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ABSTRACT

A numerical technique for solving the high frequency approxi-
mation EMP equations is presented. The Lorentz model of the
secondary electron current is used, thereby achieving a result
valid for a burst above the ground and observer at any altitude.
Comparisons of the results of this technique and thosé techni-
ques which assume an ohmic secondary electron current are made
and it is found that they are identical for observations below
40 km but differ markediy above 80 km.
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I. INTRODUCTION

In EMP Theoretical Note Number 261 (TN26) a numerical technique for
solving the high frequency approximation EMP equations was presented. The
technique described is appropriate for a geometry in which the source is at
a high altitude and the observer at a Tow altitude, and for a pulse which is
sufficiently slowly time-varying to use Ohm's law (j = of) in the time domain.
In this report we shall present a more general numerical technique which is
appropriate for all those configurations of source and observer for which the
high frequency EMP equations are valid and magnetoionic effects may be neg-
Tected.

The features of the numerical technique described in TN26 which make
it inappropriate for use by a high-altitude observer are: 1) the secondary
elect;on current (;sec) is assumed to be purely conductive (i.e., Ohm's law
is used), and 2) avalanching at high altitudes is neglected. In this note we
shall follow Karzas and Latter2 in employing the Lorentz model to obtain a
single expression for gsec which is valid at all altitudes. However, in con-
trast to Karzas and Latter,we shall employ this expression in solving the high
frequency EMP equations rather than use the approximation j = oE in the time
domain at low altitudes, and neglecting collisions at high altitudes. Town-
send's ionization coefficient o will be used to ﬁodify the equation for the
secondary electron density in such a way as to include the effect of avalanch-
ing. A numerical techn1que valid at all a1t1tudes of interest, for so1v1ng
the resulting equations will be formulated in Sect1on II. This method, while
decoupling and linearizing the equations in each integration step, ultimately
achieves the solution of the coupled nonlinear integrodifferential equations.
The results of this method are compared to those of the Ohm's law assumption

for some cases of interest in Section III.

II.  SOLUTION OF THE PULSE EQUATIONS

Following Karzas and La_tter2 in their use of the high frequency EMP
equations, the electric field components are
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The equation for the secondary electron density (n) is
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where w is the drift velocity of a secondary electron under the influence of
the electric field and o is Townsend's ionization coefficient (the average
number per cm of secondary electrons produced by an electron traveling along
the electric field). These quantities are functions of the local electric

field magnitude E and pressure p. The quantities Je

and ﬁc are the Compton

current density and Compton induced secondary electron production rate, res-
pectively, and are known functions. In the Lorentz model the secondary

electron current density is given by
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where T = t - r/c is the time at each point r, measured relative to the arrival
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of the first v photon at that point. The collision frequency, obtained from

the relation

is a function of r and T through its dependence on E as well as p.

(1) to (6) form a set of coupled, nonlinear, integrodifferential equations for

E and n, subject to the boundary conditions

E(r,0) = E(0,t) = 0, n(r,0) prescribed.

(6)

Equations

(7)



We shall solve the equations on the mesh shown in Fig. (1) by integrating them
along the line of sight (i.e., along r for fixed t) to the observation point R
for the first, and.then each succeeding time increment, At. At the given point
in the integration shown in Fig. (1) E and n are known at points on the mesh
with 0 sr<sRforQ0Q<sts Tq» and with 0 S r < ™ for t = ,. The problem

is to obtain E and n at the point (r,,t,)(denoted by point 4) given these
functions at points 1,2, and 3.

. Take the integration mesh sufficiently fine to safely assume that ic’

N, and p are constant in each integration step. Observing that, for fixed p,
v 1s a slowly varying funct1on] of E, and make the crucial assumption that

v is fixed in each integration step. Now rewrite Eq. (5) as
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Ignoring, for the moment, the distinction between the two transverse components
(o and ¢), define G = Ee o’ as well as a = 2me n/(mc) = /(Zc) and rewrite
gs. (1) and (2) as ’
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We have found E. to be non- -negligible only in the immediate neighberhcod.
(w1th1n about 1 km) of a low alt1tude burst. At such 1ocat1ons Ghm's law
is appropriate. MWe shall therefore replace ig by oE in Eq. (3) where ¢=e Zn/(my
(a pedigree for this substitution, based on the Lorentz model, will be pre-
sented in Section III). Eq. (3) then becomes
]

. 4 . 4x .
T T ANC T (10)



Decouple Eqs. (9) and (10) from (4) assuming some constant value of N to be
used in the integration of E in the intervals 2-4 and 3-4 (e.g., 0 = ny).

