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SECTION 1
INTRODUCTION

This report is one of a continuing series of reports dealing with
the analytic investigation of the SGEMP problem. In particular, this
report is the first to deal with the electromagnetic response of a conduct-

ing system.

Photoelectrons, emitted by an object which has been struck by
X rays, act as sources for electromagnetic fields. These electromagnetic
fields interact with the object producing skin currents and surface charge
densities. When the photoelectrons are produced inside the system the
problem is usually referred to as an IEMP (Internal Electromagnetic Pulse)
problem. When the electrons are produced outside the system the problem is
referred to as an external SGEMP problem. The éubject of this report will

be the external SGEMP problem for a conducting sphere.

It is intended that a two-fold purpose be served by this report.
The first is the presentation of the complete, time-dependent, analytic
solution for the electromagnetic, axisymmetric sphere problem. This
solution is predicated upon a knowledge of the time dependence of photo-
electron currents (the sources) in the space external to the sphere.
Other reports, in this series!?>?*?, deal with the calculation of the photo-
electron currents. The analytic solution, for the sphere, is valuable,
in itself, because it provides insight into the external SGEMP problem as

a whole. It is also valuable because it allows one to predict the entire



electromagnetic response, under arbitrary prescribed source conditions, for
at least one system. In contrast, computer codes” dealing with the same

problem are limited by stability conditions and grid size.

The second purpose of this report is to emphasize that the SGEMP
response of a system is really a two-dimensional surface problem. This
point of view has been recognized by the EMP community for some time®’%.

In this report we explicitly demonstrate, for the case of a sphere, that

the surface response of a system is determined by the modes of that system
together with the fields at the surface, due to the photoelectron sources
alone. One of the difficulties, in predicting the SGEMP response of complex
objects, is the three-dimensional nature of the problem. The possibility
of transforming part of the treatment of that problem, from the realm of

three dimensions, to a two-dimensional realm is attractive indeed.

In Sections 2 through 4 of this report we derive the time-
dependent solution for the conducting sphere. A future report will provide
examples of the use of this sclution. The future report will also discuss
several specific aspects of the SGEMP problem, based upon the mathematical

solutijon derived in this report.
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SECTION 2
DISCUSSION AND FIELD EQUATIONS

Given a highly conducting sphere in space and a piecewise
continuous (spatially as well as timewise) current, emanating from the
sphere or elsewhere in space, the electromagnetic fields anywhere in space
and time can be found. The problem discussed in this report is assumed to
be axisymmetric for simplicity. However, the generalization to the non-

axisymmetric case is clear and can be done, if desired.

The method of solution used here is to first expand the fields and cur-
rent in terms of the associated Legendre polynomials Pg(cose), Pi(cose). The
spatial coordinates are spherical coordinates. The problem is independent of the
azimuthal angle Y. The fields are solved in the frequency domain and later
transformed back to the time domain by means of a Fourier integral. The
modes of oscillations of the sphere are manifest as poles in the complex

plane with the transform method.

The 6 dependence is solved for by an expansion in Legendre poly-
nomials. A transformation to the frequency domain, w, removes the time
dependence. The remaining frequency domain equation is expressed in terms
of 2,w and the spherical coordinate r. These equations are solved by
means of a Green's function in the r coordinate. The particular Green's
function chosen is one in which: (1) spherical waves of radiation exist
at large distances from the source, (2) the low-frequency limit gives the
quasi-static Green's function and (3) damped oscillations as opposed to

non-damped oscillations are part of the solution.
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Maxwell's equations are

-
=dm3  13E _
VxB=2T o0 (2-1)
_ 1938
V xE =- S5 - (2-2)

Taking the curl of Equation 2-1 and substituting Equation 2-2 into the
result we have
> >
VxVXB= VxJd., (2-3)

