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Abstract
In this report SGEMP coupling through apertures is defined, Elec-
tric and magnetic fields due to moving electric (magnetic) point charges
are derived in time and frequency domains, Quasistatic representations
of the field due to a moving charge are discussed.. Symmetry decomposi-
tion is discussed for sources. Babinet's principle is exhibited in the
presence of point sources. Quasistatic representation of the equivalent

problem for a thin slot is also shown,
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1, Introduction

The photons released by a nuclear explosion above the atmosphere
travel great distances. If a space system such as a space craft, satellite
or the space shuttle is in the line of sight of the nuclear explosion, elec-
trons will be ejected from the surfaces of these space systems. The
electromagnetic pulse created by the movement of these electrons is

called the system generated electromagnetic pulse1 or SGEMP.

Reviewing some of the earlier work in the SGEMP area, Longmire2
has developed a model for estimating currents and voltages induced on the
external structure of satellites by short pulses of X-rays and Y-rays. Lee
and I\/larin3 have treated the problem of a charged particle orbiting a per-
fectly conducting sphere. In a recent report these same a.t_11:hors4 calcu-
lated the currents induced on a thin wire by the motion of a charged particle.
For present purposes only one charged particle near the space system is
considered. All reaction forces of the charged particles are either ignored
or neglected. These approximations would allow one to assume uniform
motion of the charged particle in a prescribed orbit thus simplifying the

problem,

The present report deals with the coupling of SGEMP through an aper-
ture. In general, the apertures of interest are in bodies of various shapes.
However, we will only consider apertures in an infinite plane screen.
Fields due to moving electric and magnetic charges that are developed in
this report are in general applicable to uniform motion of a charge. Using
simple rotation of the coordinate system, these can be extended for arbi-

trary direction of motion with a uniform velocity.



2. Fields Due to a Moving Charge -

Consider a charge @ moving at a constant velocity v in-the positive z .
direction as shown in figure 1. Resulting electric and magnetic fields can
be calculated by using the Lorentz transformations for the field. The fields ..
due to the charge in a moving coordinate system can be calculated and trans-
formed into those in an inertial frame of reference. We now assuime that
any external forée does not affect the motion of the charge and c’alculéte the
fields for both electric and magnetic charges. Although a magnetic charge
is not known to physically exist, its introduction simplifies a class of prob-
lems. The coordinates of the source point P' can be represented by ﬁ"o

given by

2.1  Fields Due to a Moving Electric Charge.

Using Coulomb's law and the field transformations, S the electric

field at the field point P due to an electric charge at P' can be written as.

Q (x-x O)I’X + (y-yo)fy + Yz

Ine 3732 (2.1.1)

E(X:y’zst) =
’(x—xo)2 + (y~y0)2 + 72(z;—vt)

where Qe is the electric charge at the source point and

vz ~1/2
'Y = - _'2— (20 1- 2)
c
where ¢ is the speed of light in free space. Similarly the magnetic field

at the field point is given by
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Qv

-(y—yo)fX + (x-xo)lj

(x,y,2z,t) =

an 7 3/2

(X-Xo)2 + (y-yo)z + ’72(Z-Vt)

(2.1.3)

The time coordinate is assumed to be zero when the primed and the un-

primed coordinates coincide. Using equations 2.1.1 and 2.1. 3, the time

history of the electric and magnetic fields at the field point can be con-

structed. Notice that in both the electric and magnetic fields, singulari-

ties occur when the field point and the source point coincide. If the time

" domain integral equation approach is used, one can use equations 2.1,1

- and 2. 1.3 as the incident fields,

If the singularity expansion method (SEM) or some other frequency

domain method is used, one has to express equations 2. 1.1 and 2,1,3 in

the Laplace or Fourier domain.

of a function F(t) as

T(g) = f Ft)e Stat

[~o]

Express the bilateral Laplace transform

(2.1.4)

where the tilde (~) denotes Laplace transformed quantity. Hence we can

write
~ Q
e ) e
E(x,y,z) " 4r7e
o)
-0
ﬁ(x,y,Z) =

p oo

—

(x—xo)fX + (y—yo)fy + 'Y(z-v’c)fZ
f3/2

i(x—xo)2 + (y-yo)2 + vz(z—vt) |

-(y-—yo)lX + (x—xo)ly

3/2
3(1{—}(0)2 + (y—yo)2 + 'yz(z—vt) f

~st

(2.1.5)

e _Stdt

(2.1,6)

