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Abstract

This note considers time and frequency domain characteristics
of some simple analytic waveforms used for approximating and bound-
ing important characteristics of EMP waveforms. In time domain
these are the rise, peak, and complete time integral. 1In frequency
domain these correspond (in reverse order) to approximate low,
intermediate, and high frequency regimes. The first example con-
sists (in time domain) of the difference of two exponentials times
a unit step function; it has a discontinucus slope at t=0. The
second example consists of the reciprocal of the sum of two expo-
nentials; it has continuous derivatives of all orders with respect
to time for a2ll time.
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I. ‘Introduction

The roughly decade and a half of intensive research into
the characteristics of that nuclear environment known as the
electromagnetic pulse (EMP) has led to a large variety of specific
waveform calculations, supported by measurements where practical.
However, from the viewpoint of investigating the interaction of
this environment with complex systems of interest some simplifica-
tion is needed. Instead of considering every possible example of
an EMP environment, and its interaction with say an aircraft, one
would prefer to have one or some small number of canonical EMP
environments. Such canonical environments would presumably contain
the important features of the possible EMP environment in some
across-the~board sense. The canonical environments might be con—.
structed using averages, extreme values (upper and lower bounds),
and perhaps statistical distributions of pertinent EMP environ-
mental parameters. 7

Having established canonical environments, these can in turn
become the basis for criteria EMP environments, i.e., environments
which can be specified for system design purposes. Such environ-
ments can be used for both analysis and test of the response of
systems of interest. Such EMP criteria are a very important con-
sideration in the design of EMP simulators since such simulators
may be intended to test certain types, sizes, etc. of systems to
such criteria or "threat" conditions.

The EMP environment can be a quite complicated thing,
especially in nuclear source regions where the nuclear radiation
_produces a source current density and a nonlinear conductivity.

As discussed in a previous note [1] there are four basic types of

electromagnetic field quantities:

jt(=jc + oF + eg%ﬁ) current density (Am_z)
5§ magnetic field (Am_l) _
_ (1.1)
%% voltage 'density (Vm 2)
B electric field (Vm 1)



In principle one may wish to specify waveforms, or more generally
spatio-temporal distributions, for all of these. However, some-
times simplifications can be introduced.

A case of particular concern is what is referred to as the
high altitude EMP. Not including the reflection from the earth
surface, the resulting EMP below the source region (in the upper
atmosphere produced by an exoatmospheric nuclear detonation) is
usually approximated as an expanding spherical wave. Over a suf-
ficiently small region of space (which might contain a system of
interest) this incident wave can be approximated as a plane wave

of the form

1 T i T
2 1 ) (¢ - 22)
(t) = Egfglt - ——F— 15 + Egfglt - ——— /I3
i, .7 ' i, -7
1 1
zﬁ(t)=_Ef(t--——)I +Ef( _-——)I
o 373 c 2 272 c 3 (1.2)
i
Z0 = EQ (free space wave impedance)
o)
where the orthogonal unit vectors are related as
1,ox 1, =1y, Ty xd,=1, , 1,1 =1,
11 = direction of propagation (1.3)
ileB = orthogonal polarizations

 The reflected wave from the earth surface can be similarly approxi-
mated provided, for observation near the earth surface, the surface
is approximately flat and any variation in the soil or water prop-
erties is only in the direction normal to the surface. -
The scalar functions f and f3 are .examples of what we
usually mean by waveforms (here as functions of retarded time).

Considering only one component of the electric field let us write

a scalar equation as
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E(t) = Eof(t) o (1.4)

with Eo of units Vm-1 so that f(t) is appropriately normalized.
Here it is an arbitrary time variable which may be typically
interpreted in an appropriately retarded fashion.

