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ABSTRACT

Two digital computer codes are described that calculate the elc "“omag-
netic pulse generated by a low altitude nucle,ar explosion in the .. .:sence
of a finitely conducting earth. The codes assume azimuthal symmetry °
and employ a finite difference technique for solving Maxwell's equations

in prolate spheroidal coordinates. A test problem with some typical re-

sults is inclu@ed. - - : G
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1. INTRODUCTION

Two digital computer codes, which calculate the electromagnetic
pulse generated by a low altitude nuclear burst in the presence of a finitely
conducting earth, are discussed. It is assumed in the codes that the cur-
rents and conductivities are known functions of space é.nd time, which have
azimuthal symmetry. With this input, Maxwell's equations are solved in
prolate spheroidal coordinates by a finite difference technique. This co-
ordinate system was chosen because it more nearly fits the geometry of
the problem than other orthogonal coordinate systems. For example, the
earth and the z-axis are described by constant coordinates and the wave
front of the wave propagating from the weapon as well as the wave reflected
from the ground are determined by linear functions of the coordinates.

The codes differ in that one is written in real-time whereas the other
employs the retarded-time of the burst point as an independent variable. A
primary advantage of the real-time code is that a definite physical boundary
condition exists at the wave front in space (i.e., the fields are zero for
r > ct). Advantages of the retarded-time code which at present are consid-
ered decisive are: (1) regridding at the wave front is much simpler than
for the real-time code, and (2) the spatial derivatives at the wave front,

r = ct, are somewhat smaller than for the real-time case. For these
reasons a production vérsioﬁ of the retarded-time c%de is presently being
produced. | |

In Section III a version of the retarded-time code which is specialized
~ to take advantage of the simplification that arises by neglecting the density
gradient of the atmosphere will be discussed in addition to the more gener-
alized code. This simplified version runs much more rapidly on the com-
puter. The approximation made is accurate provided that the height of burst

of the weapon is not too great.



II. REAL-TIME FINITE DIFFERENCE CODE

Maxwell's Equations

In M. K.S. units Maxwell's equations are

V-D=p (1)
V- B=0 (2)
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xH=j 5t (4)

The divergence equations may be treated as initial conditions since Maxwell's
equations predict that if they are initially satisfied they will remain so for all
time. Our attention will thus be focused on the curl equations. In prolate

spheroidal coordinates they are: (The geometry is described in Section IV.)
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We assume the constitutive equations

—
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The problem considered has azimuthal symmetry. ~ Thus no physical quantity
is a function of ¢. By using Eq. (7) and this symmetry condition, the curl

equations are reduced to )
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In scalar form, Eqgs. (8) and (9) separate into two independent sets of
coupled equations. One set involves the variables EE' EC , qu’ jE’ and

The other set relates E , and qu . Maxwell's divergence equa-
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tions behave similarly. We assume that for our problem j¢ = 0. It then

follows that if E¢, BE, and BL’ are initiaily zero, they will remain so. Thus

we set

= 0 | (11)

The curl equations become
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In order to simplify these, the fields will be transformed according to
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in which the primed quantities are those that have been used previously. In

component form, the field equations then become
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Make the substitution



j—>j + oE ~ : (20)

Henceforth j will represent that portion of the current not resulting from con-
ductivity of the medium.

Finally, we have
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This set of equations will be solved numerically below by a finite dif-

ference technique.

Difference Equations

Let
£=1+ (1-1)AE, € =a+ (j-1)Af,  -t=EAt (24)
so that at a mesh point a function f(§, {,t) may be labeled f(i,], k). Maxwell's

curl equations (21) through (23) will be replaced by differencé equations cen-

tered at (i,j,k-1/2). For mesh points in the air, we find
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Provided the values of the fields are known on the z axis, on the line j-1,
the above are three equations
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that can be solved simultaneously for the fields B, (i, j, k)



and B¢( i, j, k). In order for the calculation to ’faroceed in this manner it

is necessary to first determine the fields on the z axis. From the symmetry

of the problem it is easy to establish the following limits

lim lim
(w2 B, (£, %, )50, ¢t—wa B (£,¢,t)=0 (28)
-1<EK 1

1<e<1 ¢

The field component EE (i, 1, k) is nonzero at §{—=a and in the air is deter-

mined simultaneously with the three field components at (i, 2, k) by using
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together with Eqs. (25), (26), and (27) evaluated at (i, 2, k-1/2).

