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Abstract

. The following is a derivation. of a criterion for evaluating the surface
burst nuclear electromagnetic pulse (EMP). fields using. the formalism of the
one-dimensional, inhomogeneous diffusion equation. The demonstration consists
of finding the conditions on air conductivity required to insure that the solu-
tion to the diffusion equation satisfies, approximately, Maxwell's equations
(and hence the inhomogeneous wave equation).. This solution to the inhomogeneous
diffusion equation is the general solution because the homogeneous solution is
zero (we expect no fields without the driving current).
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The following is a demonstration offthe validity of evaluating
the surface burst nuclear electromagnetic pulse (EMP) fields using the
formalism of the one-dimensional, inhomogeneous diffusion equation. The
demonstration consists of finding the conditions on air conductivity
required to insure that the solution to the diffusion equation satisfies,
approximately, Maxwell's equations (and hence the inhomog.wave equation).
This solution to the inhomogeneous diffusion equation is the general
solution because the homogeneous solution is zero (we expect no fields
without the driving current).

First let's establish the criteria which insure that the EMP
fields are described approximately by the diffusion equation. In regions
much nearer the ground than the nuclear burst point, the field components
and spatial dependences are conveniently described in a cylindrical
coordinate system-* We will assume azimuthal (¢) symmetry of the radia-
tion source and the enviromment. In this case, Maxwell's equations
reduce to (if only radial driving currents are considered)
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then, our set of equations becomes
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With the z axis an outwerd normel to the earth and the origin at the
projection of the detonation point on the edrth's surface,
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If we take the derivative of. equatlon (6) with respect to z and use _equation
(8) to eliminate (3E /az), we obtain
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in regions where the electrical properties are not funections of z. This
equation can be rearranged to the following form:
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This is the one-dimensional inhomogeneous diffusion equation. I intend to
develop a criterion for how late in time diffusion theory is applicable. This
demonstration will consist of showing .that the field solution to the diffusion
equation (equation 10) for a step-function driver insures that the criteria
(4a), (4b), and (5) are met for certain levels of conductivity. And, there-
fore, the solution to the diffusion equation is also an approximate solution
to Maxwell‘'s equations.

The solution of equation (10) with e step function current and conductivity
driver has been obtained. by Babb and Graham using the Green's function method,
and by Baum using Laplace transforms (for an infinitely conducting ground).
This solution .is
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T will investigate the conditions under which.the fields, given by
‘equations (12), (6), and (7) satisfy the criteria (ka), (4b), and (5).
These conditions concern times of applicebility and conductivity levels.
Presumably, these same ccnditions are not strictly appliceble for z > Q.
Considering the fact that the solutions (11l) and (12) ignore.electron
turning and finite ground ccnductivity effects, I doen't believe that a
more rigorous demonstration is warranted. In any case, we can examine
our fiiaé E. and E, solutions for satisfaction of.(ka), (4b), and (5)
for z . ’

Our first criterion (ka) is that leﬁrl << {oEr| e This.
eriterion is met if both quantities are zero at z =0, and = :
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Thus, if our Bp from equation (12) satisfjes inequality (14) then it
satisfies inequality (13). And, since IeEr equals IcEr[ at z =0
{because E. is always zero at the surface), then the gE, grows much
more rapidly than €Ep with z, and thus the criteria (ka) is satisfied
for z > 0 and €E, can be ignored. . We can now state the
conditions on time and conductivity which insure satisfaction of (4).
Iet's simplify expression (12) for Bp.
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and (14) requires that -
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where T = t - = (the retarded time) .

The second diffusion equation criterion, inequality (bv), is met
if (4a) is as will be seen as a substep of the following analysis. The
third diffusion approximation criterion, inequality (5), requires that
|3Ey/32| >> |3E,/dr| . The left hand side of thils inequality can be
expressed as
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in the diffusion approximation. - And, if we assume - (4b) temporarily,
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Assuming this allows us to express the right-hand side of 1nequa.lity (5)
in terms of Bp.
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We know thqt
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for the diffusion approximaticn sclution for a step-function driver.
We now need the radial dependence of J and g. We will assume that they

are defined by
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where A is an effective ‘attenuation constant for

eonductivity. Then,
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Then, one can express the right-hand side of inequality (25) as
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or, finally, ; ~
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So, our inequality:-(5) becomes
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This conductlvity requirement is a function of time, radius, and the
spatial attenuatlon constant of the curren+ and conductivity.

Back.at Lnequallty (22) we assumed satisfaction of criterion (bb)
which requlrea that |€E,|'<< |oBz| . We have not yet justified this
assumption. IFf this assumptlon 1s true,. then, as was stated in
equatipn (23), '
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Thus, the right-hand side of inequality (22) can be expressed in terms

of Bp
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The leff-hand side is expressible as.
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Substituting (37) ‘and (38) into (22} yields the conditions for
satisfaction of the seccnd criterion, (4b),
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But this condition is never mere restrictive than our condition on @
due to our first criterion {see ineguality 20). Thus, we have only
two unigque conductivity requirements, (20) and (34), which insure that
the diffusion equation {10) describes the EMP fields and these ffelds
are defined by {(11), (6), and {7) fcr the step function driver. We
heve assumed that the magnetic fieid given by (11) behaves similarly
to that of (12) for points near the ground.
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If a more rigorous analysis is necessary, one should be able to determine
the conductivity requirements based on equation (11) rather than (12). Also
this analysis could be extended to other driving forms such as an exponentially
varying J and o.