In this note we consider unipolar waveforms increasing from
zero to a maximum and then decreasing back to zero. For this pur-

pose we assume

f(t) >0 , -» <t £ +=
' (1.5)
fmax = max f(t) > O
t
Note we have
Emax = mix E(t) = Eofmax : (1.6)

for scaling purposes.
Since frequency domain aspects of waveforms are important

(being the dominant aspect for highly resonant (narrow band) system
response cases) then we define the two-sided Laplace transform

£(s) E./r £(t)e St dt
Q_+je '
~ t
f(t) = ﬁ%jl/r " ¥(s)e®" ds (1.7)
R -j=

s T 0 + jw

where s is referred to as the complex frequency. Here 90 is .
chosen to lie in a strip of convergence for the defining integral
giving f(s) in the s plane. Outside this strip f(s) is deﬂiqed

by analytic continuation. For the usgal frequency domain comsid-
erations the Laplace transform reduces to a Fourier transform with



s = jw
8, =0 (1.8)

(0]
f(s) = f(jw)

This note considers two typical types of waveforms for their
characteristics in both frequency and time domains. These analytic
waveforms (of simple mathematical form and thereby smooth in some
respects) are considered for a variety of characteristics. The
reader should note that a broad set of characteristics are impor-
tant for EMP interaction implications. To only consider say the

peak time domain value is generally an inadequate point of view,



IT, Difference of Two Exponentials Times a Unit Step Function

For our first example let us choose the commonly used wave-

form formed by the difference of two exponentials times a unit

step function as

E(t) = Eof(t)
CE(t) = [-e—at + e-Bt] u(t) (2.1)
a2B82>0

where u(t) is the unit step function given by

, 0 for t < O
u(t) = ' (2.2)
1 for t > 0

and undefined at t=0 (although sometimes taken as 0.5 there).

This type of waveform is convenient from its simplicity.
It starts at zero with a finite slope at t=0+, rises to a peak
and smoothly decays. A capacitive pulse generator driving a
frequency-independent resistive load (such as a well designed and
constructed parallel-plate EMP simulator) gives this type of wave-
form assuming a rise characteristic dominated by a simple switch
inductance. However, actual large pulse generators of this type
have more complicated representations because of observed reso-
nances (giving local peaks and notches in frequency spectrum (the
. jw axis)) as well as more complicated rise characteristics (includ-
ing prepulse, the details of switch closure, and local switch
geometry). In addition, the actual EMP environment does not have

a distinct discontinuity in slope as does this f(t) at t=0.

A. Time domain

Let us now consider some of the important features of the

time domain waveform, particularly with regard to those features



which directly impact portions of the frequency domain. For
simplicity these are referred to as the rise, peak, and complete

integral (over time) characteristics.
1. Rise characteristics

Consider first the initial (and maximum) .time derivative as

3
ﬁf(t) =a - B

(2.3)

9
5EE(t) E (¢ - B)

There is a slope discontinuity at t=0 which is related to the
high frequency rolloff proportional to 8—2. Note for a rise fast

compared to the decay we have

a>>BZO

R
R

3
LI (2.4)

t
=2}

]
ﬁE(t) od

For a rise time one must be careful to choose a definition

relevant to the problem at hand. One definition would be the

© maximum value or something related to that divided by the maximum

time derivative. A choice consistent with this (called tmax rise

or tmr) is just
-1 -1 -

IR
o]

- | d . d ..
tmr = Eff(t) max EfE(t) (2.5)

max . max



which gives

-1

t = (a- 8yl = a1 (for a >> 8 > 0) (2.6) .

m

Often a 10% to 90% rise time is defined. For the case of rise

fast compared to decay

a > B 20

f(t) = [—e"at + l]u(t) (during rise) (2.7)

. 2.2
t10-90 ¥ &

Other types of rise times can be defined as well, such as the

e-fold time of the rise tr appearing in the waveform function as

1 .
t = a A (2.8)

2. DPeak characteristics

The peak occurs at a time when the time derivative is zero.

