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ABSTRACT

Several possible effects of a rough air-sea boundary upon electro-
magnetic fields observed near that boundary have been examined. The
calculated effects are small for surface-wave propagation above a

slightly rough surface, large for surface-wave propagation above a

'periodic, corrugated surface, and moderate for propagation over a rough

surface near a source whose dimensions are appreciably larger than the

spacing between scatterers,
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I INTRODUCTION

In the study of electromagnetic phenomena, it is often necessary
to make measurements near a boundary between two media that is not
smooth. The surface of such a boundary can distort an electromagnetic
field. The form of the distortion will depend strongly upon the ratio
of surface dimensions to electromagnetic wavelength. -This study con-
siders several idealized forms of distortion, at radio frequencies from

1.0 kHHz to 10 MHz, due to the roughness of a sea surface.

A sea surface is complex in that it contains a broad spectrum of
random ripples. These ripples or waves vary from long-period, large-
dimension swells to rapidly varying, short-dimension, wind-blown ripples.
This surface is time varying and can only be described statistically,
However, for most radio frequencies, particularly those considered here,
the sea surface can be considered stationary, although it cannot be

uniquely defined for any instant.

In studying the effects of a nonsmooth surface on electromagnetic
energy, it is often convenient to make one of two simplifying assump-
tions, If surface dimensions are large compared to electromagnetic
wavelength (high frequencies), then the surface.can be considered as a
collection of discrete secondary sources. If surface dimensions are
small compared to wavelength, then the surface can be considered smooth,
and distortion effects can be treated as an electrostatic problem. For
the actual sea surface and for the frequency range of 1 kHz to 10 MHz,
both these conditions exist, along with the intermediate condition that

the wavelengths are similar to the surface—rbughness dimensions.

To gain some insight into possible electromagnetic distortion
effects caused by a rough sea surface, three mathematical models are

considered:

(1) The effects of the variation in height between a
point in space near the surface and the actual

surface is examined by consideration of the




variation with height above the surface of an ‘

electromagnetic surface wave.

(2) The possible effects upon attenuation rate (along
the surface) and decay rate (normal to the surface)
are considered for the case of a propagating sur-
face wave with wavelengths near the surface rough-

ness dimensions.

(3) The effects of scattering upon the fields near an
extended (as distinct from point) signal source are

examined,

The results obtained for the mathematical models treated in this
report do not define the effects of an actual rough sea surface on
electromagnetic fields near such a surface. Rather, the models are
highly idealized, both in the features they do consider as well as in
their neglect of some possibly significant features. For example, sea
spray and temperature gradients near the surface may cause field dis-
tortions, although these effects are not included in this study. Models
have been chosen to demonstrate whether or not the effects considered .

here are significant, while the difficulties of an accurate treatment

of the actual problem have been avoided.
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II ELECTRICAL PROPERTIES OF SEA WATER

In the 1-kHz-to-100-MHz frequency range, the electrical properties
of sea water vary considerably. The value of sé, the complex dielectric
constant of sea water, is a function of frequency. It can be written in

terms of the relative permittivity and the conductivity as

’ . 11 € - g € .
ec = g ie = i e = i 60 100
(e} o o
where
e’ is the relative permittivity of sea water (81)
g is the conductivity of sea water (4 mhos/meter)
10 is the wavelength of the EM radiation in meters
(corresponding to a frequency w)
_ € is the dielectric constant of free space
. (8.854 X 10712 farads/m).
+Hiwt

An e dependence for EM waves is assumed. The units are rationalized

MKS., The desired quantity ec is tabulated in Table I.

From Table I it is clear that, at the frequencies of interest here,

the sea may be treated as a slightly poor conductor.