-



Making a change of variable

l(z';"_tl = _B (2. 1. 7)

o

and setting

1/2 : -
_ 2 2 -
Py - [(x-xo) +(y-y) ] (2.1.8)
we have
p B

t = l(z +—°—) (2.1.9)
v Y )

ey :
dt = Wdﬁ - (2.1.10)

Hence we can write equations 2.1.5 and 2.1.6 as

+o0
Sz - o N P S
%(X z) = e 1 e—? (emx )1y * (y-yo)ly - PP, "—'YVBdB
s Y 41!'50 ’vaz A 3/2
© -00 | (1 + B
(2.1.11)
and
+00
-2 - . Pos
I:’-i(x z) = QeV 1 e v -(Y‘.YO)1X+ (x—xo)ly -_’Y?Bdﬂ
s Ys an 5 = . 73
"o - (1 +B )
(2.1.12)

In equation 2.1.11 and equation 2.1,12, we note that the transforms of

~

Eys Ey, and H are symmetric while that of Ez is antisymmetric with respect

to B. Letting



+o0

- pOS B
[1] = _ —1W e dB (2’,‘1. 13a)
(1+#)
o0 .
we have
) 1 pos
1] = 2 ——————7 cos h(—— B) 4B (2.1, 13b)
5 3/2 . Yv
0 1+8
. . 6
which can be written as
f'
p.S p s
% p s 2i =2 K (1—0—) Imfs] > 0
2 v W v
1 _
3/2e dg = < . (2,1,13¢)
1+ BZ)
-0 p_S POS .
~2i— K |-i— Im[s] <0
L 1 Yv .
Hence, we can write
( Q (X-X ) -E‘S p_S
2e (o) (s)2 v Kl(i-—o—) Imls]> 0
' 1TEO po (vv) Yv
E =< (2.1, 14)
x
Q (x-x) -Zg p s
- o _Gs) v g (—i-—o—-) Imls] <0
L 27e_ P 2 IN " w



[ Q. (y-y) -Zs p_s
13 < o (15)2 eV Kl('—o-) Iml[s] >0
_ € Po (w) w .
| Ey = < | (2.1.15)
Q (y-y) .. -Zg p s
-3 2 2 (15)2 e ¥ Kl(-iL) Im[s] <0
L 11'€O i po (vv) v

(Q v (y-y) -Zs [ps
_ 2e o (is) o vk (_2_) Imls]> 0
v po 'YVZ iy v
~ (2.1, 16)
HX <
Qv (y-y) .., -Zs p_s
£ o _(is) e ' K (—iL) Im[s] <0
(27 py 2 I\ w
- Z
Qev (X-xo) is) v° P8
5 e " K[\i—— Im[s]>0
T po 'sz v
'ﬁy = < | - (2.1.17)
Qv (x-x ) ,. -Z5 p s :
_ 2e o (is) eV K (—i 0 ) Imls] < 0
L 27 N Wz 1 v :

We note that the frequency spectra of Ex’ Ey’ f—I'X, and H are symmetric

with respect to 8. The freé;uency spectrum for Ez is found to be



[ Q _Zg
. ) p S
-__.E..E’)_ e v K (_.9.....) Im[s]>0
271€ 2 o\ Yv
E =< : 2.1.1
E, (2.1.18)
z
Q . -=s p s .
- e—(—l-g-)—eVK(-io), Im[s] <0
L 27€ (W)Z o Vv .
Noting that®
K (i__s_ i H(1) _pos) - _ﬂH(Z)(fg_i
o\ Yv 2 o v 2 o v

(2.1.19)

p s . p s p s
{; o . _n () "o . _m{2) o
Kl(w) - 2H1(w) 2 1 (vv)

