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1. INTRODUCTION

The radio flash code developed by Suydam,
longmire, and Longley is based on Maxwell's equa-
tions for an axielly symmetric problem in polar
coordinates r, 9, ¢ and retarded time T =t - r
(units are such that the speed of light is unity).
The equations in the air and in the ground are
slightly different; in the air they are

aEr+h E = -lxg_ + = O (uB)
3T ﬂar_ r rua_e "!CP

(u = sin 6) » (l.l)

& rEq) 3(rB)) 3(rB))

—r* bro(rEg) = -bardy - = = ,(1.2)

3(re ) 3E_ d(rEy) 3(rEy)
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The quantities Jr and Jg represent the Compton cur-
rent density end o the conductivity. The calcule-
tion mekes partial use of the method of character-

istics by introducing two new dependent variables

def

F r(Eg + Bcp) s

def
G = r(Eg - Btp) ; (1.4)

whereupon equations (1.2) and (1.3) become replaced

e
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?YI: + 2nagF = gﬁ - UnrJy - 2neG , (1.5)

QgG?_g-G;-{- 2ﬂgG=-gg--l44(rJe-2ﬂdF- (1.6)

Two systems of finite~difference equaticns
for the system [Egs. {1.1), (1.5), and (1.6)] are
given in Appendices A and B, namely, the original
system (per Suydam's manuscript [1]) and the system
nov in use {per private comumnication). These sys-
tems have exhibited numerical instabilities, and
this memo discusses attempts to analyze these insta-
bilities and to remedy them by & modification of

the difference equations.

On the tentative assumption that the conduc-
tivity of the ground stabilizes the calculation
there, only the air equations {given above) will be
considered, except in Section 6.

For the stability considerations, it probably
suffices to regard o, Jr' and Je as functions of
r and t that are known in advance. In the (normal-
mode) stability analysis given below, Jr and J’B are
dropped, and ¢ and r are treated as constants (on
the usuel supposition that stability is & local
phenomenon). All terms are retained, however, in
writing down the difference equations in the Appen-
dices A end B, and Jy (which results fram the bend-
ing of the paths of the Compton electrons by the
field BqJ) is written in the form used in the Flash

code, namely,

Jg = - % &(F - G) , (1.7)



where

2(1 - k B)
s 9T g (- ?r)i___ , (1.8)
(kB‘p)

where k 1s a constant.

The stability analysis presupposes a well-
posed mathematical problem before differencing is
Since the use of the retarded time
=t - r is slightly unusuel, an ettempt is made,

introduced.

in Section 2, to study the well-posedness of the

problem by investigating a greatly simplified mcdel
It is concluded that this model
presents a well-posed mixed initial-boundary-value

of the equations.

problem, in spite of the infinite frequencies to
which Longmire has called attention.

In Section 3, some simple difference equations
for the simplified model are enalyzed; they suggeat
that the currently used difference equations for the
Flash code (Appendices A and B) ought indeed to be
unstable, but that a certein modification of them
ought to be conditionally stable,
fication of the difference equations for the air

A proposed modi-

part of the Flash code is then given in Appendix C.

In Section 4, & normel-mode stability anslysis
of the various difference-equation systems is de-
scribed. Speciel computer codes for Maniac 2 were

written for this purpose.

The proposed new difference equations for the
Flash code are implicit; the algorithm for solving
them is described in Section 5. Further lest-minute

comments are made in Section 6.

2. A SIMPITFIED MODEL

To obtain & workable model {very greatly sim-
plified, to be sure) of the mathematical problem, we
replace Maxwell's equations by the scalar wave equa-
tion in two certesien space variables x, y, and we
drop the source terms and the conduction terms. We
transform the equation

f.‘l= B_2u_+ ﬁ (2 l)
3t P 2 ’

to new independent variables given by

T=t-x, x'=x, v =y, (2.2)
and then we drop the primes:
2 _ 32 i s (2.3)

-2
A af i

With u and du/dT given as initial data for
T = 0, this is an improperly posed Cauchy problem
(i.e., pure initial-value problem); there is no so-
lution &t all unless the given functicns u end
du/dT satisfy equation (2.3), and if they do satisfy
it, there is no way of cbtaining 32u/dT° etc. from
Eq. (2.3) without the aid of a boundary condition.
This is because the initial surfece (t ~ x = 0) is
& characteristic surface for the hyperbolic equation
(2.1).