~

Table I

COMPLEX DIELECTRIC CONSTANT OF SEA WATER

Wavelength
(EM Waves) ec
Frequency (Meters) (Sea Water) Quality of Conductor
1 kHz 3 X 105 7 80 - i(7.2)(107) ~ Excellent
10 kHz 3 X 104 80 - i(7.2)(106) Excellent
100 kHz 3 X 103 80 - i(7.2)(105) Very good
1 MHz 300 80 - i(7.2)(10%h Good
10 MH=z 30 80 - 17200 Fairly good
100 Miz 3 80 - 1720 ' Fair




IIT SURFACE WAVE PROPAGATION

A, Smooth Imperfectly Conducting Surface

To arrive at a result which shows the effect of a randomly rippled
surface on the propagation of a surface wave at the interface of two
media, it is necessary to understand the behavior of a surface wave
when there is no ripple or wave at the interface. Consider the situa-
tion shown schematically in Fig. 1. Only the TM mode (E mode) is con-
sidered, since it is assumed that no magnetic losses occur in either
medium. In this case, the sea-air interface is assumed to be smooth,
The interface boundary is located at x = 0, and we are interested in

propagation along the z-direction.

MEDIUM {

Ex AR (€,, fLo)

SURFACE IMPEDANCE Z, = R, +iX,

;/:/9/' 7 :?:;;7! 77 7 ’E/ 7 7 7 77 7 7 7 77 7 7777

H
y y MEDIUM 2

SEA WATER (€, fb, )
(SLIGHTLY LOSSY CONDUCTING

X=0

MEDIUM)
, , , D-6086-7
FIG. 1 SCHEMATIC OF A SMOOTH BOUNDARY
Let us now write (considering the'TM mode only)
Hy ~ A exp [iwt ~ iBz + iox] s x>0 . (2)

The behavior of the field components for x > 0 is of particular interest

to us., From Maxwell's equations,




o +B° =k k == . (3)

. *
It can be shown that, for the surface wave to propagate, it is necessary

that

a=a' +ie¢’' =kz =k R + ik X (4)
O s o s O s

and

B=B"-ip'’ =

I
——
w

AV ]

1
QN
—

=k(1+X2-R2-ZiRX) , (5)
o] S S S S

where zS is the surface impedance,

For example, when Medium 2 is a pure metal,

i

k 2
. (8]
s a+1) 20z
[

N
l

1))

and

377 ohms

N
It

We will assert next that Eq. (6) may be used to yield reasonable
answers in our case, at least at frequencies below 10 MHz. It then
follows that

K \®

. (o]
o ko(l + i) 2020 (7)

. :
If the wave impedance (EZ/Hy) in Medium 1 is denoted by z, then

2] = 0Zy,/k,. Since we need z; = z,, it is necessary that o = kozo/2
or o = k,z_, where z_ = zz/zo. (Note that Zg is the wave impedance
in Medium 2, and Z, is the free-space impedance,)
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and
1
ik & K2
B = ko 1 - E;“ k:ko -t 20z - (8)
o (o)
That is, we have
3/2
o' o ko/ (20z ) ® s 9)

where

ko = Zn/ko and ¢ = 4 mhos/meter.

If we denote the tilt of the phase front of the surface wave with
respect to the interface by 6, it is clear that tan 8’ = o'/B’. The
values of the parameters a', a", B', B", and 6’ are tabulated in

Table II for a range of frequencies.

The behavior of the E field components can be obtained from that

of Hy through Maxwell's equations. From

~
S 3D >
X = = = = i >
vV X H 3% 1weoE , X 0
we have
any
iw = - — >
Exl eo 32 B x 0 ﬁ (10)
and
aHy
W = i > .
Ezl € % s X 0
Iy

The power flow along z, per unit width of the surface, is given by

z e
18" % % -28''z
P =377 K, AA e , (11)

and the power flow into the surface PL (due to losses on the surface),

per unit area, is given by
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(for small B’’) . (12)

It is clear from the values of ef given in Table II that at the
frequencies of interest the phase front is practically normal to the

interface. Stated differently, we have EZ/Ex << 1,

B. Stochastically, Slightly Rough Surface

The main result of interest to us that has been obtained in Sec.
III-A regarding the amplitude of the surface wave (ignoring the phase

factors) is
H ~ e B x>0 s (13)

where o'’ is seen to be a decay constant. That is, the magnetic field

Hy (hence Ex and also Ez) decays with increasing distance from the
interface. .

