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Abstract

Poissoh's equation is solved for the charge density, elec-
tric field, and potential as a function of distance, due to a
surface current of electrons emitted from a flat surface. The
current is assumed'independent of time and all electrons are re-
turned to the plate due to the space potential of the electron
cloud. The development is general in the sense that no restric-
tions are placed on the distribution of electron energies; how-
ever, three particular electron spectra are considered in de-
tail: monoenergetic, uniforﬁ, and triangular spectra. Finally, .
assuming the surface current is produced by a photon source,
generalized scaling laws for the electric field and penetration
distances as a function of photon fluence, radiation time, and
electron energy are obtained. ’
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1. ‘Introduction

A problem of interest in the analysis of system interac-
tions with X and gamma radiation is that of predicting space-
charge limited electromagnetic fields associated with energetic
photoelectrons and Compton electrons. In general these fields
are a complex function of the radiation parameters (intensity,
spectrum, impulse length) and the structural parameters (chem-
ical composition, geometry, orientation with respect to inci-
dent radiation). In the development which follows, a much
simpler problem is solved, that of the electric field produced
by electrons emitted normally from a plate and subsequently re-
turned to the plate by the retarding potential of the electron
cloud. '

Various aspects of space-charge have been studied by a num-
ber of workers. -The 3/2 power law for the relationship between
voltage and transmitted current was obtained by Childs (Ref. 1)
in 1911. Later, Fry (Ref. 2) obtained a solution for the volt-
age distribution and transmitted current for a Maxﬁell energy
distribution of electrons. An exhaustive solution for the volt-
age distribution, transmitted current, and transit time was ob-
tained by Fay, et al. (Ref. 3) for the case of monoenergetic
electrons emitted from plane parallel electrodes at arbitrary
potentials. 1In computing the dipole moment for charge emitted
from and returned to a single plate, Karzas and Latter (Ref. 4)
obtained the charge and velocity distributions for monoenergetlc
electrons. This is also a special case of the work by Fay, et
al. (Ref. 3). The case of an arbitrary energy distribution of
electrons emitted between plane, parallel electrodes at arbi-
trary potentials was solved by Baum.* This development is sim-
ilar to but more general than that of Fry (Ref. 2}, who treated
only the case of a Maxwell electron spectrum.

*Baum, C. E., "Gamma Internally Generated EM Fields: Notes
and Calculations," unpublished notes.



2. Solution to Poisson's Equation ~

The following development was adapted from that of Baum
for the case of a single rather than parallel plates. Figure 1
illustrates the geometry, and the restrictions are summarized
below:

a. no variations in the plane of the plate; variations
occur only perpendicular to the plate

b. steady-state emitted current .

c. arbitrary distribution of electron energies

d. all electrons return to the plate; no net current in
the x direction

e. the plate potential is arbitrarily set to zero

£f. emitted electrons move perpendicular to the plate
(this condition can be relaxed if the enerqgy distribu-
tion properly accounts for the x component of velocity)
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Figure 1. Charge emitted and returned to a single plate

The starting point is Poisson's equation in one-dimensional

Cartesian coordinates:

a’v _ _p
— = = (1)
dx



where V is the potential at position x,(volts)
x is the distance from plate (meters)
p is the charge density at position x (coulombs/m )
£ is the vacuum dielectric constant (1o~ /36n farad/meter)

The expression for charge density must account for variable
electron velocities and the fact that at any point x, electrons
with energies less than -eV(x) have turned back. The correct

expression is

v{{x) n(VO)dVo

p(x) = =27 W (2)
v, o .
where J is the emitted current density, assumed positive
 (amp/m°)
Vo is the potential corresponding to maximum electron

energy (volts)
n(V ) is the normalized emltted electron spectrum {volts l)

v is the x component of electron velocity (meters/sec)

The factor 2 enters Equation (2) due to the fact all electrons
return to the plate, doubling the charge density. The sign con-
vention follows from the fact that all potentials are negative.

If non-relativistic electronic energies are assumed, the

velocity can be written

1/2
vV, V) = [-.-Iﬁ—e(vo-w] | (3)

in terms of the initial and final potentials, where e/m is the
electronic charge-to-mass ratio (1.759 X 10ll coulomb/kg) . The
term "normalized" in the definition of n(V,) means simply that

. O
jv n(v )dav, =1 (4)
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Clearly, Equation (1) is nonlirear due to the square root
dependence of charge densities on potential. However, the first
integration may be accomplished by application of the property
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The result is

v v 1/2

-1/2 1 n(v_ )av
av _ 43 (2e o o]
& = e (m) f dv iz (6)

1
Vc Vc (Vl Vb)

Equation (6) also represents the electric field E, since

_ _av '
E = ax (7)

A subsequent integration of Equation (6) yields

-1/2

v v v
-1/2 1/4 2 1 n(v )adv
1/J 2e o] o] .
X = -=(2 = av av (8)
2(3) (m ) Jr 2 Jr l./r ) 1/2
o Vé Vé (Vl-Vo)

The negative sign before the radical in Equatépn (6) was chosen
on the physical observation that the electric field E must be
everywhere positive.

Another quanﬁity of interest is the stored electric field
energy per unit area, defined '

] |
C
U = f %- eE2dx (9)
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which can also be written



U = ~3 € EQV ’ (10)
o.
or
. 1/2
o v v
_ 1 43 (2e -1/2 2 1 n(VO)dV6
U=] dv, 37 ¢ 22(22) av, 173 (11)
v v v (v.-v_)
c c c 1 o

after inserting the right-hand side of Equation (6) for E. The
quantity X in Equation‘(Q) is the turn-around point for the

most energetic electrons.