On the portion of the z axis above the weapon we have
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Simultaneously with Egs. (25), (26), and (27) evaluated at (2, j, k-1/2) for
the four field components involved. The boundary conditions at the z axis
in the ground are handled in an analogous manner. The difference equa-

tions used in the ground are
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where u is the velocity of propagation in the ground.
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The calculation proceeds in the following Manner. EE (i, 1, k) and
the three fields at (i, 2, k) are determined simultaneously for all i. Then
fields are obtained along successive lines of constant j in the order: E§ at
£ = 1 together with the three field components at i = 2, fields in the air mesh
in the direction of increasing i, E§ at &€ =-1 together with EE s E§, , and BdJ
at the adjoining mesh point, fields in the ground in the direction of decreas-
ing i, and finally the fields at the ground boundary.

To treat the air-ground boundary, we define two lines of points labeled
i, and ig for which £ = 0. Even though these points have the same § coordi-
nates, the first set is assumed to be in air and the other in the ground. The

mesh points near the ground are labeled as shown in Figure 1.

S
(i +1, 541, k-1) i (i, §+1, k1) (i -1, 3+1,k=1)
L 4 9 T
(i #1,, ) }; (i_, 3, k) (i 1,3,k
(i kD T m/kl)
Ps
—- £

Figure 1
A Portion of the &€ -¢ Mesh Near the Ground
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The magnetic permeability of the"ground is sufficiently close to K
that we may assume they are identical. Then the appropriate boundary
conditions are that Eg’ and B é are continuous. Since this must hold for

all time, we infer that BEE_ /8t and 8B¢/8t must be continuous. Whence

aEg(ia, j, 1<-1/2)= aEg(ig, j, k-llz)ml aEg(ia-I/Z, j, k-1/2)

at : ot ' 2 ot
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- E§(1g+1, i, k) +E§(1a—1, j+1, k-1) +;E§(ia-1, J"l,' k) - E§(1g+1, j+l, k-1)
- i +1. -
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Evaluate 3E, /ot at (i, i, k-1/2)
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o TP
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Evaluate BE¢ [t at (ig, j, k-1/2)

2 . -
1 . . . . _u . _ _ . . _
At Eg(lg, j, k) Eg(lg, i k-l)]_ZAt’ I:qu(lg, J-_H, .k 1) Bd)(lg, j, k-1)
. (i, 3 k-1/2) g -
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After computing fields in the air and ground meshes for given i and k, Egs.
(37) through (40) can be solved simultaneously to give the four independent

field components at the boundary.
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p
III. RETARDED-TIME EMP CODE FOR LOW
ALTITUDE NUCLEAR BURSTS

Maxwell's Equations

The time variable in this code will be taken as the retarded time of the

burst point for waves that propagate in air. Thus put

S .~ (41)
c

el kx]

r=1-

where 7 is the retarded time, t is the real time, c is the velocity of light
in free space, and £ and § are described in Section IV. The correspond-

ing transformations for the derivatives are

- 3—‘ (42)

2o ‘

~3

Here V is the gradient operator at constant 7 and r is the 1;;1:11t radial vector
in a spher1cal polar coordinate system centered at the burst po1nt of the
weapon. After applying Eqs. (41) through (43), Maxwell's equations in

M.K.S. units become

-~ 1A 9D

vV - D-=f.82,

1 D TGP (44)
- 1A 9B

vV, B-IT.5-=0 (45)

14



-~ 1A 8F oB
\v/ - = = L= A
le crxaT e | (486)
= 1A _8H -, 9D ' (47)
) - — —_— = + ——— .
leH C_rxaT ] .

In the section on geometry transformation coefficients, aji are determined

such that
A A
'ei —§ @;; U, (48)

Where éi are sphericél polar unit vectors and.Gj are prolate spheroidal unit

vectors. In particular

. A .

