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ABSTRACT

A transient electromagnetic field problem is solved for a finite
length cylindrical cavity bounded by perfectly conducting walls.
The cavity is filled with a homogeneous lossy dielectric material.
Analytic solutions for the relevant components o¢f the electric
and magnetic fields generated by an axially propagating current
pulse are presented. Results obtained for various sample problems
are discussed.
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FIELD GENERATION WITHIN A LOSSY DIELECTRIC
CYLINDER EXCITED BY A RADIATION PULSE

INTRODUCTION

The interaction of gamma radiation with matter acts as a source of a spatially
distributed electron current.l This current and its associated charge density re-
sult in the generation of electromagnetic fields. An understanding of both the magni-
tudes and the temporal behavior of these fields is required to interpret correctly
some of the experimental observations pertinent to gamma radiation exposures from
reactors, electron beam méchines, and Nevada Test Site (NTS) devices. In addition,
this knowledge would be useful in the design of instrumentation and electromagnetic

sensitive devices which must perform reliably in such environments.

The electromagnetic fields existing in some bounded region can be associated
with the presence of charge densities and currents both within and external to the
region. In many practical situations, extensive effort is taken to provide a region
isolated from the influence of sources external to it. ;we define such an idealized
region as an electromagnetic cavity. At present we are restricting our investiga-
tions to the fields within such cavities and hence are only examining the effects of

internally generated currents and charge densities.

OQur present effort has been directed toward acquiring an exact analytical
description of the fields associated with a simple model problem. In this paper we
outline the derivation, present the general analytical solution, and examine several
sample problems. We hope our results will provide insight into the response to be

expected in various gamma environments of current interest.

DESCRIPTION OF THE MODEL PROBLEM

The physical configuration which we examine is a finite length cylindrical
cavity having perfectly conducting boundaries and filled with a rather arbitrary

medium. We assume that the radiation 1s incident on one of the end faces and results

lc. E. Baum, Unsaturated Compton Current and Space-Charge Fields in Evacuated
Cavities, AFWL EMP 2-1, Air Force Weapons Laboratory, KAFB, New Mexico, April 1967.




only in an axially driven current. We assume no spatial variation of the induced
current pulse in a plane perpendicular to the axis of the cylinder. Along the axis
of the cylinder we assume that the current intensity is exponentially attenuated.
With regard to the temporal behavior of this driving current, we take zero time to
coincide with the instant that the radiation pulse impinges upon the front face of
the cylinder. The temporal behavior of the current pulse is assumed to be identical
throughout the cavity except for a simple time lag resulting from the axial propaga-
tion of the driving radiation pulse. We assume that the medium within the cavity is
homogeneous and can be characterized by a time independent conductivity, permittivity,

permeability, and linear attenuation coefficient. The geometry is shown in Fig, 1.

z =L
o T~
~
/7
{ % B Fig. 1
X i(z,t)!
- . Coordinate system for model.

MATHEMATICAL ANALYSIS

In this section we outline the flow of mathematical logic necessary to achieve
the expressions for the electromagnetic response of the above stated problem. We
will consistently employ the MKS system of units for which the appropriate forms of

Maxwell's field equations are



v-D=p, (1)

-3
ve+B=20, (2)
5> 3B
xE= -5, (3
> + 3. =
H=j+o+ 0k, (4

>
where ¢ is the medium conductivity, j is the radiation-produced current density, and

p is its associated charge density. In addition, we have the constitutive equations
which relate the electriq displacement D to the electric field E and the magnetic

field B to the magnetic field intensity H:

B = e (5)
and A
8=l , (6)

where e and u are the medium permittivity and permeability, respectively. By operat-
ing with the curl on Eq. (3), one can obtain the following wave equation for the
electric field E:
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where ¢ is the electromagnetic propagation velocity, ¢? = 1/ue.

+ 0 -
With a, defined as the unit vector in the axial direction, the current density
-

j is assumed to be expressible as

T . Z\ -Lz»
J:JO —E)e a

o (8)
where L is the linear attenuation coefficient of the material within the cavity with
respect to the incident radiation and where 3 (t) describes the temporal behavior of

the radiation pulse at the front face of the caV1ty, z = 0.