We consider instead the mixed problem:

I.C. ugiven for T=0, (2.4)

B.C. u-—0as x,y oo . (2.5)

If u —* 0 sufficiently rapidly, we can integrate
Eq. {2.3) with respect to x to give

(2.6)

il
£

where L is the linear integro-differential operator

(Iu)(x,y) = %a— f a > (xy)ax’ ; (2.7)

repeated use of Eq. {2.6) then gives Beu/a'fg,
Biu/BTj, ete., so that a formal Taylor's series in

T can be found, as in the Cauchy-Kowalewski theory.

The solution of the mixed problem can be ob-
tained by a Fourier trensformation, on the assump-
tion that u = O sufficiently rapidly &s x,y = %m:
set



[en]
u(x,y’T) = -21—“‘ f] ﬁ(G’B:T)ei(mc+BY)dadB . (2.8)
-0

Substitution into the differential equation (2.3)

gives

w

0= /][-(02 + 8)ala,B,T) - 2ia?; (a,ﬁ,T)J

-0

i oo+
x OB qnag (2.9)
and the vanishing of the square bracket gives e
differential equation for a{e,B,T). Since u{a,B,0)
is known as the Fourier transform of the initial

function u( x,y,0), the solution of the problem is

[e] i a?+32 .
U(XIY:T) = 21_1[ j] e 2a ﬁ(ayB:O)
-0

« O BY)ans . (2.10)
It is now clear that the problem is well posed in
the L, norm (see [2], Chapter 3): the integral

{Eq. (2.10)] exists for any reasonsble (say continu-
ous) function u{a,B,0) in L2, and the Parseval re-
lation, applied to Eq. (2.10) shows that

[se]
[f Iu(x,y,‘l')‘adxdy =
-0
N ,
f/ |ae,B,0) | 2acap (2.11)

-0

which shows that the solution operator is bounded
(and in fact by unity) for all T.

Although the infinite frequencies that appear
in the first exponential in Eq. (2.10) as

a0 (p# 0) do not prevent the problem from being
well posed, 1t seems likely that specigl care may
be needed in the construction of difference equa-
tions to avoid instabilities.

3. DIFFERENCE EQUATIONS FOR THE MODEL
To put the equations in a form more like

Egs. {1.1), (1.5), (1.6), call
E= E(X)Y;T) = % 3
F= KnyJT) = glg.l' H

then, Eq. (2.3) gives

OE _ oB

2 5T = = + % ; (3-1)
OF _ OE
x5 (3.2)
A simple difference system is
+1 n-1
E!l;% 1+d ~ Bk b E‘L% g " Ei—é 114
AT - 8%
+F§+1z+1'F;+1t+Fﬁz+1'FEt (5.3)
em. ) 3‘5
n
Frl1<+1 I F;: :_ Bysd g3 - Eidg 1-% (3.4)
X oy ’ .
where, for any n,k,1 (integer or not} F: 1 denotes
the computed epproximation to F{ kax,!4y,nAT). By a

normal-mode stability analysis it will now be shown
that these equations are unstable but that they can
be made {conditionally) stable by a modification.
Functions of the form

B(x,y,T) e

eorr+i( ax+by) (3.5)

F(x,y,T) £



are substituted into Egs. (3.3) and {3.4), where e
and f are constants; after cancelling out certain
common factors from the terms of these equations,
we have two homogeneous linear equations for e and
f. The condition for the existence of a nontrivial

solution is

2 AT, ar ¥ o
Y-1-4i% (sin ¥)y -21 ——(cos 2)( in e)y

oy
=0,
- Jaty sin L g(sin i
oy 2 o&x 2
(3.6)
vhere
T
y d&f éma = amplification factor ,
U LV R

1f |¥| € 1 for 211 real ¢ and ¥ the difference
equations are stable, otherwise not (for more pre-
Equation (3.6) is a
quadratic equation for ¥. As ¥ = 0 (¢ # 0), the
in this equation —*0, while the

other coefficients do not —0; hence {at least) one

cise statements, see [2]).
. 2
ccefficient of ¥

root ¥ = oo, and the equations are unconditionally

unstable,

To improve stability, each ot on the right of
Eq. (3.3) can be replaced by HF*L . Fn-l) (in each
case with the proper subscripts}; then the factor X
in the upper right element of the determinant
iEg. {3.6)] is replaced by %(Ya + 1), with the re-
sult that the coefficient of 72 in the quadratic
equation no longer =0 &s U — O. A detailed calcu-
lation, based on the quadratic equation, shows that
with this modification, |¥| = 1 for all p,¥ provided
that

AT ar
~ <2 (regardless of the value of & ) ,  (3.7)

Eq. (%.7) is evidently the stability condition.