=a,.§ +ta,, b : (49)
Substitute this into Eqs. (48) and (47) to obtain
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Recall that the prolate spheroidal unit vectors are cyclic in order g-¢-¢,

then these reduce to

ap - = 1 oA (o JEAY § g
— = - -= — - —t — —= 52
5. = 1tV xH-Zlay; 3 § - 357 8 Tl 91 o (52)
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Assume azimuthal symmetry and write the remAining terms of the above
g

equations as functions of £, §, and ¢. Also, set

D= e_ﬁ:, B = uO_I:I _ (54)

Then

A
u2§

e 2 - £ 2adyc 2 - a%) B8

. ZQ-\/(gz-az)(l-Ez) o [ fP-g%
“ 2 _ .22 BE PERCER

g -£ a
L.
o fePee®? | Lef, ey, Pey
S 1-g2 8 e | 21 or 11 &1

aB 9B :
¢ A
* (‘Hrzﬁ " %21 —a?) .4’] (59)

16



0 2
(BE+B§+B¢) (\[ -a)(l-E)E)
: ¢ Q(?E-Eﬁaﬁ)(l £ 598 ¢

2 2 2
) 2 2 2 A\/(§ -a N1-§87)
) ¢ -£
9E
21%%
-

——) ® (56)

The velocity of light, u, in the medium is determined by

1 ' (57)

Note that in component form, Eq. (57) and (58) separate into two uncoupled

t f i i 1vi » » j ) j s B > d E ) j » ‘B 3 d B,.
sets of equations involving EE EC J£ JC é an é ;|¢ g an e
We assume that j¢ = 0. Provided that the second set of fields is initially zero,

Maxwell's equations predict they will remain so. Hence, we put

=E, =B, =B, =0 (58)

The field equations then reduce to

2
OF j 2 we_ 8B

E_— E u _ _ a 21 (b
ikl — a§ \AC a )(1 g )Bd)) 37

+
¢ \Vel-ekadu-£d
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Make the substitution

—_ —

j—-j+0'_E. (62)

Henceforth o E will give the conduction portion of the current and_j. will de-
note only that part caused by Compton electrons. Also at this point, sub-

stitute the proper values of aij from Section IV. Obtain

OE ] 2 ( >
2z - =R, -—2 4+ — (§ "3-)(1,'8 )B

(63)
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Transform the fields according to

E B

( 5) Vie? -2 -9 ( .,E> (66)
Je A e/
E ET.

( .g) - ViE? - %2 - .Y ( .,':) (67)
Je e

B, - Vie? - a1 - £ B, | (68)

in which the primed fields are those used previously. Maxwell's curl equa-

tions then become

e 2%By 4® %% (69)
(64
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Boundary Conditions in Retarded Time

associated retarded times become equal.

In the limit as the distance between two points approaches zero, their

Thus intuitively we expect that

boundary conditions will remain the same in retarded time as they are in

real time.

This is demonstrated below in a more rigorous manner.
i

From Maxwell's differential equations (44) through (47),

equivalent

integral equations for retarded time may be derived. By integrating Eq.

(44) over a three—dimgnsiona], space volume v, we find

Apply Gauss's divergence theorem to the left side, obtain

-[D dS- a—j'
v

olb—-

5]

(72)

(73)

where q is the charge in v.

time. From Eq.

This is the equivalent of Gauss's law in retarded

(45), a similar law may be found for B

20
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0l

jﬁ-cﬁ:
S

Thus in retarded time B is not necessarily solenoidal.

From Eqg. (46)

9 (K =
57 fr - B dv ('74)
v

fleﬁ-as=:[2E-as+—é-§— éxﬁ-dg (75)

= = 3 - = 19 A= =
jE dﬂ——‘g?-l’B dS“l‘EEII‘XE'dS (76)
S s

in which c is the curve that bounds the surface s. 'This, of course, is the

retarded time analog of Faraday's law of induction. Similarly from Eq.
(47) one finds,

j'ﬁ.dz‘:f-*;dﬁ_ b ds+ g% [xi- 3 (77)
c s
G _ —
which is a generalization of Ampere's law in retarded time.
Now consider the boundary conditions in retarded time. From

Gauss's law, Eq. (73), and the pillbox shown in Figure 2, one finds

5§ 9 = = A

1 = - A
As_[D ds+(D1—D2) n-= 1 5

g
As

Here it is assumed that D may be discontinuous on the boundary, but that it

is continuous in regions 1 and 2 above and below the boundary. The lateral
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surface of the pillbox is labeled Asﬂ and As is ’rcrhe area of each end. Take

the limit 6—> 0.

(D -DJ)-8=2x (79)

where A is the surface charge density.

