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SECTION 1
INTRODUCTION

In order to calculate the currents produced on the sur-
face of a metal by an incident plane X-ray pulse, in the low-fluence
limit, it is first necessary to incorporate a spatial
source current in Maxwell's equations. In the low-fluence limit, for
X rays not exceeding 100 kev (10° electron volts), the fields pro-
duced by backscattered electrons leaving the metal do not greatly
influence their motion. Given the energy and angular distribution of
electrons at the emitting surface one can construct a source current
from the straight line motion of the electrons. This source allows
an accurate solution of Maxwell's equation and hence also of the sur-
face currents on the metal. The main purpose of this report is
to discuss how such a source is constructed for a sphere where the
electrons leave the surface according to a coso distribution; o is
the angle made by an electron with the normal to the surface.
Particular attention is paid to the position of the X-ray wavefront
as it crosses the sphere since the initial rise of the electron flux
with time may have an important influence on the amplitude of the
resonant electromagnetic spherical modes stimulated. The position of
the X-ray wavefront is also important for X-ray pulses whose duration

is comparable to the time it takes light to cross the sphere.

Section 2 discusses the theoretical background and equations.
Section 3 particularizés‘the discussion to a spherical surface emit-
ting electrons with a coso distribution. Section 4 describes the
numerical considerations incofporated in the computer code CUR2 which
integrates the flux equations of Section 3. Section 5 discusses the

results of the numerical calculation.
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SECTION 2
THEORETICAL BACKGROUND

In this section an expression for the flux (number) density,
J, of electrons outside a convex surface emitting photoelectrons will
be derived. The current density is J multiplied by the charge of an
electron. The emission results from a time varying plane-wave X ray
crossing the surface. If the surface is a sphere, then, at most, half

the sphere is emitting simultaneously.

Denoting the number of electrons emitted from a unit area

of the surface, in the energy range dE and in the solid angle d2 by
£f(E, o, t)dQdE ,

where o is the angle made by the electron with the normal to the sur-
face (reference can be made to Figure 1 which shows the situation for
a sphere) then the number of electrons per unit area reaching a field

. T . . N
point r, from the surface element ds, in the direction r - T is

-+ - EMAX > >

o T -T, Ir-rJ

8J(r, t) = T—-)-_—3 fiE, ¢, t - v dsdE, (1)
EREN

where v is the speed of the particle and is given by the relativ-

il2 ~1
"=(§—E)[“ E] [1+ EA] : @)
0 2Mpc? Moc?

where Mgy is the rest mass of the electron and ¢ is the velocity of
light. The retarded time

istic formula
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(a subscript "s' refers to a variable on the emitting surface) occurs
in Equation 1 because the particles arriving at the point T in time t
were emitted at the earlier time tp- The (T - ?SJ/I; —';s|3 factor
in Equation 1 expresses the inverse square dependence of the flux on
the distance from a point emitter. The limit EMIN on the energy
integral arises from the fact that not all electrons will be able to
arrive at ; at time t. If time is counted at the moment the X-ray
wavefront arrives at ds then EMIN can be found by first finding the v
at which tp = 0 in Equation 3 and then substituting the result in
Equation 2. 1In general, it is not quite so simple to find EMIN since
the transit time of the wave across the surface must be considered.

EMAX is in the maximum electron energy which equals the maximum X-ray

photon energy.

If Equation 1 is integrated over the whole emitting surface,

the total flux of electrons, j, is

+ =+ (EMAX
N (r - rs)
J(r, t) = '—_')_-—:;———'3—‘/. f(E, a, tR)dE ds . 4
s(tR) |r -rsl EMIN

The domain of integration in Equation 4 varies as the wavefront passes
over the surface; the symbol s(tR) expresses that fact. If the time
required by light to cross the object is small compared to the X-ray
pulse length the domain of integration is, for the most part, the
entire illuminated surface (for the case of a sphere the domain would
be half of a sphere).

We now briefly mention the class of solutions of the Boltz-
man equation that Equation 4 is related to. The purpose of doing so

is to show the possibility of calculating average properties of the

6
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electron gas leaving the surface—such as its pressure. The collision-
less force-free Boltzman equation is

d

2 £(r, Vv, t) + v - VE(T, V, t) = 0 . (5)

-
Due to the straight line motion, for any velocity v in velocity space

. ->
there exists an rs such that

> >

> (r-r)

VsV (6}
r -z ]

Since the energy, E, is a constant of motion, a solution to Equation 5

is
£(F, V, t) = g(E, tp) , (7)

where

[ - x|

tp =t - —— . (8)

The function g is determined from the boundary conditions at the

surface s.