We use the following definition of the Laplace transform of a function F(t):

£(s) = ‘/o-mF(t)e_St dt . 9)

Applying this transformation to Eqs. (7) and (8), and assuming that all fields are

initially zero, we obtain

N
v2E - —1-2-(52 + 2 S)_E = usj + %:-Vp s (10)
c

N
j=3,e 'a (11)

where § = L + s/c, j0 is the Laplace transform of jo(t), and %, }, and p are now
understood to represent transformed quantities. From Eqs. (1) and (4) the appropri-

ate charge conservation equation, expressed in transform space, is
? o
Ve g+ (s + E)p = 0. (12)

Equation (12) enables us to express the charge density p in terms of the radiation-

produced current density j, and allows us to rewrite Eq. (10) as

o2 - Lfs2 59 .4 %% , (13)
c2 € z

where

(14)

Referring again to Fig. 1, we assume symmetry with respect to the coordinate 6 and
note that, since the &-component of the electric field Ee must vanish at all points
on the boundary of the cavity, and since the 9-component of Eq. (13) is homogeneous,
Ey remains zero throughout the cavity. The previous comments, in conjunction with
Eq. (3), enable us to deduce that the only existent component of the magnetic field

is Be.



In order to acquire the desired solution, we begin by examining the z-component
of Eq. (13):

V°E - k“E_ = ae s . (15)
Z Z

where k% = [s2 + (so/s)]/cz. The homogeneous part of this equation must satisfy
v2ED - kZEh - o. (16)

To be consistent with the boundary condition that EZ vanish at r = R (R being the
cavity radius) and to provide a bounded solution at r = 0, EE is restricted to be of

the form

DY
n=1

a T
n n It .
JD(T)(D]. costhz + DZ Sll’lthZ) 5 (17}

)

where D" and DT are constants yet to be determined, and (un;n 1,2,3,...) is defined

1 2
as the ordered set of ascending positive roots of the equation

Jo(x) =0, (18)

where Jo(x) is the ordinary Bessel function of the first kind and of zero-th order,

and
82 = (u_n)Z i (19)
We successfully guess a particular solution of Eq. (15) of the form

EE = g(r)e_csz s (20)

which leads us to the general solution of Eq. (15):

o Jo(ir) -8z So : 2T\ n n
EZ = EEAI - Jo( R) e + Jo(—ﬁ—)(él costhz + D2 51nthz) s (21)
n=1



where

£2 = 52 - k%, (22)

From Eqs. (11) and (12) we obtain the expression for the charge density p:
. -0z
GJOe

P svole (23

Combining Eqs. (1), (5), (21), and (23), and performing an integration over r, we

obtain

- J. - = o_T
_ G« -6z “1(kr) _ R n n o_. n
E_ = Eg-ﬁe z ET'JI(___)Bn(Pl 51nthz + D2 costhz). (24)

(o] n=

Employing the boundary conditions that Er vanish at z = 0 and z = L (L is the length
of the cavity), we obtain expressions for D? and Dg. Using the transformed equiva-

lent of Eq. (3), we are able to obtain an expression for He.

To summarize, at this stage we have obtained solutions for Ez’ Er’ and He in

transformed space:

~2, E : Jo(c’nr/R) [s(2z/c - wo) + £2)e %%
J

E_(r,z,s) = |
“ Lt e )6 - 2 v o) /)
Ei{g?ég%ﬁf[%-aL coshg z - coshg (L - Z{] : (25)
n n
E(r,2,s) = o Jl(anr/R) ° 2

)

e n=1 Jl(an)(s * U/E)(62 ) Bn

-8z 1 -8L . p _
-e + EEEFE;I[% | sinhB_z + 51nth(L Z%] , (26)



and

n=1

-2j z: J (a T R) s
H.(r,z,s) = 2 ) 1\ n e °%
i * Jl(‘)‘n)(62 ) Brzl)

§ ~8L
* WI} costhz - costh(L - z)] . (27)

We now reconstruct the real time behavior of the electromagnetic response. We note
that Eqs. (25), (26), and (27) are of the form

£(z,5) = i (9EF,9) , (28)

where T denotes a position vector, The inversion of Eq. (28) is accomplished by re-

calling the Convolution theorem. Therefore, we write

-+ t ~
F(r,t) =fjo(t - t)F(z,t) dt , (29)
0

where jo(t) -=57"1[j°(5)], 13(_1':,1:) =ﬂ’-1[%(;,s)], and.ff_l denotes the inverse Laplace
transform operator. We use the Theory of Residues to obtain the respective
.y',"l[%(-r",s)] of Eqs. (25), (26), and (27). In presenting the resultant expressions
in real time, we use nondimensionalized quantities, where t + tc/L, r + /R, 2z + z/L,
¢ + oL/ec, Z =+ LL, and A = L/R:

*x I r e'_Ut L -0 -(Z-0)z
£ (F,0) = 2u(t - z)xz; o) %) |l - oe
n=1l "1

L[ - o)t (el M

e-():—o) cosh(lanz) - cosh[lan(l - Z)]
sinh(lan)