Region 1

Region 2

Figure 2

Gaussian Pillbox for the Determination of Boundaay
Conditions for Normal Field Components

Similarly, from Eq. (74), one finds

=0 (80)

From Eq. (76) and the contour shown in Figure 3, it follows that

22
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(El-Ez) tA.(!———z-a—t(B1+ 2) nxtA126+zcaTr
x (El +E,) - Axtass (81)
< AL —
E
— 1 1

Medium 1.

o —>
}-—-
e

. v/
Medium 2. ' v

Figure 3

Contour Used in Determination of Boundary Conditions
for Tangential Field Components

Cancel Af and take the limit §—> 0, then

& -BE) - %=0 = =~ (82)

From Eq. (77), a similar argument gives

@ -8) %

2
17 2

- A
=k.-nxt (83)

- AYR .
where k is the surface current, 4\1 is the unit normal vector, and t is the unit
tangent vector. Equations (79), (80), (82), and (83) will be recognized as the

boundary conditions in real time.
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For problems with azimuthal symmetrf, it is a simple matter to
show in real time that B¢ vanishes on the z axis. Let us look at the der-
ivation in retarded time. Integrate Eq. (77) over the contour shown in

Figure 4.

ds -
dn
j— 11—
c
0 r

Figure 4

Contour for Evaluating B on the z Axis

o A
For our problem, B = B¢¢ . The azimuthal symmetry ensures that the mag-

nitude of f’. is constant on ¢. Therefore,
fﬁ-ﬁn=_21rnB (84)

Here n is a coordinate measured perpendicular to the z axis. Provided n
is small enough that B does not change appreciably over the surface s, we

can, for points on the z axis other than the burst point, set

8 — —
ﬁj?‘ Xx B+ ds= % jsine ds (85)
z n=0,z
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Use the approximation ~

sing = — = (86)
which is valid for n € z - a. Then Eq. (85) becomes
3 ©oB
o (e, ama2m B
57 [T X B: ds= 3z - &) a7 . (87)
S =0,z

Assume that jz’ BEZ/{-)'T , and anS /87 are finite on the .z axis and that the
constitutive equations (54) hold. Then in the limit n—>0, Egs. (77), (84),
and (87) yield ' '

209E (n,z,7)
Z N

lim lim
(277'17) B (ﬂ,Za T) - 2 e a.r

n—>0 ¢ n—0

2,
7844 Jz(n, zZ,T) +
C

. o . . 27‘-1_'3l 8B¢ (n:ZJT)

Sz - &) o7 (88)
or
L | . o —
im N L L
n—>0 B¢(n,z,'r)--0. (89)
Another obvious symmetry condition is that
lim _ - ‘
n—>0 En(n,z,'r) =0 . _ (90)
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Difference Equations

At a mesh point the independent variables may be written
€ =1+(1-1i)AE, ¢ =a+(j- DAL, t = kAt (91)

With this notation, Maxwell's curl equations (69), (70), and (71) may be re-
placed by difference equations centered at (i, j, k-1/2). We find

1
AT

. . _oli, §, k-1/2) .
[Eg(ls Js k) -‘EE(I’.J’ k_l)] - - %€ [EE(]-: Js k)

jg(i, j» k-1/2) 2 .
+2A§[Bq§(1’ j*l, k-1) - Bd)(l, j, k-1)

+EE(i’ js k-l)]- <

2

+ By (1, §, k) - By (i, j-1, k):l At[B¢(1 3, k) - By (i, § k- 1)] (92)

O-(i: jJ k_]-/z)

1 . . _ o
_[E§(1, j. k) - Ef(l’ Js k—l):'— [E§(1’ is k)

AT 2¢€
o i jg(i, j,» k-1/2) :
+E§(1, Js k-1):|- : — ZAE[ ¢(1 1, js k) - B¢(1, j, k)
2
+B¢(1, J,kl)-B¢(1+1 J,kl)] [B¢(1, s k)-B¢(1. J.kl):l (93)
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B¢(1 is k)-B (i, J,kl):l ———?( 2 | [Eg(i, j+1, k-1)

1;]

- Bg (i, §, k1) + Bg (L, §, k) - Bg (i, j-1, k)]

1 1-£2
20E\ .2 .22 [Eg(“'l’ Jo k1) - Ep (4§, k-1) + By (4, §, k)
¢ -§ a Lo
1,]
a l-%’z =1
- B (-1, §, k):|— oxd G B (4, § 6) - By (i, 3, k1)
2 2
1 § -a . .
CAT 2 2 2 l [Eg(la Js k) - EE(I, 1 k-l)] (94)
g -&7a lij

These equations may be used both in the air and the ground meshes provided
appropriate values of 0, and € are inserted. Equations (92), (93), and (94)
are solved for the fields in a manner analogous to that used in the real-time
code. The one difference in the methods is that in the retarded time code
the fields are determined in the air mesh along a-line of constant j, the
boundary conditions at the ground are applied, then the fields are obtained
in the ground mesh along this same line in the d1rect10n of decreasing § ;
whereas in the real time code the boundary cond:ttons are applied last

To facilitate handling the boundary conditions at the ground, two
lines of points are defined which have & = 0. One set of these is assumed
to be in air and the other to be in the ground. The mesh near the boundary
is labeled as shown in Figure 1.