]
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SECTION 3
THE SPHERICAL SURFACE

In this section we derive the form of expression (4) that
is numerically integrated on a sphere. In the discussion that fol-
lows reference should be made to Figure 1 for the definition of the
variables. A spherical eoordinate system is chosen for the integra-
tion on the sphere and so we will eventually express the integrand in
Equation 4 in terms of these variables. Since the problem is axially
symmetric, the resulting fluxes, j, will be independent of ¢ (but the
integrand is dependent on the surface coordinate ¥s) and could be calcu-

lated in any plane containing the z axis. For convenience we take the

plane ¥ = 0. Due to the symmetry, K will have components only in the
T and 6 directions, Jr and Je respectivily.+ The integrand in
Equation 4 is singular at the surface (r = rs) and so to avoid a
large error in the numerical integration near the surface the inte-
grand will be transformed, through two transformations, to a new set
of variables. The flux near the surface is important for electromag-
netic problems designed to calculate surface currents so the error in
calculation should be small. Since it is intended that the electron
flux be calculated at many points and at many different times the
calculation time must be small. The transformation of variables

satisfies these conditions.

We first rotate the coordinates about the x axis so that
the new z axis points in the direction of the point at which we wish

to evaluate the field, T. All coordinates referred to the original
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non-rotated frame of reference will, from this point on in the discus-
sion, be subscripted with a "0." Coordinates referred to the new,
rotated frame of reference will not be subscripted. The relation be-
tween the coordinates is depicted in Figure 2. In these new
coordinates Jro is J_ and Je is Jy.' The transformation simplifies
the expression for |r - ?sl in Equation 4 making it dependent on 6
instead of 0ps and Yy but it has the disadvantage that the { integration

is now dependent upon ©. As yet the singularity has not been removed.

Equation 4 will now be expressed in terms of the new

coordinates. We assume

coso,
T (9)

where o is the angle between the normal to the surface and direction

to the field point at ds. We have

£f(E, o, t) = £(E, t)

cosq = 08P - a (10)
|t -z ]
s
(? - ;5) =1 - acosf, (11)
T - t) 3 =-asing, (12)
|; - ;;]2= r? + a? - 2arcosb , (13)

where a is the radius of the sphere. Substituting Equations 9 through

13 into Equation 4, we find

EMAX
Jz(}*’ t) = _‘ll?f (r - acosB) (rcos@ - a)ds]‘ £(E, tR)dE , (14)
(r? + a? - 2arcos@)? .
EMIN
EMAX
J (F, t) = f(a51ne) (rcosb - a)dif £(E, t)dE . (15)
y a? - 2arcos8) .
EMIN
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We make the second transformation to the new variable A (see Figure 2):

cosh = L= 8c0s8 (16)
|t - r_|
s

sin\ = asinb 17
[x - rsl

2 .
d(cosr) = 2 (zgosg - 2) d(cosb) . (18)
[r - T

Substituting Equations 16 through 18 into Equations 14 and 15 while
using the fact that ds = -a2dcos6dy we find
c EMIN
- %jdcoshcoskdwf £(E, tp)dE , (19)
EMAX
EMIN
ulécosksinld?]r f(E, tR)dE . (20)
EMAX

<y
n

Gy
]

+

S [

Equations 19 and 20 give the Jro and Jeo fluxes, respectively, in the
original coordinate system. They are the expressions that will be
numerically integrated. The numerical calculation will be described

in the next sections.
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SECTION 4
NUMERICAL CALCULATION

In this section the numerical integration of Equations 19
and 20 will be described. The Y integration depends on A (or
equivalently 8) since it takes the range from 7 to the intersection
of the X-ray wavefront with the sphere (when the wavefront passes
onto the negative zy axis the intersection is maintained at z, = 0);

the Y integration is also time dependent.

