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Abstract

A numerical solution is provided that may be used to predict the
electromagnetic field within a partially evacuated cylindrical cavity
excited by a pulse of ionizing radiation. Several examples are given to
illustrate the pressure dependence of the nonlinear response and to acquaint
the reader with brinCipal characteristics of this response.

*This work was supported by the U. S.-Army Safeguard System Command,
under contract DAHC60-72-C-0038.
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Introduction

Transient sources of ionizing radiation produce electromagnetic
fields within a test vessel. These fields can sometimes couple currents
into an instrumentation cable that exceed the the desired or expected
signal, thereby endangering the experiment or even the equipment itself.

Being able to predict the radiation-induced internal electro-
magnetic pulses (IEMP) can help the experimenter design test vessels and
experiments to minimize the potential effect on the experiment.

Earlier papers have estimated the fields in small cavities (quasi-'
static fields) [1] and the fields in large cavities filled with homogeneous
time-invarient media [2,3]. This paper provides a numerical solution to
the problem of preeicting fields in a reasonably large cavity filled with
air under partial pressure. This type of solution is most appropriate
for treating the nonlinear, inhomogeneous, time-dependent air media.

Examples are given to illustrate how the air pressure influences
the conductivity within a test vessel and how this conductivity influences
the electromagnetic field within the vessel. '



Formulation

The problem to be addressed is to determine the total electro-
magnetic field within a cylindrical cavity driven by ionizing radiation
(Figure 1). It is assumed that the walls are metallic and that the cylinder
contains air under a partial vacuum.
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Figure 1. Radiation Excited Cavity

The electromagnetic field within the cylinder satisfies Maxwell's
equations,
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where @ and B are the total electric and magnetic f1e1ds w1th1n the cav1ty
and Eo and u, are the free space permittivity, € = 10" °/36m f/m and U,
4mx10" 'h/m. o is the air conduct1v1ty in mhos per meter, o = o{8,z,r t),

a complex function of time, space and electric field intensity. 35 is the
radiation induced conventional current in amps/meter?. For the problem

at hand, we shall assume that the source currents possess azimuthal symmetry
such that there is no ¢ dependence of any field component and the curl
equations (1)} and (2) reduce to:
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The nonzero components of the scattered field satisfy these equations and
are subject to the boundary conditions, e, = 0atr =a and e. =0 for z =
and z = &.

This system of simultaneous partial differential equations (3)-(5)
is easily solved using finite difference techniques to yield. the fields
within the vessel.

Numerical Solution of Maxwell's Equations

The formulation of the difference equation follows that devised
by Yee [4] and previously used to study the current distribution on scat-
terers in various inhomogeneous media [5]. The resultant difference equa-

tions are
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The source functions and conductivities are evaluated at time halfway be-
tween the old and new values of e; that is
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The conductivity o is just a scalar function of position. The difference
between Oy and o, is that value of o is computed at a slightly different
spatial location. The values of Ar and Az are related to the Tength and

radius of the cavity by
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where 1can and jcan are to be chosen such that Ar and Az are each less than
0.2X, where X is the free space wavelength of the highest frequency component

of interest.

The boundary conditions are applied as
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The formal solution is now complete. The reader should refer to References
4 and 5 for a discussion of the finite difference techniques used here.

However, a few comments are in order. Note that h$+1 is computed from e:

and eg, while e2+1‘and e2+1 is computed from R". For a system initially
at rest, e. = e, = h¢'= 0 at t = 0, the solution proceeds by computing

el and e; can then be used to compute h$. The solution proceeds sequentially

r
to any desired time.

Calculation-of the Source Current Density

S

The source of the caﬁity fields is the radiation-induced current

* ->
Jg = -q n,V . (7

Here q is the charge on an electron (1.6x107'° coul), and n, is
the density of primary electrons (electrons/m®) traveling at velocity,
v (meters/sec).



For high energy photon sources(E& > .25 Mev) electron production
results primarily from the Compton effect so that the electrons are ejected
with a forward velocity component Vf on the order of the velocity of light.
The production rate of these primary electrons is proportional to the ioni-
zation rate [6],

= .
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Here y is the photon flux rate in MeV m ~sec™ | EY is the average
energy of the gamma flux and RY is the mean range of a photon (meters).
For an isotropic source of gamma rays the current density at a particular
point in space and time is determined by adding the contributions of all
the primary electrons made closer to the source at the appropriate time.
Thus,
>
gg(r,t) = qvf:r ft dt” fr dr~” ﬁp(r‘,t’) 4mrr 2
4mr o 0
X y (Ref -(r‘-r“)) $ (r-—r’-vf(t-t')) . (19).
Here Ref is the mean forward range of an electron; u(x) and &(x)
are the normally defined Heaviside step and Dirac delta functions, re-

spectively.

In writing (19) for simplicity it was assumed that the electrons
all travel with their initial velocity Ve throughbut their mean forward
range, Ref’ then stop abrupt]y. In evaluating this integral we shall ignore
atmospheric attenuation of the gamma flux over the distances involved here.