The boundary conditions at this interface are théf Eg and B é are
continuous. This implies that B,Eg /3T and 3B ¢ /8T are continuous. Thus

we set
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£

—~
—~

OE (ia, i, k-1/2) ) angig, j, k-1/2)

N =

aT arT

e
8E§ (1a—1/2, Js k-1/2)
oT

aEg(ig+1/2, j, k-1/2)
+ = (95)
8B¢(1a, j.» k-1/2) _ BB¢(1Lj, k-1/2)=sl. 3B¢(1a—1/2., j, k-1/2)
oT oT 2 oT
9B, (i +1/2, j, k-1/2)
L9 g (96)
T
By writing Egs. (95) and (96) in difference form, we obtain
) ' G(ig+1/2, j, k-1/2)
E[Eg(la: J: k) = Ec(laa JJ k_l)]= - 8€ [Ef(lg’ J.v k)

"

(ig+1/'2, i, k-1/2)
2€

‘ i
+ B (141, 1, k) + By (i 41, §, k1) + B (i, d, k-l)] X

2
u

B (i, i k)-B.(i+l,j k)+B,(i,j k-1)- 5
-m[ ¢ 1a: 1 - ¢1g s Js )+ ¢ la: Js = -

B¢(ig'+1, is k—l)]

au

-2 :B¢(ig+1,.j,.k) - -B¢(ig+1,.j,.k-1)+B¢(ia, j» k) =By iy, i, k-l)]

o(i -1/2, j, k-1/2)
a

- Be, [gt(ia—l, i, k) -Ing(ia, i, k) +E§(ia, j» k-1)
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(i-1/2, j, k-T/2) 2

j
. . ¢ "a , .
+E§,(1a-1, i» k-l)]- 260 -2 E[B¢(1a—1, i, k)

. . . . . . ac . .
- By (i, §, k) +By(i -1, j, k-1) - By (i , i, k-1):|-ml:3¢(1a-1, j, k)

- B¢(ia-1, i k—1)+B¢(ia, js k) - B(b(ia’ Js k-—l)] (97)
and

2 2
1[ . . . . 1 £ -a . .
A B (15.]: k)_B (1:.]_1 k_l)]: [E (1JJ+1: k"']-)
AT| ¢ Ta ¢ "a 8A§§2_a2AE2/4 E'a

- E (1a, is k_1)+E§(la’ j, k) - E (1a, j-1, k) +°E,€(1a—1, j+1, k-1)

§ g

- E (ia-l, s k—1)+EE(ia_1’ j» k) - E

.'- .- . + -+ s k_
g (1a 1,Jl,k)+E§(1g 1, j+1 1)

3

- Bg (41, §, k1) + By (141, 4, k) - B (41, §-1, k) + B (i, j+1, k-1)
. ) . . . . 1
- EE(lg’ j» k-1) +EE(1g, js k) - EE(lg’ j-1, k)]— IAE

1 —A52/4

> E, (i -1, j, k) + E

(i -1, j, k-1) - E
¢? - a%ag2/4L % 2 2

(i +1, j, k)
g

§ 9

1 §2—32

4cA'r§2_ a2A€2/4

- E_ (i +1, j, k—l)]—
g

§ [Eg(laa j.v k)_EE(la’ j: k_l)

+EBg (i -1, j, k) - E

£ g(ia—l, i, k-1) +E§(ig, js k) - EE(ig, i, k-1)

29



1-A€ /4
§ AS /4

» . . . a
+ E (1g+1, j, k) - EE(1g+l’ j» k 1)] Tonn

g I:ZE (i ,j, k)