P
'—l
o
-
l =)
@]
0
N
il
t
CIE
I
HA
=
©
3o
n
e’

we can write equations 2. 1, 14 through 2,1, 18 in terms of Hankel functions
rather than the modified Bessel functions. The modified Bessel function
representation is more convenient in the TFourier transform domain while

the Ilankel function representation is appropriate in the Laplace domadin,

Substituting equation 2, 1, 19 into the field equations, we can write

them in terms of Hankel functions as

-10-
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Q (x-.x )
e

(o]

(W)2

4€o o

Qe (y-yo)

(is)

Qe (y-yo)

2

(is)

4
€ o

(vv)

(is)
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Wz

(is)

2
v

(is)

S
©

v

{is)

2 e

w7

) e
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.z
(is)z . VSH(I)
(yv)

1

Z

-
oV H(2)

1

_Zg
LV H(l)(

1

z
oV H(Z)(

1

1

_Z
e ¥ H(l)(

Z

“vE (2)

H

_Z2g
v H(D

1

-11~

p,S

_Zg
is) v H(z)(__)

v

p.S

)

144

s
pO

(

)

Yv

p S

144

P8

)

v

p,S

)

v

S
pO

)

~v

)

)

Iml[s] >0

Imls]} <0

Imls]> 0

Im[s] <0

Iml[s] >0

Imls] <0

Imls] >0

Im[s] <0

(2,1, 20)

(2.1, 21)

(2.1, 22)

(2.1, 23)



and

¢ Z . .
Q . -=Ss p_S

—4—?— Lz e ¥ H(Z)(ri)' Im[s] >0

€0 (7v) ° AW '
EZ =< (2.1, 24)

Q@ -Eg 0 S
Z_§_ S 2.e v H(l)(—.:v—) Im[’s] <0

~ *€ (vw) °

Eguations 2, 1,11, 2.1,12, 2,1, 14 through 2, 1, 2t4,give the field com-~
ponents due to a moving point charge in both time and frequency domains,
Depending upon the type of the formulation used, the proper field represen-
tation can be used, For instance, if a thin wire on the z axis is of interest,
and if the time domain approach is used, one would use E from equation
2,1,1 as the incident field. However, if frequency domain approach is
used, one would use equation 2, 1. 18 as the incident field. The fields given
by equations 2. 1. 14 through 2. 1. 18 can be simply extended for an arbi-

trary direction of motion of the charge by using rotation of coordinates.

In keeping with our general practice of expressing the fields in the

combined field formulation7, we define the combined field Eq(x,y,z,t) as
ﬁq(x,y,z,t) = E(x,y,z,t) + inoﬁ(x,y,z,t) g = %1 (2. 1.25)

We can write the combined field due to a moving electric charge as

Q
o - e _ 1 _ e ) i ™
B (x,5,2,0) - I:{(x x) - qi(y yo)}1X

(2.1, 26)

+ {(y—yo) + q:lﬁc(x—xo)}?y + {'Y(z-vt)} TZ]

~12-

“\_L)“.

./



where

¢ = {xx)? + -y )+ Pa-vt)?)

(2.1.27)

In a similar way, the combined field representation in the frequency

domain can be obtained, We can write this as

r (x-x ) . p s
o d, (2)o”
[- o taghy yo):lHl ('rv)
Z
T - &_l.(is) e-;S
a, % o (M °
(x-x ) . p_S
o i, (1)(__9__
\[ (vw) qc(‘Y yo):lHl 'YV)
f[_(y-yo)_ i )]H(z)(p;.s
(vv) AL EX, 1 \ v
Z
5 . e 1 ﬁe-;sg
qy €, P, (vv)
(y-y ) p_s
0 ey ol
[ ) Tagh X0)]111 (’YV)
D S
[H<2)(_0_)
o \7v
Q -Zs
~ _ Ye _s v
By T e 2 © )\
z (vv)
/P8
H(l}(L)
o \Yv

13-

Imis] >0

(2.1, 28)

Imfs] <0

Imfs] >0

(2. 1. 29)

Imfs] <0

Im[s] >0

(2.1,30)