-,

The ﬁp has the form o

ﬁp (r,t°) = f(t7°-r7/c)/r2 ' . (20)

Then if r > Ref the integral is just
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For Compton electrons produced by high energy photons (0.25 MeV <

E+ < 5 MeV) the maximum delay factor (in air at sea level) is

Re_f( _V_f)
Vf Cc

max = .5 nsec ' . (22)

The effect of this delay is to average the gamma flux over the
time interval involved and to delay the current pulse behind the gamma
pulse by this same amount [7]. We shall ignore this difference; then the
integral is simply

-> Vv 3' R
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Ve (23).
Reintroducing the definitions of f and ﬁp we have
. ] R
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and the proportionality constant ij(E ), (Figure 2), defined by
fus = ds /Y (25)

does not depend upon the air pressure in the partially evacuated cylinder,
since both Ref.éhd'R{ are inversely proportional to pressure and only their
ratio appears in (24). The y used here was assumed to be in units of

MeV m'zsecﬂl; however, ij is also given for cases where y is given in
roentgen/sec. The mean free path of an electron in air varies inversely
with relative air density [Ref ~1 / (p/po)]. For most evacuated canisters
the range of integration in (21) exceeds the transit time of the test ves-
sel. Note, however, that electrons are made within the metal walls of the
vessel maintaining about the same proportionality (25) between electron
flux and gamma flux.

We have also tacitly ignored the effect of the fields created
by the motion of the primary electrons on their own flight. For reasonably
sized test vessels the fields are not large enough to influence the primary
electrons during their transit time across the cavity.
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Figure 2. Energy dependent proportionality constant relating
’ current density to photon flux.

Calculation of the Air Conductivity

The air conductivity, o = 0([3| pr) is defined as

o =q [nM, * (n_ + n+) ] ' ‘ (26)
Here ng is the number density of secondary elect:ons [m*7], n_and n,
are the number density of negative and positive ions [m>7, and Mg and u;
are the electron and ion mobilities [m?/volt-sec]. For a relative air
density of 1, u; = 2.5x10"*m?/volt-sec while My varies between 10% and 10*
times as large as the ion mobility, the electron density is the major con-
tributor to conductivity. Nhgn the ion conductivity is relevant, it may
be added but this procedure will not be discussed here. Equation (26)
simplifies to

> - ->
o (21 e,) = a g (181 p) w121 o)
Only two variables are now required: the conduction electron density and
mobility.
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The source of the secondary electrons is the magnitude of the
ipnization rate fun:tion, y(z,r,t), times a conversion factor, K(pr). As
Y is expressed in roentgens/sec and 1 roentgen is equivalent to 1.61x10"
ion pairs/g air, we may define an electron source function, Q, with units

of [electrons/m3-sec] as

Q(z,rstap,) = Klp) ¥ (zorst) » (28)
with

K(pr) = [1.61x10'2 (electrons/g air)/roentgen]

3
y [1.225x10 g] b and (29)

m
K(p,) = 1;97ZX]015;%[e1ectr0ns/m3)/roentgen] . (30)
With the electron source function defined, it is now possible at
a fixed position (r,z = constant) and for a constant air density (pr =
constant) to define the electron density as a function of time (t)
and electric field strength, |3|. The equation representing the conduc-
tion electron density generation is '

&ne(r,z;t) N
—gr—— *t % (18l.0,) ny(rsz,t) = Qlz,r,tsp,)
+ G (lgl,pr).ne(r‘,z,t) _ »  (31)

where Ng is the number density of conduction electrons [m*], Q is the elec-
tron source function, o, is the attachment rate of electrons to Oz[sec_l],
and G is the electron avalanching or "breakdown" effect rate [sec_l]. Sim-
plifying equation (31) to consider a fixed position and air density,

S

LA

Tem s [og (121) -6 (13)] ne(t) = att) . (32)

To solve equation (32) numerically the following differenced solu-
tion is employed with analytical fits to the measured attachment and ava-
lanche rates (Figure 3):

- ~N
n+y2 _ n-ifz Ve ( e) Q + Gn
n - Tl e + -l _e e

e e = » (33)

e
with
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Figure 3. Electron attachment and avalanche coefficients for dry air.
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With the calculation of the conduction (or secondary) electron
density, only the electron mobility remains to be considered. The analyti-
cal fits to the measured data used in this analysis were devised by
Longmire and Longley [8] (Figure 4).

The electron mobi1itf;pan be evaluated at the same time and spatial
location as the secondary e]ecﬁ;on density so that

nti/2 _ n+i/2 _n+1/2
o = o N . (35)

Thus, the conductivity o(lg],pr) is evaluated for use in equations (1) and
(2).

Numerical Examples

The numerical solution presented can be used to predict fields
within complex bodies of revolution or fields between coaxial bodies of

12
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Figure 4. Electron Mobility in Dry Air

revolution. The particular effect selected for study here is the exami-
nation of the effects of air pressure on the nonlinear air conductivity
and fields within a closed cylinder. Other parametric studies have been
done for cylinders filled with Tinear media [2].