With this modification, the difference equa-
tions ere of course implicit in both the X and y
directions.

A similer modification can be made in the
difference equations for the flash code (in the
air). In order to avoid having the equations im-
plicit in two directions (here, the r and A direc-
tions), the electric field E(=Er) is now centered
at the points kAr rather than (k + £)Ar - the cen-
tering at (2 + %)A0 is retained,
same rewriting of the equations; then, each ' in
the E-eguation is repleced by %(Fn+1 + P 1) (with
The resulting difference

This requires

the proper subscripts).
system is given in Appendix C. The egquations are
implicit in the 8-direction; the algorithm for solv-

ing them 1s given in Section 5.

4, THE NORMAL-MODE STABILITY ANALYSIS OF THE FIASH-
CODE EQUATIONS
Functions of the form

E(x,¥,T) €
Mx,y,T) | = f eQT+i(ax+by) (k,1)
G(xJYJT) g

are substituted into the difference equations (Ap-
pendix A, B, or C).
[1ike Eq. {3.6) for the model] for the amplification

factor ¥ contains a 3 X 3 determinant and is written

The resulting secular equation

out in Appendices D, E, and F for the original equa-
tion (Appendix A), for the equations now in use
{Appendix B), and for the proposed modified equa-
tions (Appendix C). These secular equations are of
the third and fourth order in ¥, with camplex coef-
ficients, Computer codes were written for the
Meniac 2 computer, which compute for each @ and

each ¥ of the set

p=3n q=20,1,2, -, P

(4.2)
¥=Ex  p=o0,1,2 -, ],

the coefficients of the malgebraic equation for Y,



then find the roots of these equations by a subrou-
tine of M. Fraser. The machine then prints out
these roots (5?2 or 4p° complex numbers) and the
maximum value of |Y1 and the values of p and q at
which the maximum occurs. (In most cases, P was =5,
but some larger values were used also.) The input
to the program is the values of ¢, &T, Ar, A, T
(these could have been combined, since only the
combinations oAT, oAr, and orAf appear in the calcu-

lation).

The results were quite different for the ex-

plicit and implicit difference equations. For the
explicit equations of Appendices A and B (modifica~
tions O and 3 of the Maniac code) this {normal-mode)
analysis indicetes unconditional) instability for
certain sets of values of g, Ar, r, and A9, i.e.,
for such & set of values of these parameters,
Max 1V| was >1 for all AT > Q, Stated differently,
for any given values of the ratios AT/Ar and AT/rAS,
the equations are unstable for all ¢ less then some
limiting value g, = UO(AF/CI,Ax/rAB), even when

0
the quantity

AT AT

T = Max A’ TAD

(%.3)

(which is often taken as determining for stability)

is quite smell.

This unconditional instability for srmall ¢ can
be seen also directly from the secular equations
(Appendices D and E).
the coefficient of ¥ {or Xh, respectively) in the

If o is set equal to zero,

equation is 2i sin ¥/2, which =0 as ¥ ~ 0, while
other coefficients of the equation are nonzero for
¥ = 0; therefore one root X of secular equation
becomes infinite as ¥ = 0; hence, by the continuous
dependence of the roots on the coefficients, Max |X|
can be made arbitrarily lerge by téking o small
enough.