Im[s] <0



2.2 Fields Due to a Moving Magnetic Charge

Although magnetic currents and charges do not physically exist,
they form a useful mathematical tool in a certain class of problems.
Babinet's principle has been a useful concept in solving the problems
of coupling through apertures. In this principle, the plane scatterer
with an aperture can be replaced by its complement, while the eleciric
sources, are replaeed by the magnetic sources and vice versa. 9 Because
of this simplicity achieved by the introduction of magnetic charges, we
will calculate the fields due to a magnetic charge. Maxwell's equations

are given by

VXE=-s,u'O'H
Vxﬁ=s.eoﬁ+f

~ (2.2, 1)
V « B=20 )
veD=7%

when only electric current density and charge density are present and by

VXE=-suﬁ-f
(o} m
Vxﬁ=seoﬁ
(2.2.2)
V «B = P
VeD=0

when only magnetic current density and charge density are present. The

equivalence between these two sets of equations is obtained by

-14-



‘ [ 6]
Fo.LE (2. 2. 4)
. Z . .
(o]
T od 7 ~-27 | (2. 2. 5)
, Z m m o
o ,
P Ry - (2.2.6)
Z m:. T
(8]
P ™ 207 | (2.2.7)

Thié establishes an equivalence between the fields produced by electric and.
magnetic sources; as a consequence, it is easy to obtain the fields due to a
magnetic charge, In figure 1, if the charge at the source point is a magne~
- tic charge Qm, the field at the field point can be obtained from equations
2.1.14 through 2, 1, 18 by utilizing equations 2. 2, 3 through 2, 2, 7. Noting
that the electric point charge Qe - _Zl(;Qm where Qm is a magnetic point

charge, we obtain

Q. (x-x) . -Zs p S :
m o _lis) eV K (—0—) Imls] >0
2"”0 Po (-yv)2 I\ w
H =J (2. 2.8)
X
Q (x-x ) -Zg p S
L o _(is) e ' K (—i-—o—) - Imls] <0
\ 2##0 o (7V)2 1 LA

-15-



2 o Fo '-(')f.V)2
= 4
- -,m
27p P 2

( _Q_m__ (is)
2, -(W)z
= <
'Qm JEL.-%S
\'—-'2-""“0 (v0)° ;
R’ U35 i)
27 Po Wz
= A
QY (y-yo) (ig)
\ 27 po 'YV2
( ¥ (X_Xo)' (is)
21 oy 2
- 4
Q. (x-xo) (is)
\ 27 Py 7V2

-16-

Im[s] >0
(2.2.9)

Imfs] <0

Im[s] > 0
(2. 2. 10)

Imis] <0

Imis] >0
(2.2.11)

Im[s] <0

Im[s] <0
(2.2.12)

Im[s] >0



or

.
-Qm (X-X ) (].S) -
4"0 Po (7v)
x 9
Qm (x-x ) (is)
L Wy Py (‘)fV)2
r
_Q (y- Yo ) (is)
4E“o o ('W)2
y =
Qm (y-y,) (is)
L 4:,'lo Py ('}'V)2
( -2
Cm_s VE
4Mo (yv)
z 9 ,
®m_s v°
4Mo (vv)
.
Qv 5Y) i)
4 Po v
x °
Q v (y- o ) (is)
4 ‘Oo 'sz

-17-

Imis] > 0

(2.2.13)

Im[s] < 0O

Im[sl> 0

(2.2.14)

Im[s] < 0

Im(s] > 0

(2.2,15)

Imf[s] < 0

Im[s] > 0

(2.2.16)

Im[s] < 0



.
Q v (x-x) i p s
m o (is) v __(2f "o : -
2 5 Wz e H1 (_,w) Im[s]> 0
'E”y = < (2.2.17) )
Q vix~-x) ,. -Zs p S
o ds) v Hm( s ) Lenle] < 0
\. P, ‘)’Vz 1 \ v .

in the frequency domain and

_ - L _ - + _ N
Q. | & xo)lx (y yo)ly v(z-vi)1,

H(x,y,z;t) = —Z_|  (2.2.18)
RN 2 2 2 932
(x-x )" + (y~-y )" + v (z-vt)
O @]

- Q_v ~-(y-y T+ (x-x )T N
E(x,y,z;t) = - i: v = o 373 g
{(x-x 12+ (y-y )2 + vz(z-v-’c)zi |

(6] o]
(2.2.19)

in the time domain.