Defining
T = at
(2.9)
=2, osrzs
then
f(t) = [—e-T + e'CT]u(T) : (2.10)

with a defining equation for the time tmax that the maximum occurs

as

(1-2)T

1 = ze max

= — l - 1 -
Tmax = oLtma.x 1 ) , 1n(z) (2.11)

1 : :
thax = & - B ln(%) . ’



Note for small B (and constant o) we have
=1 1n(2 B
Thax ~ o ln(B)[l + O(a)]
ro as % >0 (2.12)

while for B approaching o we have

1 1 1
t = = ———— 1n
max 8 B)
a al_a (1_ (1__)

1 B
=% [1 + 0(1 - E)]
Las Bsn | (2.13)

The peak of the waveform is given by

Thax = f(tmax)
“Thax -2l hax
= e + e
_T
max 1]
= - -+ —
[-1+3
1
N [% - 1] | (2.14)
for small ¢ this is
4
£ - cej__cln(C) [l _ 1]
max 4
= [ - o]+ 28+ ocen@n®)] .

1+ z[ln(z) - 11 + o(zln(z))?)

+1 as¢g >0 ' " (2.15)

-10-



For £ near 1 this is

1
max z

1 2
L1040 |

- Mivda - o o - h] LS

2

LR AR TEEES

3
5+ g o - )

(1 -g)e”l + o1 - 1)

+0asz > 1 _ (2.16)

Note, of course, that

Emax = E(tmax) % Eofmax (2'17)

Generally we are concerned with a >> B8 > 0, for which case
the approximation of (2.15) applies. 1In this case, the peak field
is approximately EO, although actually a little less.

3. Complete-integral characteristics

The complete time integral is just

® 1 1 _a -8
_/_‘w £(t) dt = 3 - 5 = S5 (2.18)

which can also be written as }(0). For fast rise and slow decay

we have

™|
—/

H

|
Rl
—_

H
w| =
—

[y

|

™
| V—

f(0) =

>

as z - 0 ' ;(2.19)
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For the case of B near o the complete integral is proportiohal to
1-z and we have

f(0) + 0 as £ + 1 (2.20)

1

The time constant of the decay is approximately B =~ for

a >> B > 0, However, as noted previously it is the complete time
integral which is important because of its low~frequency implica-

tions. In terms of the electric field

[+ ]

f E(t) dt = E_ “G‘BB (2.21)

B. Frequency domain

In complex frequency domain (2.1) becomes

i

E(s) EO%(s)

(2.22)

+
ol S

F(s) = - —= > £

S B~ (s *+ a)(s + B)

In Fourier transform sense with s=jw the frequency domain form is

Jora T+ B G F D36 F B (2.23)

f(jw) = -

with magnitude

13wy ] = @ =8 (2.24)
2 . 2,2, .2.]1/2
(w° + a®) (0™ + B7)
and phase
~ . w W )
arg(f(jw)) = —arctan(a) - arctan(g) (2.25)
1. Low-frequency characteristics
In the low frequency 1limit we have ;
Foy=2_1-2-28 (2.26)

-12-



corresponding to the complete integral discussed in section II.A.3.

For small s we have
-1 -1
~ a - B S S
Be) =28 [1+ 3] 1+ §]

%(0)[1 - [;:- + %] + 0(52)] g (2.27)

Of course in terms of the electric field we have

E(0) = E_¥(0) = Ej “G"BB (2.28)

2. Intermediate-frequency characteristics

Assuming @ >> B > O we have for a >> |s| >> B the approximate

form
Bs) = &b = ¢
FHENIEE R (2.29)
arg(f(juw)) = - 3
with w assumed positive, and for the electric field
’ (2.30)

|E(jw)| = Eg

Since E0 represents approximately the peak (a little over
the peak) of the electric field waveform as discussed in section _
I1.A.2, then we see that .this intermediate frequency regime has

a magnitude approximately proportional to the waveform peak.
The transition between low and intermediate frequencieé

occurs at a frequency wg found by equéting the results of (2.26)

and (2.29), giving

-13-



which is the reciprocal of the approximate decay time constant.
3. High-frequency characteristics