Eq. (9) is readily solved by taking its Laplace transform with respect to =,
making use of Eqs. (1) and (2) in eliminating js(r,r]), and then inverting
the transforms. The result is -
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Equation (10) is readily solved with the aid of an integration factor.
The result is
-y 4n [2 %EA(T"TA)
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where y = 4noAt/c. Equations (11) and (13) give G and E, at ;:irz in terms

of integrals of these quantities over the intervals 1-2 and 1-3, yet the
results of the numerical integrations yield the values of G and E. only at the
points 1, 2, and 3. In order to perform the indicated integrations we shall
linearly interpolate the fields in the appropridte intervals; i.e.,

G(Y'-I ,T') = G] + (GZ-G-l) %I\? (Tl'T'l) s
| (14)
G(r‘,r]) =G + (G3-G]) %F-(r'-r]) , etc.



The results are
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where o = cx2(8nArz)'] = ezn(mv)'] is the electronic conductivity, Jy and J,

are Bessel functions of argument x, and

1
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For the sake of brevity we have simp]ified Eq. (15) by assumIng that j.

slowly varying in space (i.e., JC 3= c 1 and Jc 4 = 3¢ 2) The two 1nf1n1te
series representations for F shown in Eq. (17) have infinite radii of convergence.
Their rates of convergence (and hence their usefulness for numerically calculating

F} depend significantly on the value of the ratio 2z/x.

Eq. (4) may be easily solved using a procedure analogous to that used
to solve Eq. (3); i.e., assume that aw is slowly varying in a time step. The

result is

ng = ngel # LDl SN, g+ g (e -1 uN 0, (8

where u = awAT.



IIT. COMPARISON WITH OHM'S LAW

Eqs. (15), (16), and (18) form the basis for the TRW high altitude EMP
computer program CRAIG. -As an option, CRAIG has the capability of calculating
G from Eqs. (1) and (2) using Ohm's law and a stepwise integration scheme
similar to that used in obtaining Eq. (16) from Eq. (3). That is, it uses

Gy = G, exp(- ggg-ar) - E—jc,4[] - exp(- g%E-Ar)] ) (19)
This result is readily obtainable from Eqs. (15) and (17b, c) by taking the
1imit x,2 ~ =, with x2/(4z) = 2noAr/c. For all cases where the observer is
below approximately 40 km, the Lorentz and ohmic solutions of the transverse
pulse equations (i.e., Egs. 15 and ]9) yield results which differ by less

than 1%. However, at higher altitudes, where the electron collision frequency
may become comparable to the rate of change of the field, large deviations

may occur.

Consider, for example, a vertical line-of-sight (LOS).above a bomb
exploded at an altitude of 20 km. The field value versus altitude at a fixed
proper time t for each altitude is shown in Figure 2. The results of the two
models begin to deviate significantly above 80 km. For the soft gamma ray
spectrum assumed for these calculations the field generation region lies
below 80 km and hence the difference may be attributed to the different
propagation mechanisms of the two models. We may note that above this height
the Lorentz model of the propagation predicts a highly dispgxsive character
which results in the spatial oscillations shown. Such a behavior could never
result from the ohmic model.

Using the same configuration as that described above, Figure 3 contrasts
the field values at an altitude of 90 km as a function of time for these two
models. The calculation based on the Lorentz model yields a field which both
rises and descends more rapidly, and reaches a higher peak. The reason for
this behavior may be understood by examining the large v asymptotic limit for
js (obtained by an integration by parts in Eq. 5)
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The first term in this series represents the Ohm's law approximation. For E
increasing (é > 0) the correction term diminishes the secondary current.there-
by permitting E to rise faster than the ohmic term would predict. For E < O,
js is decreased and E descends less rapidly.

A property of the fields derived from the Lorentz model which has no
direct analogue in-the ohmic model is that of dispersion. This fact is
demonstrated very graphically in Figure 4 where we have considered a bomb
exploded at 100 km (where the collision frequency is essentially negligible).
The LOS is almost horizontal, so that at the point of observation shown in
Figure 4, 500 km away, the altitude is also 100 km. The effect of the inter-
vening pTasma has been to take a pulse which would have looked essentially
like that shown in Figure 2, filter out its Tower frequency fourier components
and phase shift the survivors to yield the wavepacket-like shape shown in
Figure 4,
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Figure 1 - The integration mesh.
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Figure 2 - Electric field (E in arbitrary units) versus altitude (H in km)
: vertically above a 20 km burst, at a fixed proper time.
. Lorentz model. — — — Ohm's model.
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