Expressing the fields due to a moving magneﬁc charge in terms of

the combined field, we have
= Wy = __m v (e R S }‘*
Eq(x,y,z,t) y (03/2 [{ (y yo) v (x xo) 1x

s . C - . C = \
+ {(x-xo) - quv(y—yo)}ly - qlv(z -vt)lz] (2.2, 20)

-18-



Q . -=s
1 is v
B (X,y,Z)="_II'l"—'—e
N 4 o W 3
Z
¥ g e omiis v
qy rJ 4 po'YV
o] Qm sC v
E (x,y,z)=-qgi 2 5 €
9, (vv)

( c 2){Po°
[(y-yo) + qiw(x-xo)]Hl TV_ Im[s] >0

(2.2.21)
p S
-[(y-yo) + qi;vc— (xjxo)]H(ll)(%) Im[s] < 0
.
. _c 2)fPo®
[(x-xo) -qlw(y-yo)]Hl (W) Im[s] > 0
< (2.2.22)
| 0P8
[—(x-xo) + qi,Y—c:f-(y-yo)]H(1 )(—')%v-) Im[s] < ©
. o s
H(Z)(—O—) Im[s] > 0
o \ w
9 (2. 2. 23)
. g
~1—.[(1)(—°-) Im[s] < 0
(o] Yv )

\

As in the case of the fields due to an electric charge, the fields due to a

magnetic charge can also be calculated for arbitrary direction of motion

of the charge by a simple rotation of the coordinates.

-19-



3. Quasistatic Representation of the Field B

There exists some confusion as to what quasistatic really means
and what is really necessary. It is clear that the fields due to a moving
charge can be expanded in terms of either the velocity or frequency usiﬁg
some series expansion. If the velocity of the charge is small compared to
the velocity of light ¢, the field can be approximated gquasistatically.
However, it is also possible to expand the integral operators associated
with a scatterer in terms of the frequency which leads to a quasistatic
operator formulation. As one can clearly see, this leads to confusions if
not errors in the formulation of the problem. Table 1 indicates the dif-

ferent combinations one can have.

Dynamic Operator Quasistatic Operator
9+ Dynamic Incident Field Dynamic Incident Field 7
° A\
g % T) and and J
13} —
5’ g P Dynamic Operator Quasistatic Operator

Quasistatic Incident Field| Quasistatic Incident Field

L o &
n.g 09 .
AN and _ and
&% gk
0 = Ixy . . . .
— Dynamic Operator Quasistatic erator
p

NOTE: Dynamic operator aé used above is either EFIE, HFIE
or a like quantity,

Table 1

The confusion which probably was only enhanced by table 1 would lead
one to ask what is really quasistatic? There appears to be no definite
answer to that question. If oné uses the dynamic field with the dynamic
operator and expands the resulting guantity in some series form, the
guasistatic response function would be ohtained. This wquld yield numeri-
cally accurate results; however, for simplicity one of the other combina-

tions in table 1 should be considered.

-920-



3.1 Quasistatic Representation of the Field Due to a Moving
Electric Charge

The electric and magnetic fields due to a moving charge are given

by equations 2,1, 1 and 2,1.3 in the time domain. Noting that

vz -1/2
v o= ( '"E) (3.1.1)
c .

and v < ¢, we can expand ¥ in the binomial series as

4 s enan (3-1.2)

—
[s2}

Neglecting terms of order v4 /c4 and substituting it into equations 2,1.1

and 2,1, 3 we obtain

2
- - 1 v -
. Q (x—xo)lX + (y—yo)ly + (1 + 5—2)(z~vt)1Z
E(x,vy,2z,t) = € ¢
4me 3/2
° 2 2 v 2
(x-xo) + (y—yo) + (l + =3 (z-vt)
L. c -
and (3.1.3)
Q 2 - (y-y )T+ (x-x )T
H = _& lv : ° X O ¥y
Hiy, 2, 1) = o7 V(l *3 2) ' 3/2
¢ 2 2 v 2
(x—xo) + (y—yo) + {1 + - (z~vt)
C
(3.1.4)

If we neglect terms of order v2 /c2 in equations 3.1. 3 and 3.1. 4, we
obtain the simple Galilean transformations5 of the field which are applica-

ble if v << ¢. These can also be obtained by simply setting ¥ =1 in

- -21-



equations 2.1.1 and 2.1, 3. Itis interesting to note that the magnetic
field is similar to that due to a uniform z directed current element along
the entire z axis whose current is Qev. Higher order terms in equa-
tions 3.1.3 and 3. 1.4 seem to have no physical analogue and can simply

be considered as correction terms.

