42 can then be rewritten as

ctr 2
(ct_+D) (l+—) -1 ct ct_ 2
=23 — X “{N_ D -1n1+Dr+\((1+Dr)-1

b4 0 T ct
1 1+ _r

=1y

(44)
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B. RECTANGULAR SOURCE REGION

Now consider the rectangular source region shown in Figure 10. Note
that for ct S‘Vsz+h2/4, the rectangular region will give the same fields as
a half-plane, since the observer at 0 will "see' only the edge of the

rectangular region. The integrals also simplify when ct 2 \kD+b)2 + hz/4,

since the observer will then '"'see" all of source region. For this case,

Ynax = h/2 and
D+b 4
H o= .27 (L)Ef__il____
y ™ 0\T,/2 1’ 7 1274
1 X, x{+h /4
x=D .
2 2
h \/ b h
>t A (1+3) + /)
= %JO(TL)'Q'H 1b = > = (45)
AT A N N
2D 2D
y '
LX
04 - - - h

Figure 10. Geometry for rectangular source region.
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Note that for a distant observer, D >> b,h, and

2
b h
+ \/(1 +5) + (55)

limit JLn( lb) 2D D ;D ’ - PR ae)
b h 1+ h h 2D
p°p” 0 D/\ 5+ N1+ G35

This implies that
I ct
imi _ .20 1

limit [Hy]_—4-"- D cT [D +1] > (47)
b h 1
-, = o
D D

where I0 = Jobh and t, was defined in Equation 43. Note that in the
limit of large D, retarded times for all source points in the rectangular
source region are approximately equal, so that tr is just the "average"

retarded time. Equation 47 is then equivalent to Equation 24, which gives

the field for a point source region.

One can also calculate Hy for times in the range ¥ 02 + h2/4 < ct =
‘J(D+b)2 + hZ/4, but the expressions are a little more complex.

For times in this region, the field can be broken into several

parts, corresponding to regions I and II of Figure 11.

The field from region I is just that of a rectangular source of

dimensions d by h where

da=V%? - n¥a-p. (48)

Thus

(49)

( D )(h/z + NV (+d)? + h2/4)
D+d h/2 +\[D2 + hZ/4

H = %JO(%) 2n

28



Figure 11. Parts of the source region for a rectangular
source.

The field from region II is just that of a half-plane for ct <D + d

(i.e., before the observer can '"'see" the far edge of the source region). In

1+\}1-(c—"€)

(x/ct)

more general terms, one can write

- x = Sm(ct,D+b)

(50)

- O X
H. = - JO( _) 1-2%—-mn
(o4
x=d+D

where Sm(ct, D+b) indicates that one uses the smaller of the two quantities

inside the parenthesis as the upper limit.

The total field at point 0 is then just the sum of Hy and Hiq-

29



For comparison with the point source case, it is convenient to

express the magnetic field as

J 0bh)

a 1 (Ctr
by =27 o7 Di’l)“r (51)

so that Yy is the ratio of finite size source region field to the field from
a point source. As noted previously, the value of y will depend upon how

much of the source region can be "seen" by the observer.

ct 2
For 0 = Tr sdl + (E}}D" - 1, the observer ''sees'' only the front

edge of the source region and

ctrz 2
2 1+—=) -1 ct ct
,,=(_ZD)V D -gn“Tmﬁwﬁr—)-l . (52)

B-h_ ct
(1 + _D']:) -

h 2 Ctr f 15} 2 h 2-
2y — s\ ( = —) - 1, the observer
For V1 + (ZD) 1l = D NV o+ D) + L?_D) s

"sees" part, but not all, of the rectangular source region. Thus, in this

time interval,
Y =Yp* Yo ' (53)

where Y1 and Y11 refer to HI and HII as previously defined. Now,

h

2 2

d h

~ 2022 1 7D " \ﬂl“”ﬁ) + (5p) 54

YI_ n 1+i h h2 s ( )
P NI G

where

2
ct 2
%=J(—5£+1) (%) - | (55)
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Yi1 is simplified by further subdividing the time interval. For