For an axisymmetric system, in the spherical coordinates r, 6, andy, B exists

only in the { direction. Under this circumstance, Equation 2-3 becomes

2 2
1 9 1 3 1 3 _. 1 39
———=7TB + & 7 =3 =5 SinbB - — ——= B
T 3r2 r2 96 sinf 90 C2 atz
_4n 1l .9 .Tr 9 G .
=cr@Y wW)o (2-4)
where J* and Je are the r and 6 component of the spatial current. E' and Ee B

are the only non-zero E field components. They are obtained by solving

Equation 2-1. 1In terms of components, Equation 2-2 is

19E° . 1 9 . 4m 1
c ot _rsineﬁS:lneB-—?:‘J ’ (2-5)
and
)
19° _ 1 9 4t .6
cHc - Ty OB - I (2-6)

Equations 2-4 through 2-6 can be solved by an expansion in the Legendre

polynomials Pg(cose) and Pi(cose). The expansion is made as follows:



ol
-

- 1
B= ) B,(r,t) P(cosb) , (2-7)
c=1
= 0
' = Y El(r,t) Py , (2-8)
2 %
2=0
8 _ < B 1 .
E° = ), E,(r,t) Pp (2-9)
2=1
T i T 0
3t =3 Jo(r,t) Py s (2-10)
2=0
and
8 w— b 1 i
J7 = 9?;1 Jo(r,t) Py - (2-11)

After the substitution of Equations 2-7 through 2-11, Equations 2-4 through 2-6,

for each % become

2 2
1 o 1 1 3 T 1 T o 5]
—— TB 22 + DB, - = —5B,=- —= (J, + =—1J.) , & 2 1(2-12)
ar2 2 2 £ c2 3t2 2 cr £ or 2
L3 ef o+ 1) ——Bg“ 2=>1 2-13
c ot & T ’ - > (2-13)
1 3 .r  4m .r _
cae ot e =0 . (214
and
1 9 .6_ 139 471 .6
c3c B = rar BB - Jdp s 221 (2-15)

The method of solution is to first solve Equation 2-12,using the boundary
condition that at the sphere Ei is zero. Equation 2-15 will be used to

state the boundary condition at the spherical surface. After Bl is solved
for, the other fields can be obtained from Equations 2-13 through 2-15. To
this end we express Bg, JE and Ji in terms of a Fourier integral, removing

the time dependence. The integral transformation for BR is



_ +iwt
Blw —.]Pe Bl(r,t)dt , (2-16)

and

00

1 [ -iwt
Bl(r,t) = o e B

-00

3o (2-17)

for example. With this integral transform, Equation 2-12 becomes

2
19 1 2. _ 411 .1 _ 3 . .8
;.Brz By ~ ;7 2+ 1)By + KBy = - T T U * 37 (xJg)) »  (2-18)
where
K2 = w?/c? . (2-19)

Equation 2-18 is a basic equation for the solution of this problem. sz

and sz are the Fourier transforms of JE and Jg respectively.
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SECTION 3
QUASI-STATIC SOLUTION

One of the conditions imposed on the general time-dependent solution
is that it approach the quasi-static solution, for the low-frequency limit
(k > 0). The quasi-static solution will now be derived as it gives insight

into the solution for the general problem.

If the time derivative of B is neglected in Equation 2-12 this

equation becomes:

2

] 1 _ 4m1l _.r
5‘71‘31"2‘““ DBy = -7 U™
r T

(3-1)

"=

The method of solution will be to find the Green's function for Equation 3-1.

The solutions to the homogeneous equation are

B = rl , r-(£+1)

. , ' (3-2)

The Green's function Gﬁ(r,r') must satisfy
2%
3r2

2(2 + 1)G, = §£3—§—£ll . (3-3)

2

2
T

H |~

rGE(r,r') -

Since G is continuous at r = r', from Equation 3-3 we must have

rGg(r,r')l - 'a?E rGR(r,r')| =1. (3-4)

'+ rr'-

9
or

We construct a Green's function (continuous at r') from the solutions

expressed by Equation 3-2 as follows:



e I X (3-5)

Gl(r,r')>

r'_(2+1)(dr—£+1 + brg),r' >r, (3-6)

m

Gg(r,r')<

where b and d are arbitrary constants to be determined by Equation 3-4 and

the condition at the spherical boundary. Equation 3-4 determines the value
of b. Ee = 0 at the spherical boundary gives the value for d. If d =0

the fields would exist as if the sphere were not present. The problem is thus
separated (through the Green's function) into fields due to the source, j,
alone (d = 0, b # 0) and those due to the sources interacting with the

sphere. Substituting Equations 3-5 and 3-6 into 3-4 we find that

r!