. . . . . . .
At a given field point r and at a time t the integration is

begun by finding a A range. The A range is broken into N1 sections

o®

(N1 annular rings). For each of these N1 sections (or N1 + 1 A values-—
these values are labeled by i) a maximum { range is found. The ¥

range is then divided into N2 sections (or N2 + 1 ¢ values~these
values are labeled j). Thus the surface is divided into N1 X N2
sections for the purposes of integration. Integration then proceeds

as follows: For a given i the energy integral is performed for each
corresponding j. These integrals are then added by means of an
integration algorithm to obtain the integration on the ¥ variable.
These i sums are then added to yield the integration on A. The parts

of this section to follow detail the latter procedures.

A RANGE

Since the particles travel in straight lines, the maximum A angle
from which a particle can reach the field point, r, occurs when the particle

is emitted from a point on the sphere with a velocity perpendicular to the

>
radius at that point. That is,the maximum A angle at r is defined when the
12




emitted particle's motion is tangent to the sphere. Hence from Figure 2
Max = sin~! a/r . (21)

For most all values of to the sphere emits from AMAX to zero. When
tr is small however the wavefront may not yet have passed through
the entire range AMAX < A < 0. In such cases the Y integration range
will be found to be zero for those A values which are not valid
integration points. The integral will then be zero at the invalid
points. The error made is small since the time required by light to
cross the distance aA® (A8 corresponds to a division of the A range

AX) is always small compared to pulse width,
Y RANGE

If the duration of the X-ray pulse is long compared with
the time it takes light to cross the sphere then, for the most part,
after particles begin getting to ¥, the whole half sphere is produc-
ing these particleé. However, during the initial part of the electron
flux pulse in space and especially for one resulting from an X ray
of short duration the tr position of the X-ray wavefront is not yet
at the center of the sphere. The whole half sphere is therefore not
yet producing particles which reach T at time t. In order to find
that portion of the sphere which is producing particles we first
find the minimum angle, ¢ MIN, —the Y integration is set up fromm
to ¥ MIN—for which an electron with the maximum energy can just get
to r at the time t.

In order to calculate P MIN we first calculate the time,
TXF, necessary for the fastest electron—denote its velocity by Ve—

to get to T from a given angle A in the A range.

_ Vr? + a? - 2arcosd

v ’
X

TXF (22)
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where cos® is obtained from A through Equation 16, The term in the .
numerator on the right-hand side of Equation 22 is just the distance
from any point on a constant A circle to r. For an electron with
speed v, to get to T from all positions the wavefront has passed,

on a constant A circle, the wavefront can only have reached a

position
zg = a - ¢(t - TXF) , (23)

where a 2 z9 2 0 and ¢ is the speed of light. The ¥ coordinate of the

intersection of the plane at z, with the constant A circle is

cosfcos0y - zp/a
sinBsinb, ’

cos P MIN = (24)

where 0y is the angular coordinate of T in the original system of co-
ordinates (Yp = 0) and we require ™ 2 Y MIN = 0; if the right-hand side
of Equation 24 is = 1 for some O then Y MIN equals zero, if the right-
hand side is < -1 Y MIN equals 7 (that is no electrons are emitted at

this point).
INTEGRATION OVER THE ENERGY RANGE

When a decision is made upon a A and ¥ range for a given T
and t the energy integration is performed for each of the (i, j) points.
To find the lower limit of integration on the energy for a particular
(i, j) point we decide the minimum speed an electron must have to get
to ? at t. For an electron with speed v coming from (i, j) the time
tp at which the distribution function must b§+eva1uated involves both
the time required for the electron to get to r from the surface-flight
time—and the time required for the wavefront to get to (i, j). The

formula

_l[r2+a2— Zarcosﬁi
t, =t -
R v

- a/c(l + cosszineosinei - coseocosei) , (25)

14
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gives the value of t_, where the second term on the right-hand side

gives the flight timz and the third term is the time required for the
wavefront to get to (i, j); 8o is the angular coordinate of'; in the
original coordinate system; wj and Bi are the coordinates of the
emission point in the new spherical coordinate system. (The third
term is found by finding the z, value for a plane intersecting the
sphere at (i, j) and then finding how long it takes light to travel
from Zp = a to the intersection.) The smallest possible value of tR
is zero. Solving Equation 25 for v at t, = 0 and substituting the

R
result in Equation 2 yields EMIN.

The range EMIN £ E < EMAX is then divided into sections
and Equations 19 through 20 are integrated on E. When f(E, tR) is
evaluated the value of t, corresponding to each E is given by

R
Equation 25.