Using the frequency spectra given by equations 2.1.20 through 2.1, 24,

if the velocity of the charge v << ¢, we can write

@ (x-x ). p s
e o' is zs ¢\ . (2) o)
'47—,3"'-—2(“?;)1{1 (_v_ tm[s] >0
o o Vv
E o~ < (3.1.5)
< .
Q (x-x ). p s '
o is zs c\ ()| o
T F “-z'(“?;)Hl (T) Im[s} <0
\_ o] (o] v
[ Q_ (y-y) p_s
e Y Yo is zsecl. (2} o
-4?“p——2(1+?;)H1_(T) tm[s] > 0
o o v
T o~ ﬁ (3.1.86)
Y Q. (y-y) o s\
Y-y _ ). 5
e o' is zs c). (1)| o
Ze‘—p—“—z(”?v)lﬂ (—v_) tm[s} <.0
L o v -
([ Qv (y-y). o s)
e o' is zsc\..(2){ o
—a—-p———z(“z—c)ﬂl (T tm[s] > 0
o v
T o= < ' (3.1.7)
x
Q v (y-y.). p s
e o is zscy. (1) o
-l (e 2y (T) tm{s] <0
Y o v

-29-
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Qv (y-y) o s
2t Mo sy zee)y®(0)  raer >0
(0] v
" - 3.1,
—_ | (3.1.8)
Q v (y-y pP-s
o is ZS ¢ (1) o
2 po —2(1 T_)}Il (-——) .Im[S]<0
A
[ Q p s
e S 2l ) e
o Vv
"E"z = (3.1.9)
Q p s
w5l 28 )u0(5) oo
\ Qo v

It is interesting to note that the electric and magnetic fields as
shown above are simply the Coulomb and Biot-Savart law fields, respec-
tively, due to a moving charge. We will now expand the fields given by
equations 3. 1.5 through 3.1.9 about s =0 for v>0 but v<<c. If we
only consider the principle branch associated with the Hankel functions,
i.e., the imaginary part of the argument is greater than zero, the deter-
mining factor for the singularities associated with the Hankel functions of
order greater than zero is not the logarithmic term. Hence we can write

for Imfs] >0, lim s—~ 0,

- Q, (x-x)
E_ -5 5 (3.1.10)
o vp
Q (y-y)
B oo 2“‘3 O (3.1.11)
y 0 VPO

-23-



vp
0
Q v (x-x)
Hy—- BT 5 (3.1.13)
vP
and
_ Q - _
B oaoi S S, (2 (3.1.14)
z 2me 2 p s
oV (o}

From equations 3.1.12 and 3.1, 13, the magnetic field components
are similar to those produced by a uniform z directed current along the
entire z axis carrying a current Qev in thE -Z dire(f:\"cion.' The electric
field and the magnetic field are related by H = €.V X E. A more detailed
analysis of this is considered outside the scope of this report.

3.2 Quasistatic Representation of the Field Due to a Moving

Magnetic Charge ' '

Quasistatic electric and magnetic fields associated with a moving .
magnetic charge can be simply obtained by transforming those due to a
moving electric charge by using equations 2, 2. 3 through 2.2. 7. If we

assume that the velocity v << ¢, we obtain

Q v (y-y )T, - (x-x )T
B(x, y,2,t) = = ° X A 4 (3.2, 1)
am 2 2 5)3/2
(x-x )" + (y-y.) + (z-vt)
[¢] (o]
and
Q (x-x )T, + (y-y )T+ (z-vt)T ,
. m 0o X o'y z .
Hix, y, z,t) = T (3.2.2)

