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ABSTRACT

This note discusses exact and approximate scaling laws for
the problem of electrically conducting structures excited by
photoelectrons generated by an incident pulse of X rays.
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1. INTRODUCTION

This report discusses scaling laws for SGEMP phenomena produced
by X rays on structures in vacuum. In Sections 2 through 5, exact scaling
is derived for the full set of Maxwell equations and electron equations of
motion. This scaling allows changes of dimensioné, but keeps the normal °
X-ray spectrum. In Section 5, the scaling of the electrostatic approxima-

tion is derived, which allows scaling of the X-ray spectrum.
2. THE SELF-CONSISTENT FIELD-PARTICLE EQUATIONS

We consider first a structure composed of perfect conductors in
vacuum. The electron-field problem then can be described in terms of the
Boltzmann phase space density f(;, 3, t) of the electrons and the electric
and magnetic fields E(?, %) and E(;, t). Here t is the time, T is the
spatial coordinate and ¥ is the velocity coordinate. The equation for f is

the ""collisionless'" Boltzmann equation
>
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Here -e is the electron charge, m is its mass, c is the velocity of light,
and S is the source density of electrons, which we shall relate to the
photon flux later. The current density 3 resulting from the electron

motions is
J(r, t) = -g VE(r, v, t)dv . (2)

The equations for the fields are
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The units employed here are cgs Gaussian units, with electric fields and




charge in esu, and magnetic field and current in emu.

The equations above, when augmented by the boundary condition that
the tangential component of E vanishes at the surface of conductors, are
complete, i.e., they are sufficient to determine the solution. They are
also exact. Let us assume that they have been solved for a given structure

and source function.

We now wish to scale the size of the structure, so that the new
dimensions are a fraction o of the original dimensions. We may introduce
new units of length so that the new structure has the same dimensions, in
the new units, as the old structure did in the original units. This is

accomplished by using a new spatial variable

.
-> T -> >
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On making this change of variable in Equations 1 through 4, the new equa-
tions will of course be different, in having a factor a at each place
where the spatial coordinates enter. However, it may be possible to scale
other variables in such a way that all of the scale factors cancel out.
Then the new equations in the new variables would have exactly the same form
as the original equations in the old variables, and the solution would have
to be the same.
S _ -

It follows from Maxwell's Equations 3 and 4 that time must be
scaled in the same way as distance, and that E must be scaled in the same
way as B. For if these equations are to remain invariant, the scale

factors which we write temporarily as L, T, E and B must satisfy

B _E
T—r, from3,
E_B
T=T ° from 4 .



Therefore,

B_T_L

E L T°
so that

L=T ,, B=E, , (6)
as stated.

Since length and time must scale in the same way, the first two
terms of Equation 1 indicate that the velocity has to be unaltered, i.e.,

its scale factor is unity.

We therefore introduce scale factors for the rest of the variables

.as follows:

t =at' , N
E=8E', B=B8B', ' (8)
£ =vf', (%)
S =ns' . (10)

Equation 2 then shows that the scaling of J is

J=xyJ" . - (11)
The Maxwell Equation 4 will be invariant if ' = -

B .
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Y _ =
E—BY-T]- (13)
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Equation 12 then requires that

Y= ar (15)
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and the second of Equations 13 requires that

1
n=goy - (16)

Since there are no other equations to satisfy, we have found a perfectly

scaled problem.

If the scaled problem has lengths and times reduced by a factor
a, fields are increased by a factor 1/o. Potentials, which are products

of field and distance, are invariant.

The source density S is proportional to 1/c®. When S is inte-

grated over volume and time, the total number N of electrons produced is
N = deardt ~ 0 . (17)
The X-ray fluence F is proportional to the total number of electrons pro-

duced per unit area of surface. Therefore

| N1 ]
Foopos. (18)

Thus the required fluence increases by the same factor by which the dimen-

sions decrease. The X-ray Spectrum is invariant, 1fke electron velocitres. -

3. SCALING OF CIRCUIT PARAMETERS

The scaling of the capacitances and inductances represented by
the conducting structure is covered by the analysis of the field equations
of Section 2. In order to see what scaling should be applied to lumped

elements, note that the inductance L of a wire is



L~ llog(—g) , ' (19)

where 2 is the wire length, a is its radius, and b is the return path
radius. Thus the proper scaling of inductances is

L ~0 . (20)

Since the formulas for capacitance C is also given by Equation 19 with lag (EJ

replaced by its reciprocal, the proper scaling of capacitance is
C~a. (21)

The scaling of impedance Z is

Z = wL ~ =a = invariant , (22)

Qi+

Resistances are therefore also invariant.