For the equations currently in use (Appendix
B - modification 3 of the Maniac code)}, Figure 1
shows the amplification factor Max |Y| as a function
of ¢ in one case, the other parameters being held
constant., As o - O, the amplification factor grows
without bound, while the equations are stable for o

greater than or equal to a certain limiting value

[} Figure 2 summarizes the values of o, for vari-

o° 0
ous values of the other parameters. The Maniac cal-

culations show that for o = o, &nd &T/rAf not too

large the dominant mode of grgwth is the one for
which ¥ = 0,0 = n (this corresponds to +-+-e+- vari-
ation in @ and no variation in r); the corresponding
Y is near -1. Knowing this, we assume ¥ = 0, @ = =,
X=-1+ 1€ (e << 1), ¢ = % (UOAT << 1) in the

seculer equation (Appendix E), and we find

(4.4)

ﬂoraeai, € a /20 no AT ,
o) JG 0

which are in good agreement with the Maniac results
for the cases AT/rof = 0.02, 0.1,

Simjilar results were obtained for the origi-
nel difference equations (Appendix A - modification
0 of the Maniac code).
equal to -1 at the stability limit, and we get from

In this case, ¥ is actually

the secular equation an exact value of 9y given by

norod = % ) (4.5)

which eagrees with the Maniac result in all cases thet

were run.

The (proposed modified) equations of Appendix
C, on the other hand, are indicated to be always
conditionally stable {modification 2 of the Maniac
code): for each set of values of the parameters o,
&r, A8, r, there is & positive AT, such that Max [x]
is 51 (in fact always =1) provided &7 < AT . The
results are presented in terms of the dimensionless
variable oAT, AT/Ar, and AT/rAf in Figure 3. For
each gAT, there is a curve in the oT/Ae, AT/roR
plane; the region of stability is in each case the
region to the left of the curve. From these curves,
we can teake as a rough semi-empirical stability

criterion

2 2
(0.3 - 2o.o(um-)2] (—‘2%) + 2.25(%3) <1. (4.6)

This criterion is very rough, but is on the con-

servative side; that is, the criterion is violated
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in every case in which an amplification factor |X| >

1 was bound by the normal-mode analysis.

To use this cerlterion in practice in the Flesh
{ EMP) code, a sweep is made through the r,B net for
each T; at each point r,8 one calculates the quantity

= 0.3 - 20.0{oor)? + 2.25( £5 * e
o= . . O « Eﬁ H -
the procedure is then:
if @ €0, do nothing
-
ifa>0, call y = £ Arx
s 3 (4.8)

ify<aAT, replace AT by y

here, At is & provisional estimate of the increment
AT to be used at the next cycle; at the beginning of
the sweep mentioned above, AT is set to some very
large value and is then gradually revised downward
during the sweep. The gquantity fa is & number
{called "stebility fraction”) in the interval {0,1)
and is one of the input date to the EMP code.

(Modification 1 of the Maniac code was for the
original equations of Appendix A but altered by re-
placing F° by %(F'ﬁl + 1) in the E equation.
Conditional stability was found there, also. For
modification & of the Maniac code, see Section 6.)

The magnetic tapes for the Maniae codes have
been saved - Roger lazarus knows where they are
stored. I can send instructions for running further

cases, if they should be desired.

5. METHOD OF SOLVING THE NEW DIFFERENCE EQUATIONS
In this Section, the method of solving the
(implicit) equetions of Appendix C is discussed, on
the agsumption that the electric fileld E = Er is
known on the ground (8 = x/2), for &ll r, all 7.
The idea was that the existing EMP (explicit) code
could be used to calculate ell quentities in the
ground and at the ground-air interface. It was be-
lieved thet the overall system would then be stable,
owing to the large conductivity in the ground. [Ex-
periments on the CDC 6600 computer showed that this
belief was unjustified, and further modifications of

the overall procedure will be mentioned briefly in

Section 6. ]

Equation {C.5 of the Appendix) is explicit;
hence, Gﬁﬁ' can be calculated for all k, all !, be-
for the equations (C.1)} and {C.3) are teckled; then,
assuming all quantities known for time nArT &nd es-
suming furthermore that the circles r = r) are
taken in order of increasing k, the only unknowns
in (C.1) and (C.3) for the kB circle are the E's
and F's with superseript n + 1 and first subscript k
(21 values of f).
written in the form

The equations can therefore be

n+tl 1 +1
B T az%Fful - ’31+%F£ PR

(! =1, 2, e, I') 3 (5-1)
+1 +1 +1
oy = 78y 13 " 5,y 3ty
(‘! =2, 3, *er, L) ) (5-2)

where the greek letters denote known quantities.
The 8 mesh has been assumed such that Bl =0, Su_% =
n/2. The system {5.1), (5.2) is to be solved with

the boundary conditions

+1 A
F, =03 (5.3)
+1
E; Ik known . (5.4)
If the unknowns F., E%, F2, E%, cee, FL’ EL—'—%

{here, and below, the fixed indices n + 1 and k are
oL’ then the

system (5.1)-(5.4) is an ordinary 3-term recurrence

omitted) are denoted by u,, Uy *tfy U

system and can be solved in the usuel way. However,
since storage arrays for the E's and F's are already
present in the EMP code, it is probably more con-
venient to proceed as described below.