Again assuming o >> B8 > O we have for |s| >> a the approxi-

mate form

~2=-8 . a
f(s) = <2 B <2
(2.32)
(i ~ 2 - B .o
| £(iw)] = == = =5
w W
arg(f(jw)) = -7
with w assumed positive, and for the electric field
o - B o
E(s) = E_Z ~ E 5
o 42 0 &2 (2.33)
= " a -8 o ‘
|E(jw)| = B, —%— = E; =3
[i1] w

Since Eo(a—B) represents the maximum time derivative as
discussed in section II.A.1l, then we see that this high frequency
regime has a magnitude approximately proportional to the waveform

peak time derivative.
The transition between intermediate and high frequencies

occurs at a frequency Wo found by equating the results of (2.28)
and (2.31), giving
(2.34)

which is the reciprocal of the rise time defined according to
maximum time derivative in (2.6) and the e-fold time of the rise-

in (2.7).

-14-



III. Reciprocal of the Sum of Two Exponentials

For our second example let us choose a waveform formed by

the reciprocal of the sum of two exponentials as

E(t) Eof(t)

[ —a(t-t ) B(t-to)]‘l
e

+ e

£(t) (3.1)

a20, 820

Here the waveform is in general nonzero for the complete time
axis provided o # 0 and B # 0. As will become clearer later a
good choice for the reference time to for translation of the
waveform will be t0 = (0. The case of typical interest will have
a >> B > 0.

This type of waveform is similar to that in section II in
its decay characteristics. However the rise is of the form of a
rising exponential with no discontinuity in the function or any
of its derivatives with respedt to time. This form of rise is
also more consistent with an exponential type of rise of the
nuclear radiation sources of the fields. This type of waveform
is coming into more popular usage; the form above is written so
as to simplify the form and make it more symmetric for better

analytic understanding.

A, Time domain

In a manner similar to the previous section let us now

consider some of the detailed time-domain characteristics of this
waveform.
1. Rise characteristics .

At early time for a >> B one has the case of B -~ O giving
~a(t-t ) -1 ’ o
f(t) = |e + 1 " (3.2)

=15~



For t << to this is

a(t—to)

f(t) =~ e (3.3)

giving an exponential characteristic to the rise which is thereby

rather smooth.
One might define a characteristic time for the rise accord-

ing to the e-fold as

-1
tr =3 (3.4)

For a 10% to 90% rise time one might use (3.2) and obtain

4.4
t10-90 ¥ "o (3.5)

. Note also that the 50% point in (3.2) is given at t = to’ where
the time derivative is also maximum with a value of approximately
a/4. This gives a rise time according to the maximum time deriva-

tive as

QI

d -1
t = {=—=F(t) = (3.6)
mr [dt |max]

2. Peak characteristics -

The peak occurs at a time determined by setting the deriva-

tive of f(t), or more simply of 1/f(t), to zero. Defining

T = a(t - to)
(3.7)
_
then -
-1
£ty = [T 4 o*T] - (3.8)

The time tmax of the maximum occurs as

-16-



(1+Z)Tmax

= -'.--1_ .-].'.=_
Thax = ¢(tpay - ty) = T Cln(C) 1+¢c

_ 1 o
thax ~ Yo T ¥ Bln(B)
Some limiting cases are

+ 0 for a + « (B constant)
+ 0 for B - @ (a constant)
t . -t {+ —= for o + 0 (B # 0)
> 4o for 8 + 0 (a # 0)
O for a =8 #0

0

The peak of the waveform is given by

f f(t

max max)

-1
-T T
- [e max . o max] |

For small ¢ this is

S (4

T+ T3z 1n(8)
f =% =&
max 1+¢ 1+ ¢z

1+

1+ z[1n(z) - 1] + o((zin(z )

+1las ¢+ 0

-17-
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5 7-1
[1 - zfin(z) - 1] + 0((zln(x)) )]

g

——1n(Z)

[+ - $2E2 + oczinen®]

(3.9)

(3.10)

(3.11)

(3.12) .