@ 03 n
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2u(t - z)X J—°—&9———— Aane 2 >
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poyes m

+

oB a
(wnmAnm - znm)[e-z cos(mnz) cos (mnm(t - 1)) - cos(mn(l - z)) cos (mnmt)]
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n

CA a
_( - LU wntnm)[e-z cos(mnz) sin (wnm(t - 1)) - cos(mﬂ(l - z)) sin (mnmt)] ;o (30}

t
eE_(T,t) = 2u(t - 2)12 Tifen)( - o) .k
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Sinh(lan)
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2 J (oc r) ~ - mmn
. 2ult - AZ 1{%n at/2 Z m
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( oB o
}(wnmAnm - an)[ed: sin(mnz) cos (u:nm(t - l)) + sin(mn(l - z)) cos (mnmt)]

oA a
—( znm + mntnm)[e_E sin(mwz) sin (wnm(t - l)) + sin(mn(l - z)) sin (wnmt)]{; (31)

(%) I (on) r)
8 _ t/2
— = -2u(t - z))\E AT ) I E —-——Dnm

n=1 m=0

Anrn [e’f cos(mmz) sin (wnm(t - 1)) - cos(mn(l - z)) sin (mnmt)]

+ an[e_E cos (mmz) cos( (t - 1)) - cos(mn(l - z)) cos (wn t)]‘ (32)

where
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=
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1/2
)2] , (33)

=z -2, (34)
Arm T E[EZ * (mnm)2 * (mﬁ)z_] ’ (35)
Bm = “’nm[_iz - (wnm )2 * (“m)z] ’ (36)
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1ifm=0
nm = N (38)
2(-1)™ if m> 0
and
0 if x <0 :
u(x) = . (39)
1if x>0

Since the unit step is present in all of the above equations as a result of the
fact that the fields at a distance z from the front face of the cavity are zero prior
to the arrival of communication of the initial phase of excitation to that point,

Eq. (29) can be equivalently expressed as

- t-z/c¢ .
F(r,t) = jo(r)F(r,t - 1) dt . (40)
) 0

If one specifies i (t), Eq. (40) can be applied to ﬁz’ Er’ and ﬁe to obtain the de-

sired electromagnetic response.

A few observations about the basic analytic structure of the resultant equations
are appropriate. First, the inclusion of conductivity provides a method of snergy
dissipation resulting in both the expected damping of the electromagnetic response and
the typical alteration of the characteristic response frequencies of the cavity. For
large values of conductivity we note from Eq. (33) that w . can become imaginary.
Hence, for a relatively small conductivity, all the characteristic response modes of
the cavity are underdamped. As the conductivity is increased, the response mode cor-
responding to the lowest characteristic frequency eventually becomes critically
damped. Any additional increase in the conductivity results in an overdamped response
of this mode. An identical conclusion is valid for higher response modes if the con-
ductivity becomes sufficiently large. Second, the entire magnetic response function,

~

He, consists of a composite of damped sinusoidal temporal behavior indicative of the
underlying wave nature of the magnetic field. The same observation is applicable to
only a part of the expressions for the two components of the electric response func-
tions, ﬁr and ﬁz' Each of these latter two response functions contain an additional
term which can be associated with the establishment of a charge density within the

cavity. If the medium has finite conductivity, this term is exponentially damped

13



consistent with the characteristic relaxation of any established charge density
within a conducting medium. It should be noted that this term only contributes to

the solution if one has a nonzero conductivity and/or linear attenuation coefficient.

DISCUSSION OF SAMPLE PROBLEM RESULTS

The equations obtained in the previous section were programmed for the CDC 6600
computer. Our initial calculations have been restricted to an examination of a cyl-
inder having a length-to-diameter ratio of 0.2. The time behavior of the radiation—

produced current density pulse is taken to be
i) = -5 Eexpl - t/a) (41)
[ ma ’

where jm is the maximum value of the current density which is attained when t equals a.
Figure 2 is a normalized plot of Eq. (41). 1In the remaining graphs we depict the
variation of the electromagnetic field behavior as a function of the pulse duration
parameter o, the conductivity of the medium g, and linear attenuation coefficient, I.

The results are presented in nondimensionalized parameters.