In order to present results which apply to general classes
of problems, Equations (2), (6), (8), and (11) are normalized,
using the following definitions:

u = v/, - (12)
y = ®/% (13)
& = E/E ' (14)
p =0/, o o w (15)
f(w) = -V n(uv,) | (16)
§ = u/u_ | (17)
where
1/4,.,-1/2
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-1/4,_.1/2 ' -
E, =2 ri_e) (%) (_Vc)l/4 ‘ ‘ A (19)
‘;Zev -1/2
Pn = -ZJ(- m c) (20)
-1/4
_ (o y2/4 1/2¢2e
U, = (V)7 (ed) (m—) . (21)

After change of variables, the charge density, electric field,
potential, and stored energy equations take on the following
simple forms:

fl ﬁ(uo)duo : '
p(u) = —/7 (22)
. u (uofu)l 2 .
1/2
1 1l =
) = f au f n(uo)cluo (23)
1 u. (u_-u )1/2
u 1 o 1
a 1 1 ﬁ(uo)duO m1/2
y(u) =f du2 j:ldulf R )1/2 (24)
o 2 Y1 o™
_ ) : & _ -
1 1 1 - 172 '
_ f n(u )du
U = du2 . dul - )1/2 (25)
o 2 4y WU

3. Applications to Particular Electron Spectra

Three electron distributions are examined in this section
to determine the effect on charge density, electric field, po-
. tential, and electrostatic energy of different spectra. It was
possible to perform the integrations analytically for the two

cases, monoenergetic and uniform spectra; however one numerical



integration was required for the triangular spectrum. Solutions
for the three cases are summarized below.

a. Monoenergetic Spectrum

a(u) = §(u-1) (26)
-2/3
3
ply) = (1 - —X—) (27)
2V2
1/3
E(y) = /3(1 - 31—) (28)
272
4/3
uly) = 1 - (1 - 31—) (29)
2V/2
§ = %/i o)

b. Uniform Spectrum

_ 1 0 <ux<il :
Au) = 1 (31)
0 u>1
B 2 | “
ply) = 2(1 - ) ’ - (32)
2V/3
3 2 _Z_.3
(y) = ——( - ) : (33)
Y3 2V/3
> 4
uly) = 1 - (1 - ) (34)
2Y3
o= (35)
V3 - E
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c¢. Triangular Spectrum ~

_ 2u 0 <u<l
au) = { (36)
0 u > 1

pu) = $-wl/?@r2u) (37)

s = 2 Y310t unt/? (38)
u .

g = %@EI (l-ul)-3/4(2u1+3)_1/2dul (39)
O
1

- [ 3/4 1/2

U=2 —f (1-u) (2u+3) du (40)

V15 J_

The normalized spectrum for each of the three cases:-is
shown graphically in Figure 2, while solutions for charge den-
sity, electric field, and potential are plotted in Figures 3,
4, and 5. Since the same normalization factors are used for
all spectra, the graphs portray a true linear comparison of the
effects of the different spectra investigated. Absolute or
true values may be obtained by application of the formulas
shown on each graph. The small arrows along gthe y-axis on the
graphs indicate the point of intersection of nearby curves with
the y-axis. These intersection points are otherwise unclear
due to the zero slope of the curves at intersection.

An unexpected result of this investigation is that the
peak electric field, which occurs at the emitting surface, ap-
pears to be weakly dependent upon electron spectrum (see Figure
4). For the spectra investigated, variations are within +10
percent of the average of the three values. An additional ob-
servation is that as the proportion of low-energy electrons is
increased, the range of the electric field from the plate
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Figure 2. Electron spectra for example problems
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Figure 4. Normalized electric field for example problems
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increases. This fact follows from the”larger electric field
intensity near the plate as the proportion of high-energy elec-
trons is increased.

4. Summary and Discussion

The development through Equation (25) placed no restriction
on the emitted electron spectrum, except to place an upper
bound on electron energy. Hence, expressions (6) through (25)
are applicable to an arbitrary electron spectrum. In addition,
explicit expressions and graphical results were obtained for
three electron distributions: monoenergetic, uniform, and tri-
angular.,

The normalization factors X and En defined by Equations
(18) and (19) can also be viewed as general scaling laws. The
emitted current J is induced by photoelectric and Compton col-
lisions within the plate and is therefore proportional to the
photon flux measured at the emitting surface. Hence, J is pro-
portional to the photon fluence ¢, and inversely proportional to
the radiation time T. The scaling laws can then be written

< - IVCI3/4¢_1/2T1/2

E - IVcll/4¢l/2T'1/2

after removing all constant factors. In a vacuum medium, the
fluence ¢ varies as r_2 where r is the distance from source to
the irradiated object; hence, the electric fields vary as r

and the effective distance fields penetrate, measured from the

plate, vary linearly with r.

The reader is cautioned in applying these results to time-
dependent problems where other effects occur, such as radiated
and oscillatory fields. Oscillatory fields have been predicted
by Birdsall and Bridges (Ref. 5), Karzas and Latter (Ref. 4),
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and by Chadsey (Ref. 6) for monoeneréétic OY Very narrow energy
spectra. However, the latter two papers indicate that the os-
cillatory behavior is small if not negligible for wideband elec-
tron spectra. In addition, one must assure that the radiation
time T is long compared to the maximum electron time of £flight
from the time of emission to the time of return to the plate.
Furthermore, it may be difficult to select the correct parameter
values for application of the scaling laws to realistic electron
spectra.
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