From each equation (5.2) for £=2, 3, -+,
L - 1 (but not L), E,.4 @nd E, ; are eliminated by
-2
use of Eg. (5.1) to give an equation of the form

-A F

1£+1+BIF—CF =D

13 11-1 !

(t=12,3, «+s, L-1), (5.5)



where A!, B‘, Ct’ and DI are known coefficients giv-

en by

PR AT

=]
L

=1t 7Bt 8,0

Q
!

g =8Byt

D, = §£+7£E1+%-5!el_% . (5.6)

From the last equation (5.2) (£ = L), only EL-% is
eliminated, and the result is written as

-0+ Fpyq * (14800 QIFy - BBy 4Fy ) =
t

AL By, L

With the coefficients identified as indicated (N.B.:
ET%,;% is known), this equation is of the same form

as Eq. (5.5), so now { runs from 2 to L. The
irrelevant

179 T
{because Al = 0in Eq. (5.7)]. To solve the system,

boundary conditions are: F

one defines inductively

el =0 fl =0
e = Ay £ = by Sy
B - Ca LB -G

(l =2, 5; ey L) > (5-8)

then the solution is given inductively (on decreas-
ing !) by

FL-l-l arbitrary

+
+1 fl

F! = e!F

(5.9)

The E;+]!'+% are then given by Eq. (5.1).
6. LAST-MINUTE FURTHER COMMENRTS

Numerical tests made by suitably altering the
EMP code for the CDC 6600 computer indiceted thet
the procedure outlined in the preceding section is
still subject to instabilities, presumably arising
from the explicit celculation of E on and in the
ground (the instabilities disappeared when the field
]i';(1 I+d at the ground was taken to be identically
zero, as the boundary condition for the air calcu-
lation). Jerry Iongley has suggested that this re-
maining instability can probably be overcome by
meking the entire calculation of E and F implicit
all the way from 8 = 0 in the air down to some depth

in the ground where E can be taken as zero.

The equations to be solved are then of the

form
u! = 0 (6.1)
1
A,y v Bu, -Cuyy =0,
(2= ti+1, B 42y 00y 12-1) (6.2)
Au -A u +B,u, -C,u
12+2 12 12+1 !2 12 12 12-1
*
+ E’u =D (6-3)
1,-2 1,
Ay ¥BM, -Cpuy =D,
(£=1,+1, 1,+2 ", 15-1) (6.4)
u, = o, (6.5)
. 3

where the capital letters represent known quantities.
The single 5-term equation (6.3) comes from the
boundery condition at the sir-ground interface. To

solve the system, one assumes relations of the form

e, +tT

(1151512-1), (6.6)



(12+1<zsz5); (6.7)

the e's and f's are then given inductively by

~

e =0 f, =0
L 3
) P /Rl o5
LBy -Cpfpn LBy -0y
(£=t+1, 1,42, =5y Ly - 1) (6.8)
-
"
e, =0 f, =0
] !
3 3
V., . e oMl
t” B, - A, 1T B, -AE,,
i (z=13-1, 13-2, see, 12+1).(6.9)

Then u, (the field at the ground) is given directly
by Ege F 6.3) after the other unknowns heve been e-
limited by use of eguation (6.6) with £ = 1, - 1 and
and 1, - 2 and equation (6.7) with £ = L, + 1 and
L, + 2. Tinally, the remaining unknowns are given
by inductive use of Eq. (6.6) (decreasing 1) and
Eq. (6.7) (increasing 1).