1.0 —

/N Driving current pulse
| / \\ vs time
o=t
’ o8 [/ \\ Jolt) = —2- exp(1-t/a)
L/ \
i / \
i: 0.6} / \\
% \
0.4—’ \
| \
_’ N
0.21

1 ! 1 1 I 1 1
00 1 2 3

t/a

Fig. 2 Normalized plot of the driving current
density temporal behavior.
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Field Variation With o

The time behavior of the magnetic field at a specific point within the cavity
is displayed in Fig. 3 for various values of the nondimensionalized pulse duration
parameter ac/L. Both o and I are taken to be zero in these calculations. The lowest
nondimensionalized resonant frequency of the cavity, wl,OL/C’ is 0.96., This charac-
teristic frequency is quite apparent in the oscillatory bshavior of the magnetic field
for both pulse durations presented in Fig. 3. It is obvious from Fig. 3 that the
intensity of the oscillatory response has been effectively reduced by increasing the
duration parameter of the driving pulse. For even larger values of ac/L than con-
sidered in this graph, the above oscillatory behavior becomes hardly discernible. 1In
this case, the temporal behavior of the magnetic field response follows that of the
driving current density pulse. We do not present the two components of the electric
field corresponding to Fig. 3. However, we wish to point out that our comment rela-
tive to the variation of the intensity of the oscillatory response with respect to
the pulse duration parameter is consistent with the behavior of these electric field

components.

Fig. 3 Temporal behavior H, for various values
of the driving pulse duration parameter
ac/L.
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Field Variation With o

In order to assess the influence of conductivity of the medium, we take I equal
to zero and consider a pulse duration such that oc/L = 25. The time variation of the
magnetic field at a specific point within the cavity is presented in Fig. 4 for three
different values of conductivity. Although it is hardly noticeable from the curves,
the effect of increasing the conductivity is a reduction in the frequency of the
oscillatory behavior, as specified by Eq. (33), and a reduction in the effective driv-
ing current density due to the increased cancellation caused by the conduction pro-

cess. More apparent is the damping of the oscillatory behavior for finite conductivity.

tc/L
5 10 15 20 25 30 35 40
1 1 1 1 1 1 1 1
Hg vs time
-0.1¢
(r = 0.5R, z = 0.5L)
_.0.2’_ /UL/EC 0.5 L/R - 0.4
25
-0.3} =0
-.jE
= -0.41L
[en]
@I
-0.51
~0.6}
-0.7}
-0.8L

Fig. 4 Temporal behavior of Hy for various values of the
medium conductivity ol/(ec).

The corresponding behavior of the two components of the electric fields are

summarized in Figs. 5 and 6.

Field Variation With I

We observe the effect of varying I by setting ¢ equal to zero and again choosing
o equal to 25 L/c. The three field components are shown in Figs. 7 through 9. As can
be noted from Fig. 7, the frequency of the time-varying magnetic field is insensitive
to a change in I which is consistent with Eq. (33). As expected, the attenuation of

the current density pulse affects a reduction in the magnitude of the magnetic response.
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ecEr/ij

E, vs time
= 0. = 0.5L
0.2L (r = 0.5R, z = 0.5L)
L/R = 0.4
oc/b = 25
0.15L ol/ec = 0.1 L1 =0
'
0.1 ,'
,,_?E ol/ec = 0
"N 0.05| \ '
[FE]
b \
]
\
0 1 ~s |
5 1,710 40
s \
-0.05} olL/ec = 0.5
- 0.1
tc/L
-0.15L
Fig. 5 Temporal behavior of E, for various values
of the medium conductivity oL/(ec).
40
0 1
R = 0.1
P
!f e
PRI E :
i':l.:,n':':::::‘: E,. vs time
-0.005 Y (v = 0.5R, z = 0.5L)
N N A L/R = 0.4
’ ac/L = 25
| |
- “ &
«—0L/ec = 0
-0.01F :
~0.015%

0.25

Fig. 6 Temporal behavior of E, for various values
of the medium conductivity oL/(ec).
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. tec/L
5 10 15 20 25 30 35 40

0 1 1 1 | 1 | | 1
Hg vs time
0.1 (r = 0.5R, z = 0.5L)
0.0k L/R = 0.4
0.2 ac/L = 25
-0.3]- -
. 1=
= -0.4F
ey L = 0.5
= 0.5
Il = 0.1
-0.61
-0.7} il = 0
-0.8L

Fig. 7 Temporal behavior of Hg for various values of the
medium linear attenuation coefficient ZIL.

ecEZ/ij

-0.5L

Fig. 8 Temporal behavior of E; for various values of the
medium linear attenuation coefficient IL.
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0,
——3L =0
~—73i = 0.1
-0.05
=
i)
S—
b
Ll
Q
w
- 0.0 E. vs time
N (r = 0.5R, z = 0.5L)
L/R = 0.4
L ac/L = 25 -—73 = 0.5
| c=0
=0.15 L=

Fig. 9 Temporal behavior of E, for various values
of the medium linear attenuation coeffi-
cient IL.