Yi+ (W/2D)2 -1 < ct_/D = b/D,
1+ \Jl (D+d)

2 v
{2 f (D+d) ct
Y1 © (' bh) L-\ee) - D+d » (56)
ct
where ct = ct + D and d is as defined in Equation 55.
ct
b S JuenT
FOI‘ D s D S (1 + D) + (ZD = 1’
2 ‘f D+d 2
( 2D ) [ . (D+d ct
II bh ct D+d
5 ,’ D+b 2
D+b
-Vl ( ct) D+b 57)

In the final time interval of interest, namely,
ctr/D = \J(l + b/D)2 + (h/ZD)2 - 1, the observer can ''see'" the entire source

region and Yy Dbecomes the constant . -

2
= [ 20”0
yeve = - 0°) g . (58)

2 2
h b h
b
1+ = h f h.?
D ﬁ + 1 + (ﬁ

Upon examining this rather confusing array of formulas, one can

see that 7Y increases monotonically with time from a value of zero (when
the observer first "sees'" the source region) to a final constant value of
Yg (when the observer ''sees' all of the source region). The parameter Y

is plotted as a function of dimensionless retarded time (ctr/D) in Figure

12 for the specific case of b =h =D. In this case, Yg = .467.
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The normalized magnetic field (from Equation 51) for this case is
then plotted in Figure 13. This curve is just a plot of (ct /D + 1)y. Note
that the step-function discontinuities that were present for the point source
(see Figure 2 ) are now missing because it takes some finite amount of time

for the observer to ''see" the source region.

Remember that it has been assumed that the current density is linearly
rising. If the pulse is actually triangular and the risetime T, is suf-
ficiently long for the observer to '"see" the entire source region before the

current density begins decreasing, the peak magnetic field is given by

(Jobh) Yg cT

Hpeak -T2 T D cT, )

1

+ 1) . (59)

The peak replacement current densities will thus be similar to the
point source case (see Equation 30 and corresponding discussion} but
multiplied by vy, which is just a geometric term depending on the finite

size of the source.

Note that Equations 46 and 58 indicate that for D >> b,h, YF = 1.
A plot of Yp as a function of D/b for various values of h/b is shown
in Figure 14. It is obvious that the peak field from a finite source will

be smaller than from a point source.
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SECTION 5

RESULTS AND SUMMARY

This report began by writing down several different general expres-

sions for the electromagnetic in free space that result from a specified

- - - + .-) - -
source distribution. It was seen that both E and H can be written in
terms of integrals containing the source charge density, p, and current

density, 3.

‘These general expressions were then used in Section 3 to calculate
the electromagnetic fields from a point dipole with several different current

time histories. These specific expressions make it easy to identify the static,

'~

quasi-static, and radiation-zone parts of the electromagnetic fields. It -
was pointed out that waveform shapes range from monopolar to bipolar as the

observer moves from the static region to the radiated field region. The

parameter specifying these regions was seen to be cT/R, where c¢ 1is the speed

of light, T is the current pulse width (or rise time)} and R is the

distance to the observer. For large cT/R, the fields are quasi-static; for

¢T/R £ 1, radiation terms are more important.

The magnetic field from a finite size source region with a linearly
rising current time history was investigated in Section 4. It was shown .
that fields from a finite size source region will be smaller than from a

point source emitting the same peak current.

The primary result of this work is a set of analytic expressions

for the fields from a highly space-charge limited SGEMP boundary layer. It

N
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is hoped that these expressions will be
understanding of this phenomena and for
calculations. In the future, it may be
with the fields due to that part of the
boundary layer, since in some cases the

dominant source of satellite response.

useful in increasing a general
comparison with detailed computer
useful to compare these results
electron cloud that penetrates the

boundary layer fields may be the
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