_ . C _ L B (i +1, i, &
ZEC(la’ J'k1)+E§’(la 1, j, k) - E (la 1, j, k-1) + C(lg j, k)

g
- Ec(ig+1, i, k-l)] (98)
Evaluate zaEE /aT at (ia, j, k-1/2)
1 . . olis 3, k-1/2) .
E_[Eg(la, 5K - Egli, g, k—l):l = - e [Eg(la, i, k)

j (ig, j, k-1/2) Cz

g
€ * 35t | By

(1,J+1 kl)-B¢(1,J,k1)
0

+EE(ia’ i k—l)] -

+B¢

(1a, j, k) - qu(la‘ j-1, k)] -_A_; qu(la’ i, k) - Bti)(la’ s k-lil (99)
Evaluate E’EE /3T at (ig’ j,» k-1/2)

1 - ' cr(ig, i, k-1/2) = -
T U P -
2o g 30 - B Gy 1, k1) 5 Bg (i, 3, ©)

(1g, j, k-1/2) u2

€ 2A§‘ d>

+ E (l,J,k-l)] (l,J+1 kl)—B¢(1,;|,k1)

2
. . . . . u . . . - _
+B¢(1g: J.’ k)-B(b(lg, J"']-, k)]__C_A—T[B¢(1g, JJ k)_B¢(ng J; k 1) (100)
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Evaluate Maxwell's curl equations at Q‘i'g+1, j, k-1/2)

1 o(ig+1, i, k-1/2)
EI:Eg (1g+1, j, k) - EE(1g+1’ s k-l):|= - e [E§(1g+1’ js k)
(1g+1 i, k-1/2) 2
+E (1 +1, j, k-l)] < 2A§|: ¢(1 +1, j+1, k-1)
2
- B¢(1 +1, j, k- 1)+B¢(1 +1, j,, k) - B ¢(1 +1, j-1, k)]—— B¢(1 +1, j, k)
- i, j, k- 101
B¢(1g+l’3 1)] ( )

O'(ig+1, i, k-1/2)
2¢€

1 . . : . ) . .
A—;'[Ef(lgﬂ" j» k) - E (1g+1, s k—l)J— - [E§(1g+1’ js k)

§

s, k-1/2
(1g+1 i». k-1/2)

€

+E (1 +1, J,kl)] ZZE[B(b(ig’ Jo k)-B¢(Vig+1, i k)

2
+B¢(1g+1 Js k—l)-r ¢(1 +2, _],kl):l B¢(1 +1 js k) o

- B¢(ig+1, i, k—li' (102)
l[B (1 +1, k) - B (1 +1, k-1) §2_a2 l_E (i +1, j+1, k-1)
Arl"d 3 ¢ 3 ] 28T 2 _ 2, ettt T

1

- By (i1, 3, k1) + Bg (141, §, k) - Bg (141, 5-1, k)] - ox%
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A

1- a8 '
E (i, ], k)-E_(i+1,j k)+EBE_(i +1, j, k-1)
§2-a2A§2 ¢ e c e ¢ ¢
1 §2 a2 '

- E,_ (i +2, i, k-l)]— - [E i +1, j, k) - B, (i +1, j, k—l]

¢g Y Shr (2 2ap LTe gt B 1T B )
a 1—/_\.52
- E, (i +1, j, k) - E_(i +1, j, k—l)] (103)
CA"':;Z-azAEz[ ¢ g £ g

For given j and k, Egs. (97) through (103) are solved simultaneously for the
four independent field quantities at the air-ground boundary and for the

three field quantities at the point (ig+1, i, k).

A Difference Code for Problems With Certain Additional Symmetry

Provided the electramagnetic fields in the region above the wave re-
flected from the ground hzams1 spherical symmetry, considerable savings in
storage and running time of the retarded time code may be achieved. One
may realistically assume this symmetry if (1) the magnetic field of the earth
is neglected, (2) the burst is low enough that the density gradient of the at-
mosphere is negligible, and (3) the weapon involved would produce a spheri-
cally symmetric explosion in a homogeneous medium.

The code takes advantage of the symmetry mentioned by using the

simple differential equation,

L. 2.2 | (104)

which is valid for spherically symmetric source distributions, to calculate
fields on a curve just above the wave front reflected from the ground. These

are then used as boundary conditions for the two-dimensional retarded time
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code which calculates fields only in th,:e region occupied by the reflected wave
and in the ground. Thus, storage and calculation of fields and sources above
this reflected wave are ignored. Another advantage of handling the problem
in this way is that one avoids the usual artificial device of placing a perfectly
conducting sphere around the burst.