372
J(x-xo)z + (y-yo)2 + (z-vt) i
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The electric field as shown in equation 3. 2.1 is similar to that produced
by an infinite magnetic current element. In the limit s - 0, Im[sS]> 0

and v << ¢, we have

Qm (X-xo)

ﬁx == S 5 (3.2.3)
c vp
(o]
- Q (y—yo)
T o (3.2.4)
YoM, g2
o]
Q
~ m s 2v
o Vv (o]
Q_v (y-y)
B 212 2° (3.2.6)
vp
o]
Q v (x-x) .
B - ?f‘; 2° (3.2.7
y VPO

The electric fields are similar to those produced by an infinite magnetic

current element carrying a current va in the - z. direction,

Quasistatic fields as derived here can in some cases be used as the
incident fields. Depending upon the integral operator and the approxima-
tions associated with it, the incident field can be chosen to fit some error

criterion.
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4, Symmetry Decomposition

4,1 The Concept of Symmetry Decomposition

The concept of symmetry with respect to a plane is quite useful, 8 It
has been shown in an earlier noi:e9 that the principle of symmetry simpli-
fies the analysis of plane scatterers. Consider a symmetry plane S as

shown in figure 2 with F'being the position vector to an arbitrary point P

—

while o is the pdsition vector to its image point PI . Defining a reflec-
tion dyadic R such that
1 0 0
R = |0 1 0 (4.1.1)
0 0 -1
we have
I:Ro_‘[‘ or I‘=R° I (4'1'2)

-
»

Corresponding to the reflection of r to ry

tities for the fields, currents and charges with a subscript I. These can

we define image quan-

be written as

%I(F) - & . %(FI) (4.1. 3a)
"BUI(*) - - %(FI) (4.1, 3b)
B(H) =-R + BE) (4.1. 3¢)
B () =-R - I (4.1. 3d)
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I I) (4. 1. 3e)
':}‘mIC) =R . T () @
0 = L | (4.1. 3g)

me (r) =- Fm(FI) (4.1. 3h)

We now define a symmetric (antisymmetric) quantity as one half the
sum (difference) of the original quantity and its image quantity. Repre-
senting the symmetric and antisymmetric quantities with subscripts sy

and as, respectively, for some arbitrary vector or scalar quantity

rlf](;) , we can write N
~ —_ - l - —
7,0 - 2[07(1-) . %I(r)] (4.1.4)
as

where EI(F), the image quantity, can be found from equation 4.1, 3 by
using the appropriate equation. Readers are referred to earlier works ’
for a more detailed study of symmetry decomposition. Simply stated, the
symmetric part corresponds to reflection through an infinite magnetic
sheet while the antisymmetric part corresponds to reflection through an

infinite electric sheet.
4.2 Symmetry Decomposition in Planar Apertures

Let us now consider an aperture A in an infinite, perfectly conduct-
ing plane S as shown in figure 3. The aperture region may be loaded by a -
dyadic sheet admittance ?s which, of course, would include open aper-

tures as well. ILet us assume that the incident field is incident from the
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A (aperture)

Figure 3. Perfectly Conducting Infinite Sheet with an

Aperture
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'z < 0 direction, We denote the fields on the z > 0 and z < 0. sides of the
screens by subscripts - + and - respectively. We denote the incident field
by the subscript inc, scattered by an infinite perfectly conducting screen.
by c, scattered.by a screen:by se and the aperture or perturbation fields

by a.

Using the results obtained.in an earlier not'eg,‘ we have the scattered
field to-he symmetric with respect to P =S |J:A. This conclusion implies

that E ) E. , H and:H are symmetric. ITence
c a c a

B =E__ +E +E (4.2.1)
sy _ lncSy c a
%] = =, +H +H (4.2.2)
Sy _ 1ncsy c a
E = E, =-E (4.2.3)
as 1nc as.
- as +
H = H. = H (4, 2.4)
as I1C as
- as +
E = E (4.2, 5)
sy, a
"B =" (4.2.86)
sy, a
o) =0 =0 (4.2.7)
sScC SC
as as
+ 31
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Clearly, these equations imply that the antisymmetric part of the
field is unaffected by the aperture and the screen. The aperture surface

current density '?s is given by

T =Y «B =7 +2n X H (4. 2. 8)
S S a S a
=+ S. C. +
where
T =-2n X H. ' (4.2, 9)
5 1nc
s. c. sy