b1 G-7)
For r' > r, BR is given by
(=]
- _4m r .3 .0 '
B£ = - = ‘]rG2<(J2 ey (r Jz))dr , (3-8)
R

where R is the radius of the sphere. Substituting Equation 3-8 into Equation

2-15, setting Ee = 0 at r = R, and using Equation 3-6 and 3-7 we find that

_ B+ 1) R22+1r,

d =
202 4+ g

(3-9)

Equations 3-5, 3-6, 3-7 and 3-9 are all the relations necessary for the

solution of the problem. They are, in a sense, the solution to the problem.

One important quantity that must be considered in SGEMP problems

is the skin current. The gth component of the skin current, x, is - f%
BQ(R,t). Using Equations 3-5 through 3-9 we find that
o0
o+l 1 I ;) . )
,yz_-R( 5 +22+1fr @F + wor (2'3))dr' . (3-10)
207 + R .
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In Equation 3-10, the term 2511 arises from the sources alone, the term

+ . . . .
E%E%T arises from the source interaction with the sphere. For large values

of &,the contribution to the skin current,from the sources alone (coming
directly from the B field of the sources), contributes half the total skin

current. For £ = 1 the sources alone contribute 1/3 of the total skin current.

Integrating by parts and combining terms, Equation 3-10 becomes
o0
= ﬁ T+ 20%ar (3-11)
H =~ 72 2 L :
i

Equation 3-11 corresponds to Equation 24 of Reference 4 which was derived

by another method.
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SECTION 4
TIME-DEPENDENT SOLUTION

We begin with Equation 2-18 and construct a Green's function in a
manner analogous to our solution for the quasi-static case in Section 3.
The Green's function sz(r,r') satisfies:
. ' L (e+1)6 1y + k%6 N o= LsE -
arz (I' m(rlr )) - r2 ( ) Q’w(r:r ) gw(r:r ) = T (I‘ -r )

AT

(4-1)

Solutions to the homogeneous version of Equation 4-1 are spherical Bessel

functions (Reference 6, pages 539-540). The spherical Hankel function hi

represents outgoing waves at infinity; the spherical Bessel function j2 is -
finite at the origin. We construct a Green's function continuous at r = r'

as follows:

Gy, (T,7'), h;(kr)(dhi(kr') + bjg(kt)) , T > 1, (4-2)

n

Gy, (rsT") h;(kr')(dhi(kr) +bj,(kr)) , T <! . (4-3)

Equations 4-2 and 4-3 have the property that for r > r', they represent out-

going waves. hi is chosen as the multiplier of the arbitrary constant” d

(b is a constant to be determined, also) because it allows for damped oscil-

lations. When d is determined, this latter statement will be obvious. The

choice of functions,in Equations 4-2 and 4-3, also allows the Green's function

to approach the quasi-static solution in the limit that k - 0. Equation 4-1 -
also implies relation 3-4. Substituting Equations 4-2 and 4-3 into

Equation 3-4 we find b:

* d and b are constants only in the sense that they are independent of the
spatial coordinates. They are functions of the frequency.

12
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1

b = (4 -4)
. ] 1 1 98 .
jpkr'y g byl - hg 53yl
r=r' T=r

By noting that the homogeneous form of Equation 4-1 can be put into a Sturm-

Liouville form, and by using the asymptotic forms®

L
. kr
300 > e (4-3)
k>0
and ) 22 )
. (28 - 1).¢
h, (kr) » - i ———7F0r , (4-6)
2 (kr)2+1
k>0
it is easy to show that Equation 4-4 becomes
b=-ir'k . (4-7)

We note that if d is set equal to zero, in Equation 4-2 and 4-3, the result
would be the Green's function for the situation without the sphere present.
To find the value of d we impose the condition that Ee = 0 at r = R.
Utilizing the Fourier transformed version of Equation 2-6 we must satisfy
d

r=R

- 0. (4-8)

Substitutiﬁg Equation 4-3 and Equation 4-7 into 4-8 we find

o (r] (k)
2
or

d=ir"k (4-9)

(rthl(kr) =R

- The values of w(k2 = m2/c2) at which the denominator of Equation 4-9 is equal
to zero,will be poles in the complex w space, when we finally integrate over

w to obtain the time dependence of the fields. These poles are the resonant

13



frequenciesoftDscillation. The frequencies, then, are defined by the equation
] 1
am (thy (ke))| i
ar L F=R = 0. (4 10)

This is the same equation that appears in Reference 7, page 558, Equation 20,

which defines the frequencies of oscillation of a sphere, for electric modes.