The geometry of the retarded time code is particularly well suited to
. this problem. The wave front of the wave reflected from the ground is a
portion of the circumference of a sphere whose center is the image point of

the burst and is therefore described by
¢ - af =ct (105)

combining this with Eq. (41) yields

. o228 (106)
C

Thus for a given retarded time of the burst point, the wave front reflected
from the ground lies on the hyperbola § = constant. This greatly facilitates
applying the boundary conditions obtained from the solution of Eq. (104).
That solution is obtained by writing the differential equation in difference

*

form . .
“n _ -_

- .
See Section V for a finite difference solution of Eq. (104).
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1Vv. GEOMETRY FOR THE LOW ALTITU]ﬁE EMP CODES

By referring to Figure 5, define prolate spheroidal coordinates as

1 (107)

"l

1 1 _ -
E —E(rl—r), g -—2-(r1+r), ¢ =tan

Note that surfaces of constant £ are hyperboloids of revolution and those of
constant ¢ are prolate spheroids (i.e., prolate ellipsoids of revolution).
Also observe that all real space lies within the range of coordinates

¢ = a, -1£€851 (108)

The z axis is separated into three segments determined by

£ =1 for z < a (109)
x=y=0 or £ =a for ~-a<z<a (110)
g€ =-1 forz<-a. (111)
z
Point

4>
&
/
/

Figure 5

Geometry for the Prolate Spheroidal Coordinate System
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.
The x-y plane is taken as the ground-air interface and according to Eq. (107)

is the degenerate hyperboloid determined by § = 0. The burst point of the
weapon is on the z axis at the point z = a which is also described by § = a,

€ = 1. The wave front of the electromagnetic pulse generated by the weapon
spreads out in air from the burst point with velocity ¢ and is determined by

r = ct, or by
£ - af =ct (112)
Thus for fixed t the wave front describes a straight line in the prolate

spheroidal coordinate system.

From Eq. (107) we find

rl =f + af (113)
r=¢ - af _ (114)
Now
r’i=(§ raE) =kl 1y r (2 + ) (115)
P2 -af) skl +yl (2 - a)° ' (116)

From these it follows that the transformation equations from cartesian co-

ordinates to prolate spheroidal coordinates are

g =2—];'1\Ac2+y2+(z+a)2-—2—]—;\/X2+y2+(z*3)2 (117)
¢ =%\A{2+y2+(z+a)2+—;-%(2+y2+(z-a)2 (118)
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1

_ e
¢ =tan J (119)
X

where principal square roots are intended. The inverse transformations

are

X = \AEZ - az)(l - & 2) cos9 (120)
v = Vie? - a3 - £2) sing (121)
z =§¢ (122)

Transformation equations from a spherical polar coordinate system
centered at the burst point to prolate spheroidal coordinates may be ob-

tained in a similar manner, we find

2(a/r + cos@)

§ = 1 +v/1 +{4a/r){a/r + cosé) (123)
4 =§ 1+ V1 N (4a/r)al/r + cose)] ‘ (124)

The azimuthal angle is the same in both coordinate'system‘{ﬁl. The inverse

transformations are

}1
1}

¢ - af g (125)

_ -1{ 88 - a
0 = cos (-E"_—ag) (126)
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, and h é such that

.
We now seek the scale factors h., h

g7 %

d52 =h2 d§2+h2 <-.u§2+h2 d¢2

§ g ¢

(127)

where ds is an element of length., To find these, differentiate Egs. (120)

through (122) and substitute into

d82 = dx2 + dy2 + dz2
Obtain

2 2 2 2 2 2
1- E : g - a

comparing Egs. (127) and (129) gives

5" Vie? - ol - £

=3
1

a2+ e?-ady-g2) as’

(128)

(129)

(130)

(131)

(132)

Because Eq. (129) does not contain cross terms in d§, df, and d¢ it follows

that we are dealing with an orthogonal coordinate system. Incidentally, the

coordinates are cyclic in the order £ -§ -¢.
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: ~
By using Eqs. (130) through (132) one easily finds expressions

for the various vector operations in prolate spheroidal coordinates.