For the special case of z = 1 we have

=31 = _
fmax =3 for « B #0 (3.13)

Again note that

) = E £ . . (3.14)

E

max - E(t

max

The case of usual concern is o >> B > 0, for which case the
approximation of (3.11) applies. Again the peak field is a 1little

less than Eo'
3. Complete-integral characteristics

As will be derived in section IIX.B.1, the complete time

integral for o 2 8 > 0 is given by

f f(t)dt = £(0)

-C0

5

~1
2 [sin (a—“—i—g)] (3.15)

For fast rise and slow decay we have

-1
2
£(0) %—[1 - (a%) ¥ o(;4)] ,.

Q
+

It

_1
2 2
_ 1 L~ 3 ]
= 6[1 = + 0(c)
2.2
- %[1 TR o 0(;3)] as £ + 0 (3.16)

For the special case of B = o we have from (3.14)

F0) = % (3.17)

N

18-



The time constant of the decay is approximately B"l for
a >> B > 0, However, the complete time integral is more important

because of its low-frequency implications. In terms of the electric

field this is

o -1
Jl; E(t)at = E(0) = By 74 [sin(a“i;s)] (3.18;

B. Frequency domain

In complex frequency domain (3.1) can be evaluated from

ﬁ(s) = EOE(S)

-1
o —a(t-t_ ) B(t-t ).
J/. [e %o + e © ] e Stat

-st
e 9 F(s) (3.19)

: o0 7 ' -1 _
J,P [e_at' + &Pt ] e St'dt', with t°' o

%(s)

i
ct
1
ct

F(s)

This integral can be evaluated through some transformations .as

N o -1
F(s) = J/ﬁ [e'(“+3)t' + 1] e (SHEIT g¢
P -1 _§i§1
= E_%_E J/. [e'T + 1] e %" 41 with T = (a + B)t'

(3.20;

The integral is now in a form to be found in standard tables
[2, vol. 1, sect. 3.2, (15)] generalized to the Laplace transform

(two~sided) as

=

[¢]

)

(@]

3
)
+
[oy]

e
‘o
=)

[¢]

n
O
——
=

(o]
|

)

e —————"
~~
QS
(]
=t

F(s) = 353

-19-~



From this we have

- ~-st -1
fs) =e © T [sin(ﬂ st g)] (3.22)

which can be expanded out as

-st : -1
p _ (o] ﬂ . S TR TS . TR
f(s) = e a—;—E[%ln(a T B)cos(a T B) + cos(a m B)Sln(a - B)]
(3.23)
For s = jw this becomes
~ -Jjut : -1
T(jw) = e ° a—%—§1}Sinh(aTT’B)cos(aigiﬁ) + cosh(aTT’B)sin(algig)] :
- -1/2
. L2 2 2 . 2
| f(jw)| = - I 3 ?1nh (EJ%Lg)cos Lx?f B) + cosh (GTTJB)SIH (a1ﬁgs)]
r -1/2
_ T . 20 1w . 2{ 7B
= 3T F sinh (a T B) + sin (a y B)] (3.24)

arg(f(juw)) = ~wt - arctan[tanh(al%Lg)'cot(aigig)]

which would suggest to = 0 for minimum phase variation at high

frequencies.

1. Low-frequency characteristics

In the low frequency limit we now have.

~ | m . B -1 3.2
£f(0) = T 51n(a T S) (3.25)

corresponding to the complete integral discussed in section III.A.3.

For small s we have

-st - Lo =1
P _ o T ™S T8 . mB 2
i(s) = e a+B|:a+B"OS(a+B)+Sln(a+8)+o(s i‘
) - (3.26)

=20~



For o >> B > 0 this is

o -st -1
f(s) = e o[é + B + 0(52) + o(cz)] _ (3.27)

In terms of the electric field we have

~ L _ T . TR _%
E(0) = E_.¥(0) = B, 3 31n(a—¢—§) (3.28)

2. Intermediate-frequency characteristics

Assuming & >> B > 0 we have for a >> |s| >> B the approximate

form
-st
o
e

s
: (3.29)