+ 2n X H = 0 (4.2.10)

which implies that the presence of the screen with an unloaded aperture
does not modify the tangential component of the magnetic field in the
aperture.
4.3 Complem'entary Fields, Currents, Charges and the General-
ized Babinet's Principle
The transformation of fields, currents and charges between electric
and magnetic quantities forms the basis for Babinet's principle. Corres-

ponding to the original fields, currents and charges, etc., given by

E’ﬁ’j”f ’pN’E"_E’:):T*’;
m m’ Tq’ “g’ g
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Figure 5. Complementary Disk with Complemeritary Source
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unaffected by the z =0 scatterer, only symmetric parts of the fields have
to be considered, With this in mind, the problem for the symmetric
parts of the field is as shown in figure 6, where the symurmetric field is
;:onstructed by using symmetry decomposition of the fields and sources.
The complementary problem for this case is as shown in figure 7, The
complementary screen is obtained by replacing the perfectly conducting
plane screen with an aperture by its complement given by a disk, Com-
plementary sources are obtained by using equations 4.3.2 and 4.3.3. If
the aperture in figure 6 is rectangular or circular, the complementary

disk will also be rectangular or circular,

Let us now consider a thin slot in a perfectly conducting infinite
plane. A symmetry decomposed charge Q_/2(Q,,/2) is assumed to
travel by the slot, parallel to the perfectly conducting plane with a veloc-
ity v as shown in figure 8. The complementary problem with symmetry
decomposition is as shown iﬁ figure 9. For simplicity, we will only con-
sider the case of the unloaded aperture whose complement is a perfectly
conducting strip, If the strip is of width w and length £, in the quasi-

11, we can consiiier the complementary problem to

static approximation
be a thin wire of radius w/4 and length £ as shown in figure 10, It is
clear that this approximation simplifies the analysis considerably. Simi-

lar simplifications may be made in other aperture problemslz.

We have only considered the case where the electric or magnetic
charge is traveling by the aperture and the charge has existed for all
time. However, in the SGEMP problems the charge is emitted at some
time t = tO in some direction to the scatterer. Let us assume that the
charge is emitted toward the z>0 direction. Using the symmetry decom-
position, the sources that produce symmetric fields are as shown in
figure 11. The complementary problem for this is as shown in figure 12.
It is interesting to note that the complementary problem requires the

ejection of null total magnetic charge from free space.
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Figure 6. Symmetric Sources for a Plane Screen with an

A ture
per _38.
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Figure 7. Symmetric Sources for the Complementary

Problem
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Figure 8. Symmetric Sources for a Thin Slot in @ Perfectly

Conducting Screen
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Figure 9. Symmetric Sources for the Complementary
Problem

o x

Figure 10. Quasistatic Approximation (v <<c) for the

Complementary Problem with Symmetric Sources
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Figure 1l. Symmetric Sources of a . Charge Emitted from
the Screen



Figure 12. Symmetric Sources for the Complementary
Problem 43-



6. Conclusions

In this report we have derived equations for the field due to moving
electric and magnetic charges. These are shown in both time domain
and frequenéy domain. Quasistatic representation of these fields is shown
for v<<c and s -0, These equations can be simply extgnded for an
arbitrary direction of motion of the charge by simple rotation of the coor-

dinate system.

Symmetry decomposition of fields and sources with respect to a -
magnetic plane is discussed. The scattered fields due to an aperture are
shown to be symmetric with respect to the plane of the aperture. Using
the symmetry decomposition of the sources and the Babinet's. principle,
it is shown that the problem of SGEMP coupling through apertures can be
simplified. In this formulation of the complementary problem charge con--
servation is automatically satisfied. For the case of SGEMP coupling
through a slot, in the quasistatic approximation, the electric currents in- ™~
duced on a wire of length £ and radius a are the same as the magnetic
currents in a slot of length £ and width 4a. Numerical results for this

problem will be presented in a later report.
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