/ 2
5% o a4 \/ 2 2 2, 8f A
3F =&+ \VET-a )1l -8T) 579 (133)
¢2_ g2.2 g‘ Eza R EX)
DT - i ] o (\foz .22 .2 2
v 5E 2%)1 - € )f.g.,) 5 (\Xf g%a”)” - a )fg‘)
2 .22
0 " -E"a
o — £ ) (134)
99 (\/(t‘z a1 - £ "’)}
A

s 3 9 2 2 2
Vx i = — . a—,;(\/(t —a)(l-E)f¢)

Vie? - e28a -9

. 4 B 2_g2.2
Vie? - g2 - a0 2%\ 1-82 ¢

5 7 2 ) Avie?-2a-sH] o [ 2222
‘g(\/(f -a)1-§ )f¢> +9 2 .22 ‘:a Y

g - &

2
€ a
———— £ (135)
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2, _ 1 B [, 2088, o, 2 _20f
V= — [(1 s>a§]+a§ (t’-a)]

: ’;2_&232 5f

— (138)
€2 - aBa-eH

0
+—

8¢

Let us now consider the vector transformation equations between
prolate spheroidal coordinates and other orthogonal systems. For con-
venience denote the base vectors in the prolate spheroidal system by Gi and

those of the other system by é\i. We may expand Qi in terms of the Gi'

AN A
e —Z aji u:i (137)
j
But
A A = A . A - A A
S 85 =0y= L gy W) - (W) = T oayye, @ - Q)
k.’»e k,ﬂ
= L @ity =Eakiakj - (138)
l.e.,
_ 39
Za’kiakj 6ij | (139)

k

similarly it can be shown that
Za’kiafﬁ =6, , (140)
i _

Equations (139) and (140) are the orthogonality relations for the transforma-

tion coefficients T Multiply Eq. (137) by @ and sum over i.
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A A A _A
Zakl 1 ): LI ) 5kj = (141)
1,] J
Equation (140) has been used. Thus
N A
u = Z @8, (142)
J
Any vector may be expanded in terms of either set of base vectors.
- A L N . A
f § e, iz- Lo u Y £1,9, (143)
s

Here f'j are the components of f in prolate spheroidal coordinates and fi are

those in the system with base vectors /e\i' Observe that
T =)
. ):aij I (144)
J
Multiply this by ;> Sum over i, and use the orthogonality relation. Obtain

= 1 ‘
£, % aejif ; (145)

An easy way to determine the transformation matrix is toMnd an expression ™

for the prolate spheroidal unit vectors in terms of those of the other coordi-

nate system and comparé to Eq. (142). Now,

A
£ -n Ve, ?=h,:vr:, 6 =n

e vé (148)

¢

we wish to find the transformation to spherical polar coordinates centered
at the burst point. By taking the gradients of Eqs. (123) and (124) and em-
ploying Eqs. (130), (131), and (146) we find
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p
A
g:-ﬁi‘.{}-f_g (147)
g S
A
§=?11—’1>-La—’e‘ (148)
e 13

A A
Of course ¢ is identical to the corresponding spherical polar unit vector. By

comparing Eq. (142) with Egs. (147) and (148) the desired transformation

maxtrix is obtained

(149)

Because of the orthogonality of the transformation, the inverse matrix is

~ 2 1
_1 b B A
(@.)  =la.)= T (150)
ij i ) a
hy he
<
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V. A TEST PROBLEM .

The following test problem was devised to provide a check on the codes.

Current and conductivities produced by the weapon are approximated by

~

- J exp{:&('r - 'rp) - r/Ry]

_o A
J(r,7) = r2 1+ expEa + BT - -rp)] r

(151)

o(r,r) :E exp[a(—r - Tp) ) r7Re]
, 21+ exp[(a + B)(r - qu

(152)

in which r is the distance from the burst, 7 is the retarded time of the burst
point, and the other quantities are suitable parameters. With these inputs,
causality implies that in the region above the wave reflected from the ground
the solution of the problem is spherically symmetric.

¥or spherically symmetric problems, the only time dependent field is

determined by

—_—— e - — (153)

A numerical solution of this equation may be obtained by writing it in

the finite difference form

i (j, k-1/2)At P
I +(1_G(J,k1/2)At)E(j, 1)
E (4,k) = € 2€ r
r 7’ o(j, k-1/2)At
1+
2e

42



An exact solution 6f Eq. (153) is o

t t

Er(r,f) =-I jr(t') exp -J’ o(t')dt" ) dat (155)
tl

with inputs given by Eqs. (151) and (152), numerical results obtained from
Eq. (154) and Eq. (155) compare favorably with the output of the two dimen-

sional codes in regions where the latter codes have the proper symmetry.

3%
Longmire, C. L., Close In E. M. Effects, LAMS-3072, E-3, May 1964.
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