If in a scaled model the diameters of wires are not scaled (but
lengths are), then the inductance of the wire will be in error through
the log (b/a) term. This will not be a big error if the wire is many
diameters away from any ground surface, but it could be substantial for a

cable bundle lying against a ground surface.

Battery voltages are invariant, like the potentials noted in

Section 2. Currents, which are the ratio of voltage to impedance, are

also invariant. .
“=. : -

4. OTHER STRUCTURAL CONSIDERATIONS

Thin membranes or sheets, which transmit a non-negligible fraction
of X rays, should have the same thickness as in the real system. In most
cases, the lack of thickness scaling of these thin members should have

negligible effect on the electromagnetic scaling.



The thickness of solar cells presumably cannot be scaled. This
means that the capacitance of the solar cells in the scaled model will be
too low, by a factor a. This capacitance, if important, could be made
right by adding lumped capacitors. The X-ray induced solar cell current
will Scale properly (i.e., be invariant), assuming that the current per
unit area is linearly proportional to the X-ray power per unit area (which
scales like a?). The resistance of the solar cells should also scale

properly, if it is linear with X-ray power per unit area.

Insulators scale properly if their dimensions are made propor-
tional to o. (However, insulating membranes which are not thick to X rays

should keep the same thickness.)

In order to get the proper current in a wire by direct ejection
of photoelectrons, both length and diameter should be scaled proportional
to o, if the wire is either very thick or very thin to X rays. For wires
of intermediate thickness to X rays, perfect scaling is not possible, al-
though it should be possible to hold errors in ejected current to about
1.5 db.

The use of these scaling laws to subject reduced scale structures

to the normal X-ray spectrum appears quite prbmising.
5. APPROXIMATE SCALING ' ' %=, . -

The scaling laws deduced in Section 2 are exact. It is interest-
ing to see if a wider range of scalings are possible if Equations 1 through

4 are replaced by some common approximations to them.

The magnetic force on the electron is of order (v/c)? times the
electric force, and is usually not very important. However, dropping the

magnetic force from Equation 1 allows no additional freedom in scaling.
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Another approximation is to neglect retardation, i.e., use electro-

statics for the field problem. Then Equations 3 and 4 are replaced by

VxE=0, . (3")
%-g%-(v c By = - 4w - T | 4"

The magnetic force term is also dropped. In this approximation time and

distance can be scaled independently, i.e., the velocity can be scaled. If

we let
r =or' , \
t = Tt"' ,
vV = %-v' , (required by Equation 1) >
(23)
E =BE' ,
f=vf",
S =nsS', )
then Equation 2 shows that J scales as
L
= g 1
J y(T) Jr. (24)
Then Equation 4' requires
. .
o
B = ‘Y'T—g' . R : . < . (25) o
whereas the electric force term in Equation 1 requires
S
B = Iz - (26)
Therefore
T
Y=, (27)

and the J scaling is



J==J . (28)

Now the photoelectric yield is roughly proportional to the reciprocal of

the photon energy. Thus the photo current density is approximately
, P P!
J-‘-KF > J'=K7X'—2, (29)

where X is a constant for a given material, P is the X-ray power per unit
area and X is the photon energy, which must scale as the electron energy

X = (%)zx' ) (30)

Combining Equations 28, 29 and 30, we find the scaling of P,

3
=u— '=LE )
P=25P' = ()P . (31)
Note that this scaling of the photoelectric yield neglects ab-

sorption edges and Compton effect.

An example of the use of this scaling might be in the exposure
of a full scale system to harder X rays than the normal spectrum. Then
@ =1, but T < 1 in order that the scaled X-ray and electron energies be
larger than normal. Equation 31 shows that the X-ray power is proportional
to (quantum energy) /2, a serious drawback. For softer than normal X rays

the power is reduced, unless the dimensions are als&escaled down. -
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