Since an energy integration is performed for each (i, j)
point the speed with which it is computed is crucial to the speed of
the entire program. For the energy spectrum used in the calculation,
a six point Gaussian algorithm? gave better than 1 percent error.

The energy spectrum used has the form

£(E, t) ~ e " ‘Esin?(tw) , (26)

(see Equation 33 for the exact form of Equation 26) where if T is the time

width of the pulse
™™= T . (27)

The integral is first transformed so that it is amenable to high

accuracy with few integration points by means of
q* = E, (28)

q is the new integration variable. The new range of integration is

then
d<q<b, (29)
15




if

d

(BMIN) /2 .
(30) :
b

(EMAX) 112 |

The integrand is further transformed so that the integration is

symmetric about zero by means of

s =1/2(b - d)q + 1/2(d + b) ; (31)
s is the new integration variable and has the range

-1<s<1. (32)

A six point Gaussian quadrature is performed over the doubly trans-

formed integrand.
INTEGRATION OVER THE ¢ RANGE

After the energy integration is completed for each (i, j)

o®

point--~call this number Iij——the Y integration can be done. Iij
depends on j (on ¥) only through the third term in Equation 25. When
this term is small compared to the sum of the first two terms the ¥
integration can be done analytically. (That is, under the right cir-
cumstances Equations 14 and 15 require just a two-dimensional numeri-
cal integration greatly reducing the running time of the computer
code. See page 21.)

The integration algorithm used to integrate on the ¥ variable
is Simpson's rule?. In the actual computation and in the graphs presented
in this report the Y range was divided into 20 intervals to insure

1 percent accuracy.

16
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INTEGRATION OVER THE A RANGE

Integration over the A range in Equations 14 and 15 is much
the same as the { integration; a Simpson's rule algorithm is used.
In actual calculations and in the graphs presented in this report, the

A range was divided into 20 intervals.

17



SECTION 5
NUMERICAL RESULTS

In this section we present numerical results which represent
general characteristics of the electron flux outside the sphere. The
results were obtained from running the computer code CUR2 (described
in the last paragraph of this section) at various times and at various
locations in space. The distribution chosen for data presentation in
this report is

18 x 10° ~.11E
—_———

£(E, t) = :

sin{tn/T) , (33)

where T = 3 x 10~® sec. Equation 33 represents the backscattered

I..

distribution of electrons caused by X-rays with a blackbody energy
spectrum striking an aluminum surface® *»5, The sphere is taken to

have a radius of 1 meter EMAX = 100 kev.

Figure 3 shows the particle current in the ;n direction, Jro’
as a function of time (time is counted from when the X-ray front inter-
sects the sphere) at 8y = 0 for two radial coordinates, 2 and 4 meters
respectively, when 5 < E < 100 kev. The particle current in the 80
direction is zero at 6y = 0. As the radial coordinate increases the
electron flux increases in duration and decreases in amplitude. The
increase in duration is due, for the most part, to the increasing time
of flight of the slower electrons; the decrease in amplitude is due

roughly to the 1/r?2 spreading of the particles as they leave the sphere.

Figure 4 shows the electron flux at the same two radial B

coordinates and the same energy range but at 8y = m/2. Jeo is a small

18
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fraction of J,. 1in Figure 4 and also in general.

Figure 5 shows the angular variation of the two components of
the electron flux at a radial coordinate of 2 meters and at a time equal

to 2.4 X 10-® seconds. The energy range is the same as the previous figure.

Figure 6 should be compared with Figure 3. Here slower
electrons are added to the electron flux by decreasing the lower end
of the energy range to zero. As expected, the duration of the electron

flux is considerably broadened.

The running time for CUR2 for a given value of rp, Op, t is
.25 seconds on a CDC 7600. The running time.is reduced by a factor of
twenty when the integral is independent of ¥, as mentioned in Section 4
under Integration Over the P Range. Where CURZ was used as a current
source for Maxwell's equations a table was made for the currents at
b, discrete times and positions. Linear interpolation was used to calcu-

late the currents between the table points.

CUR2 will calculate the particle fluxes at any point in space
from a sphere of arbitrary size if the emitted particle distribution at
the surface is given. The code is set up to treat distributions of the
functional form e'-gE where g is a constant and E is the particle energy;
it could easily be adapted to distributions with other functional forms.
The code will not treat emitting surfaces which are other than spherical

however.
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