Jerry Iongley has pointed out that if, in
addition to replacing F* by B(F T + L) in the
E equation, G is also replaced by %{Gnﬂ' )
in that same equation, no extra calculation is re-
quired because the G:H;‘ are 2ll known at the time
of the E and F calculations.

preféra.ble beceuse (1) it treats F and G on an

+ g

This procedure seems

equal footing in the E equation and (2) it mey im-
prove stability. To investigate the lstter point,
Mod 4 of the Maniac normal-mode analysis code was
written, It is based on the same secular equation
as in Appendix F, except that the factor ¥ in the
upper right element is replaced by %(Ya + 1). Much
to my surprise, there is now again unconditional
instebility when O is less than a value UO. When
this occurred, the dominant mode was ¥ = 71, @ = %

(+-+- -+ variation in both 8 and r), with X = real

< -l.

Putting ¥ = 7, @ = n, and % = -1 into the
secular equation gives for 00 the equation
70, rAf = i (6.10)
0] 2
(compere with Eq. (4.%) and Eq. (+.5)].

The conclusion is that it is not a good idea
to replace G by %(Gm-l + 6™ in equation {(C.1) of
Appendix C.

A possible intuitive explanation of this result
is that the G equation, being explicit (leap-frog),
contains & germ of instability, so that incipient
errors (which are eventuelly kept under control by
the stabilizing influence of the other equations)
are more strongly represented in Gn+l than in Gn.

A final comment is that the theory of the
smoothing procedure

(1 - e)un+1 + 2eu® - et - ot

(e ~0.1) ,

which has been found so effective in suppressing
instabilities in the EMP code, should be investi-
gated more fully sometime. In view of the large
amplification factors predicted (for small 9) for
the equations that have been used until now ( see
Figure 1), this smoothing procedure must be rather

powerful and can perhaps be of use in many problems.
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APPENDIX A. ORIGINAL DIFFERENCE EQUATIONS ( IN THE AIR)

n+l _ e-SE -1 1-¢e b
W +3 1+ Tohro

n n n
. MoralFien 11 ¥ Fe o) = Gl g41 ” Cp ge1) = #(Fray s * B g = Cpen g = Ok o) ,(A)
5 .
ryas Hpaa(8pyq - 8))
where
+1 -1
g = u;+% 50 S = hnu(r“ o i ), =(J )k+% 1+ H (A.2)
X Bk g3 - Bod 13
1 _ =X +1 l-e k+3 5 .I- _ n+l n+l
F::-ll_e Fo 1 * Za(1=%) §.. -8 no{1+ NGy , * G ) o (a.3)
I+ 1-%
where
nt+l ntl
= = - - = 6 .
0= O3 g X 21ta(rk+l rk)(l 3, 4 Std 1 5 (A.k)

n+l n =Y
ntl _ -Y| n T - T n n OE +1 n
Cpe1 2 = © [Gku TR CRNNEE S (Gyep 4 = Oy z)] " Bra(1 ¥ %) [36] + o1 - {')l: Firt ¢+ Fia

Tn+l _n (Fn Fn ) )
* - (A.5
2 rk+2 - rk+l kt2 ¢ k+l 2 :
where
i o+l n T
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APPENDIX B. DIFFERENCE EQUATIONS IN USE AUGUST, 1967 (AIR)
. BEquations (A.1) and (A.2) are taken over unchanged. The remaining equations are
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Equations (A.4) are unchanged;
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An examination of the FORTRAN listing of the present code reveals that the equations used in the code are
not exactly as given here, but the differences are probably of no jmportence from the point of view of
stability.

APPENDIX C. PROPOSED NEW DIFFERENCE BPQUATIONS, IN THE AIR
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APPENDIX D. NORMAL-MODE STABILITY ANALYSIS OF THE DIFFERENCE EQUATIONS OF APPENDIX A ( ORIGINAL SYSTEM)
(MOD O MANIAC CODE)
The secular equation for the amplification factor X is
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NORMAL-MODE STABILITY ANALYSIS OF THE DIFFERENCE BQUATIONS OF APPENDIX B ( SYSTEM CURRENTLY IN

APPENDIX E.
USE) (MOD 3 MANIAC CODE)
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APPENDIX F. NCRMAL-MODE STABILITY ANALYSIS OF THE DIFFERENCE EQUATIONS OF APPENDIX C ( PROPOSED NEW SYSTEM)
(MOD 2 MANIAC CODE)

The secular equetion for the amplification factor X is
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