(s) =

~ .1
| £CGw)| = 2

NVE

arg(f(juw)) = -wt_ -

with © assumed positive, again suggestive of the choice to

For the electric field

o s
E (3.30)
B 3 _2
|ECiw) | = =

Since Eé is a little larger than the peak of the electric
field waveform for o >> B > 0 as discussed in section III.A.Z2,

then the intermediate portion of the frequency spectrum is approxi-

mately proportional to the time domain peak.
The transition between the low and intermediate frequency

regimes occurs at a frequency wq found from (3.22) or (3.27) from

-

' ~(3.31)

the combination s+8 giving

wq = B

-91-



Neglecting t, note that the function f(s) is a function of s+B
alone (or o-s alone) for the frequency dependence. Note that wq
is then the reciprocal of the approximate decay time constant.

3. High-frequency characteristics

For high frequencies rewrite (3.21) as

-1

. s+B . s+B

- -st . Jr—=s -
f(s) = e o _2mj [e ?+B e a+B] (3.32)

a + B -

The high frequency asymptotic form depends on what direction s > <«
in the complex plane. Note that on the Re[s] axis there are poles
spaced at integer values of (s+B8)/(a+B). If we set s=jw with w

positive we have

- |
N -3B m—JB
- . -juwt ) it 1 =27
f(jw) = - Egglg e 0 o o8 [1 - e O ]
. TR w w
s ~-jlwt —— -T—F =2T——
- _ 2 o Jluwt, a+B) e OB 4 O(e a+B)
Qa B .
as w + +® (3.33)

This indicates that for minimum phase variation as w > +» we should
choose

t =0 (3.34)
o]

In high frequency limit we then have

[i1]
et | Enarar
PP 2 o+t
HEDIER
. . (3.35)
arg(F(ju)) = - - wt, + oo ;
=T, _T8 t =
= -5+ g fgr to 0]

-22-



For the electric field we have (for to=0, w > +x)

s TB g
ooy . @ _2mj  _vYatB [T a+B
E(jw) EO S +8 ¢ e
© (3.36)
]
~ s - 2T o+8
|EGjw)| = B, g5 5 ©

Note that the high frequency content of this type of wave-
form falls off exponentially with frequency. This characteristic
is associated with the smooth nature of the early time rise of the
waveform. This behavior can be contrasted with that for the wave-
form with a slope discontinuity with'a'high frequency content
proportional to s_2 in section II.B.3.

The transition between intermediate and high frequencies
occurs at a corner frequency Wy corresponding to the deviation of
the sine function from its argument by some specified amount.

One might define this by the power series expansion of the sine

function as

. s 3
e T I

setting the second term equal in magnitude to the first for W=wo

we obtain the approximation

1{ dog * B °
1 = 5 ““ETﬁTTT‘ (3.38)
For a >> B > 0 this gives
1 (Mo 2 _
E(T) =1
(3.39)

e —g = ,78a,

As expected w, is proportional to a. However one can obtain !
various constants of proportionality depending on how the corner

frequency is quantitatively defined.
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Iv. Summary
We have now considered in some detail two waveform functions
for apprbximately describing EMP environments, Each of these is
described by three parameters:
a: time constant for the rise

B: time constant for the decay

Eo: approximate peak value
In frequency domain we have three frequency regions of interest

for a >> B > 0 governed by:
approximate low frequency content
‘W
1 .
frequencies

E
L2
B
= B: approximate transition from low to intermediate
Eo
r approximate intermediate frequency content

Wy = (constant times o): approximate transition from intermediate
frequencies to high frequencies

The high frequencies are proportional to:

EO£%: for difference of two exponentials times a unit
s step function
TW
21 o+8 . - .
E —e : for reciprocal of the sum of two exponentials

oa

One can use these simple features of the waveform in con-

junction with sets of data, calculations, etc. for the frequency

content (magnitude) of EMP waveforms in order to approximate these

.with simple analytic forms. One might construct 'typical" or

"worst case" waveforms by this procedure.

24—~
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