In Figs. 8 and 9 both components of the electric field become negative as I is

increased. This is caused by the buildup of a permanent charge density within the

cavity. If this charge density were mobile, the electric field components are such
that they would tend to diffuse the concentration of electrons near the front of the
cylinder toward the rear and side walls of the cavity.

Spatial Dependence of the Electromagnetic Fields

To acquire insight into the spatial variation of the fields within the cavity,

we consider the problem for which o equal 25 L/c and both o and I are set equal to

zero. Figure 10 shows the variation of the magnetic field with radial position for

a specified axial position at various times. Except for the previously mentioned

oscillatory behavior, the magnetic response can be estimated by ignoring the displace-
ment current and solving the set of equations
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v H =73 () (42)
and

-
v - H-=o0. (43)

e w——t/L

I
()]

He /L3,
7

15
35

NS te/L
-1.0- \, Nl

1]

L) AN
0.4 \,

(2)5 \'-..- -———-—-—tc/l_

o

(z =

L/R
ac/L

1
—_
.
no

1

25

)
—_—
-

]

1
—
o
I

Fig. 10 radial variation of Hjy.

For the specific problem under investigation in this section, the above approxi-
mation would suggest a negligible variation in the magnetic field with respect to the

z coordinate. This behavior is dramatically evident in Fig. 11.
The spatial variation in the two components of the electric field are shown in

Figs. 12 through 15. Consistent with the boundary condition that the tangential com-

ponent of the electric field vanish at the surface of a perfect conductor, we note

20




. that Ez is zero at the side wall of the cavity, and Er is zero at the front and back

surfaces.
z/L
0.2 0.4 0.6 0.8 1.0
0 i 1 1 L 1 1 1 i 1 L
-0.1k Hg vs z L/R = 0.4
- ac/L = 25
0.2l (v = 0.5R) g =0
' =20
-0.3 |
= te/L =5
= -0.4F
S
= 0.5b te/L = 15
te/L = 35
-0.6 |-
-0.7¢& tc/L = 25
-0.8 ¢~
-0.9L
. Fig. 11 Axial variation of He.
0.20
Ez Vs 1
0.15p—. — (z = 0.5L)
Ty --.\.-. L/R = 0.4
\'\.\ U.C/L = 25
~ g=0
0.1} tc/L-‘5/ \ o=
-0.1L
. Fig. 12 Radial variation of E_.
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Fig. 15 Axial variation of E..
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SUMMARY

We have outlined the mathematical method for obtaining the exact electromagnetic
response of a cylindrical cavity excited by a radiation-drivem current pulse. The
computational results for a few specific cases of interest to us have been presented
and discussed. Basically, the cavity responds as one would expect. Very little
electromagnetic wave motion is established if the frequency content of the driving
pulse is substantially lower than the resonant frequency of the cavity. The inclu-
sion of conductivity provides a mechanism for energy dissipation which results in
both a reduction in the frequency and a damping of the amplitudes associated with the
oscillatory electromagnetic response. Including either a nonzero attenuation coeffi-
cient and/or a nonzero conductivity establishes a total current density gradient and
a resultant charge density. This situation leads to the establishment of damped
quasi-static electric field contributions. In addition, the driving current is
effectively reduced, at least in a bulk sense, throughout the cavity, thereby reducing
the amplitude of the magnetic response and the associated oscillatory electric re-

sponse.

We have presented our solutions in the form of a double infinite sum. Equiva-
lently, by ordering the eigen frequencies, a single summation could be accomplished.
Regardless, such solutions are often of dubious computational value. It is fortunate
that the degree of convergence of these expressions is adequate for meaningful compu-

tational results, at least for the subset of problems we have examined to date.

The analytic techniques utilized in this paper become grossly inadequate if one
desires to treat more complex geometries and/or more complex physics. For more com-
plex geometries, in most cases it will be impossible to choose a coordinate system
which will permit the cavity boundaries to coincide with fixed coordinate surfaces.
In addition, in such cases one no longer expects discrete response frequencies. If
one desires to complicate the physics of this type of problem, by considering time-
dependent electrical properties altered by the radiation pulse, or if the physics
requires one to compensate for the interaction of the radiation-driven current with
the induced electromagnetic fields, the linearity of the governing equations is
destroyed. Any nonlinearity in the governing equations with respect to time makes
application of conventional transform techniques impracticable. Such complex prob-
lems will require approximate and numerical methods to investigate electromagnetic
response, and the solution of our model problem provides a limiting situation which

should be useful for assessing the adequacy of such techniques as they are developed.
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