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ARSTRACT

With the goal of calculating the pesi. i an ionospherically
dispersed electromagnetic pulse, the autiwr performs an analysis
whirh suggests a method for deriving a probability distribution
fur«tion of signal amplitudes. This technique avoids the necessity
for extensive calculations and is not sevusitive to details of specific
jorosnheric models. From the distribution function, the probability
that the resultant amplitude exceeds any given percentage of the
total energy of the received pulse can be calculated.
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THE AMPL{TUDE DISTRIBUTION OF AN
ELECTROMAGNETIC PULSE PROPAGATEL
THROUGH THE ATMOSPHERE

H

Consider the EXMY cenevated by a nuclear burst in the atmosphere

which at some reference position x = 0 is described by a known Fou-

rier transform F (w) through the relation [1]

1 @

3;-ffm F(O,m)eiwt dw = - I . Gz(m)cos(wt + #(w))dw, (1)

£(0,t) = T

G(m)eiw(m)

where F (0,w) = . The total energy in the pulse can be found

using Parseval's reiation

© 2, 1 = 2 1, 2
E = f_m £f7(e)dt = T f_w G (m)d = p f{) C (w)duw. (2)

0
The effect of atmospheric propagation on pulse shape can, In
princinle, he evaluated by trating the atmosphere as a linear system

with system function

iG(w). (3)

G(w) Alw)e

]

Then at x El’ the time waveform is given by

g(x,t) = E%— ffm F(0,w») A(s,w)ei(e+wt)dw, (4)

. ) » G _ -
where s(w) is the distance along the ray path for each frequency.
Variation of path length with frequency is a result of Fermat's Principle

which states that the path between 0 and ;l’ is given by

sp= & f;1 nds = 0 , (5)



where n(,) is the index of refraction along the path, which in

general varies wit: fremency. It is clearly a formidanle task

to approach this nroblum diractiy considering the number of
variables which nced o be taken into account in anv propasation
mode. Anv detailed wavesnane g(t,g) clearly denends on assumptions
regardinz specific atmospheric properties. Extensivie mumevical
calcuintions would need to be perfermed to adguately assess the

effact of cach variable parzmeter on the waveshape of m(t).

One of the most important properties of the disterted nulse
is its peak amplitude as a function of position relative to the
burst peint. Penk awplitnde is often the critical parameter in
the burst point. Feak amplitude is often the critical parameter
in the vulnerability analysis of electronic circuits in satellites
or ground systems. The following analysis suggests a method for
deriving a probability distribution function of signal amplitudes
based on use of the centrﬁl limit theorem [2]. This techniqua
avoids the necossity for extensive calculations and is not sensi-

tive to detaiis of specific atmospheric models.

>
The shape of rhe pulse g(tx) is determined by two atmospheric

processes:?

1. Attenuation (including reflection) as described by

A(s(w),w and - . -

2. Phase delay resulting from the variation of

C .
\Y = - yith frequency.
Phase n(w) qrencs
However, the effects of attenuation are not difficult to calculate,

generally being adequately modeled by
=-G{i)s
o a(w)

which is a slowly varying function of path length. o(w) is known over
the frequency band of interest (less than a few hundred MHz)} {3] in
both the troposphere and icnosphere.
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The real difficulty lies in generating relative phase delays
over the bandwidth of the pulse. A one~way transmission through
the ionosphere can generate time delays in excess of lu sec for a
pulse containing frequency components near 100 MC (,1 - .Olusec
pulse width). This is a relative phase shift of hundreds of

cycles {4].

To avoid this difficulty, assume that the propagation of each

frequency component cos(wt + @(w) ),

f(t) =

A jp=

I? G(w) cos(uwt + § (w))dw , (6)

results in a random phase distribution. This 1s, at the position x

let each frequency component be modeled as a random variable
v(w) = G(w) cos (wt + B) (7

where B is a random phase uniformly distributed (-m,7 ),

fB(B) = on (_'", ") » (8)

2
and G(w) is the attenuated value of G(w), i.e.

e-a(m)s

G(w) = G(w) ' | (9)

The probability density function of v(w) can be shown to be [2]

. ' ’ . '&' ) -
f (y) = —7-%%7———“ . = G(w) <y< G(w) . (10)
y w G -y

The mean and variance of Y(w) are

Y(w) =0 ' ' (11)



and
=2
2 3
o “(w) = —E_gﬂl—- ", respectively. o (12)
The central limit theorem {[2] asserts that the probability
density function of the random variahle S = vy + y2+°°° +yn tends

in the limit as n—>) =@ to

2
Y S M (13)
vam g -
whare
2
g = ¢, + 02 +-s0+ 02
X 2 n
and
M= Y1 + Y2+,"' + In
Applvins this tn the integral
1o ‘.
g(t) = ¢ I o yle) du @ (14)
we obtain
2 2
= /1 - /2E = -g lero
fg(g) _;.F_ e 1 e - (15)
}ZrEO
where
2 o -
a = 7 4 %-G(m)dw=nE(x) = ano ,
P

vhere rB, = F(x) is the energy in the distorted pulse at x and

0 <x < i dua te rhe attenuatioen.
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From this distribution function the probability that the
resultant amplitude v exceeds any given percentage of the total
energy of the received pulse can be calculated. For example:

p——

P(v > EO) = ,158
P(y »2V Eo) = ,022
P(y >3/ Ey) = .0013

It should be realized that the value of this approach lies
in the fact that, although we don't know what the specific waveform
will be in a given case all possible amplitudes are contained in
fg(g) since this ensemble includes every possible relative phase

distribution for the component frequencies.

It is important to realize that energy comservation is not
being violated with these large amplitudes (>/;E;) gince it is the
total energy which must satisfy

- _ = 2 1 .0 =2 ) .

rE = E(x) = /f__ g (t)dt = ;'fg G” (w)dw . (16)

However for improved numerical calculatibns, the infinite
tails of the Gaussian distribution may need to %e eliminated. We =

note that the maximum amplitude of any received signal must obey.

1

lg(t)] < = fo PG(w)dw = V/r N 19

Therefore the central limit theoreﬁ must be formulated to generate

a probability density function which vanishes outside this interval.



To achieve this, make a linear chanee of variable to

\)

g(t) -7 me(t)

~ = Kot Tl 4 = . - {
z(t) i N (1.8)

N j=—
-

m

so that O<z(c)<)l. If ¢ (¢) is normal (0,02) then z(t) is normat
&, 22
2% v/x"

It can be shown [2] that the beta density

« A
P(z) = Mz (1 - z)'
= Q ' (19)
0<z<l elsewhere tends to a Gaussian function as n ® and can

therefore be used to anproximate the correct probability density

function.

The constants « and B are determined in this case from [2]

; 2
(f+J=S+:’L'='%'(%‘-i_-nE§X))
4v .
T ” .' 9
“Z E2 (x) (20)

“a
with the result that o=8 . M is determined from the requirement

that 53 P(z)dz = 1 to be

Mo+ g+ 2) _ [@er2 (2
Pla+ D e+ 1 ([ (a+ DI

-
~




Finally, the distribution of amplitudes e(t) is obtained as

. 12 1 2
P o(e) = M Tele) _ 1 [% + .TE.B.(_t.__]

o 2V 2 v
- 2 2 T 2
= M 1.—g—- - .];
|.. 4V2 ] 4 ‘, .. ) (22)

on the interval

1g|<§-
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