For the numerical examples, a sin? pulse approximation with an 18
nsec pulse duration at 1/2 max was selected as the profile of the ioniza-
tion rate, y, which corresponds rough]j to the pulse shape of the output
of the HIFX machine at Harry Diamond Laboratories (HDL). The peak rate of
the pulse was varied over three orders of magnitude, 10® to 10 roehtgen/sec.
Four different presgufes were examined corresponding to relative air densi-
ties of 1, .1, .01 and .001 with respect to the density of air at sea Tevel
and a temperature of 20°C. The size of the cylinder selected for study
here is two meters Tong and one meter in diameter, corresponding roughly
to the size of a test vessel Eéing used by HDL at the Aurora flash X-ray
facility.

7 For simplicity, it was also assumed here that the photon source was
far removed from the test vessel so that there would be essentially no
variation in the axially directed source current over the length of the cy
cylinder.

For Tow flux levels, the magnetic field within the cavity is
closely approximated by h¢(P,Z) = j,-r/2 for all z. The electric field

13



components for ¥ = 10° (roentgen/sec)(EY = 1 MeV) illustrate the dependence
of the electric field on the nonlinear air conductivity (Figure 5). Each
horizental set of three figures corresponds to a different relative air
density, Py = p/po. Each individual e, time history shows the electric
field at five axial locations within the can: the ends and three points
within the gy]inder. Each e, plot shows only one fjgure since the e, com-
ponent did not change significantly between z/% = .25, .5, and .75. At
the ends of the can, the e. component is zero. The conductivity is also
shown at the same five Tocations that the e, plots are provided. However,
at Tower flux levels, the conductivities were essentially the same except
at the ends of the cavity.

The case labelled "vacuum" was run with the same computer code
except that o was forced to zero at every grid point within the cylinder.
For this case, the e, component exhibits symmetry about the center of the
cavity and the electric field pulse follows the shape of the gamma pulse.
For air at atmospheric pressure, the conductivity rises during the gamma
pulse, thus allowing secondary electrons to flow over to the walls of the
cylinder during the gamma pulse. These electrons cannot flow back at the
end of the pulse, however, since the cénductivity quickly drops to a very
small value. Theﬁnet effect is to leave some positive charge within the
air after the gaﬁma_pu]se has disappeared. This will decay away with a
time constant which is not discernible on the time scale provided. |

Since the attachment rate is proportional to the square of the
relative air density at tow.field intensities (Figure 3), the rate of decay
for the air conductivity is vefy slow compared to the time interval shown
on Figure 5 (p/p0 = .1). This slow decay of the electrical conductivity
results in a decay of the static fields previously observed at p/p0= 1.

For an intense ¥ rate of 10! roentgen/sec (Figure 6), the basic
character of the electric field pulse is different. The primary effect is
due to the large increase in conductivity. For highly conducting media,
the fields in a canister look more 1ike the time derivative of the y pulse
rather than the pulse itself.

14
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Figure 5. Conductivity and electric fields within a cylindrical cavity
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Figure 6. Conductivity and electromagnetic fields within a cylindrical
cavity (a = 0.5m, £ = 2m), driven by a 1X1011r0entgen/sec

gamma flux, ET = 1 MeV.
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The basic shape should be that of a doublet, first positive, then
negative, of about 40 nsec total duration. The deviations from this shape
are caused by the nonlinearities and time dependence of the air conducti-
vity. It should also be noted that the e, fields are no longer symmetri-
cal about the center of the canister; increased conductivity makes the field
more local in nature so they tend to be more similar. In the top three
conductivity curves, there are 1ittle early time peaks in the conductivity
at the far end of the cylinder. When the e, component of the field passes
through zero, there is an abrupt increase in Uy (Figure 3), reflected
directly in o. Note that for p/po = ,001, the e, field never crosses the
axis early; no peak occurs until 20 nsec, when all the field components
pass through zero. Note also that the increase in o corresponding to
decreases in e, will make it more difficult to e, to increase again. This
effect ténds to spread out the zeros of the puise.

Further, it may be noted that the maximum field does not occur
at either the highest or the lowest relative air density. The increase
in secondary electrons as in (28) is not totally offset by the decrease
in mobility (Figure 4) so that the early-time conductivity is a Tittle
higher for p/po = 1 and the peak fields are a Tittlie lower. At the Towest
relative air density, "breakdown" occurs at early tfmes (~8 nsec) limiting
the fields.

Conclusions

These studies have revealed that the magnetic fields within the
air media are not seriously affected by air conductivity, except for a
1ittle spreading of the.pulsét(Figure 6). For the pickup of small loops,
_simplifying assumptions are valid. For long cable runs within the canister
where the electric field, its peak, risetime and distribution are important,
the numerical solution provided here should be useful.
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