Equations 4-2, 4-3, 4-7 and 4-9 constitute the solution for the
Green's function in the coordinate r. By using the asymptotic forms (Equations
4-5 and 4-6) it is easy to show that the Green's function we have just found
approaches the quasi-static Green's function derived in Section 3 (Equations
3-5, 3-6, 3-7 and 3-9).

Using the Green's function we have just derived we find an expres-
sion for the Pi coefficient of the skin current Kg(t) on the sphere. From

Equation 2-17

o

Ky (t) = - (%)(%)feimtBEm(R)dm ) (4-11)

-0

By using Equation 2-18, 4-2, 4-3, 4-7 and 4-9 and the fact that

_ A4 T ] 6 ‘
Bzw(R) = - 7;-JrG2w(R’r')<(J2w + e (r‘sz)dr' s (4-12)

R

we find that

5 . o

=5 (Rj, (kR))
By, (R) = - 4?" ik aaR ’IL h;"(kR)fr'hl(kr')(sz + gf-,-,- (r'ng))dr'

3R (Rhg(kR))

R
. 1 P o 0 y 0 .
- Jz(kR)~jrr hg(kr )(sz + 5;7-(r sz))dr . (4-13)
R

Letting k = w/c and substituting Equation 4-13 into Equation 4-11 we find

14



o« 0 . LW o

- RigZ R _;
_ i w oR Lc -iwt, 1 W rnl Wy 1T 9 ' 19
20 =77 J ¥ 3 ml@ry) (e R)f T (o T Uy + v (g e
-0 oR Lc R
i w o MW oo, ciwt 1w T 3 8
- o= | dw[C g (T R)e fr'hl(z r') Iy, * v (@' ))dr'| (4-14)
- R

Equation 4-14, which expresses the skin current in terms of the sources, is one
of the desirable relations we wish to find. The second term in Equation 4-14
is proportional to the magnetic field at the spherical surface due to the
sources alone. Because of the denominator, the first term in Equation 4-14
is expressibie in terms of the modes of the sphere.

We could construct the solution for any of the fields, EE, Ei, Bl
at any point in space, in exactly the same manner that Equation 4-14 was
formed, that is, by using the determined Green's function and integrating
over w in the complex plane. The w integration brings out many of the
features of the problem. The fields are retarded in time and those parts
of the fields which arise from the sphere are characterized by specific
frequencies and damping constants. When the explicit functional form, for
the spherical Bessel functions, is inserted into the Green's function,
powers of w_l result. This has the effect of representing the time-dependent
solution for the fields in terms of time integrals of the known time
dependence of the source. These and other characteristics of the solution

will be discussed in a succeeding report.
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SECTION 5
CONCLUSION

The solution to the time dependent sphere problem, in terms of
the source currents in space, has been presented. Equation 4-14 expresses
the ch component of the skin current in terms of the gth components of the
source current components. One of the notable features of this equation is
that the reaction of the sphere can be expressed in terms of the modes of
the sphere and the field of the sources alone, at the surface of the sphere.

The modes are an inherent electromagnetic characterization of the surface of
a system. This fact emphasizes the two-dimensional nature of the surface response

even though the Green's function solution presented here was three dimensional.

If we are only interested in the surface currents and surface
charge densities on a system we would, in a sense, be getting-a lot of
unnecessary information by finding the electromagnetic solution, in all of
three-dimensional space. Surface currents and charge densities are the
important SGEMP quantities. It therefore seems reasonable that some part
of future research,in this area, should be devoted to characterizing systems

and their SGEMP response in terms of surface modes.
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