In practice, however, the surface of the sea is slightly rough
even under "quiet" sea conditions. Let us assume that the roughness
is stochastic in character, where the wave heights (or heights of
irregularities from the smooth, idealized sea surface) are describable
by a probability distribution. We further assume that the maximum

5 . . L <<
height hmax of any irregularity is small, hma 10. Note also that

b'e
for the physical optics approximation to be valid, it is necessary

that dh/dz << h/ko.

With the above in mind, the results for a smooth surface can be

used:

E ~ e s (14)




where o'’ is the decay parameter derived for a smooth surface, and x is
essentially the instantaneous height (since the speed of light

¢ >>> speed of ocean waves).

Note that if a sensor is located at an average height x0 from the
interface, one may write (ignoring the phase factors)
ri ~
(o7 (xo+x)

Hy ~ e »

where ¥ is the instantaneous wave height (assumed positive but can be
negative) measured with respect to the mean height xo. However, if

the instantaneous height of the sensor from the mean "smooth" surface

is known, one may write

stochastic s1f_inst . _+f_inst
Ex 4 - X -X i1e (x on
Esmooth ~e - e ,  (15)
x
instantaneous
where
xlnst _ + %,
o

If P(X) denotes the probability density distribution of wave
heights, one can write the foilowing expression for (Ex(x)), the

ensemble average of the x-component of the electric field,

foGa’-a' x40
(B, (x)) ~av{5e P(X)ax (16)

-

other dependences of Ex on t and z having been ignored.

%k
We assume below that the wave heights have a Gaussian distribution;

that is, 16t

*
In general, it is possible to express other types of distributions in
terms of Gaussian distributions and their derivatives, as is done, for
instance, in Gram-Charlier series representations.



2
1 (x - xo)
P(x) = —=—=5 exp |- ——— . (17)

2
2nox zcx

Equation (17) implies that P(x) is also Gaussian. Note also that
2 2 2
o, = &7 - (x)

It is clear that any random variation in the height of a sensor
will yield a random variation in the power recorded by it. To estimate

this variation in power, we proceed as follows.

The power flowing along the z direction is proportional to
* ~
[Ex(x) Ex(x)]. When P(x) is given by Relation (17), we find that

9 * —2&"x0 2(a")2oi
(B ) [) = (E_(E_(x)) ~ e - e (182)

77 i 12 2
-o xo -i{a’) ox
(Ex(x)) ~ e e (18b)

. 7 . - N
(since ¢ kzal', in the present approximation),

and
" * —a"xo i(a')zoi
(E_(x)) = (E_(x)) ~e e . (18¢c)
X X
Hence,
(|Ex(X)|2> - I(EX(X))|2 2(a")2ci
= [<] - 1 . (19)

2
(&, D) |
Note that the left-hand side of Eq. (19) is always positive.

Equation (19) has the following interpretation. Because of the
random variations of the sea surface, we will observe a random varia-

*
tion 1in the power received by a sensor located above that surface.

*
This may be called a type of scintillation,

10
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By observing the rms value cEx of Ex (cEx = (lEx| ) - |<Ex>| , one can de-
duce the effective value of a”ox. It is clear that, if o, is known,

@'’ can be estimated, and vice versa. We return to this later.

C. Boundary Treated as a Corrqgated Surface

Another model that could be employed in the present discussion in-
volves the assumption that the boundary (sea-air interface) could be

represented as a periodically corrugated conducting plane (corrugations

infinitesimally thin); see Fig. 2. 1In this idealized model, the corru-
gations are assumed to represent the sea waves on the interface. Con-

sidering again only the TM mode, one may write

[ee]
. . 2mn
Hy = E An exp [:1031: @ X i{B + I ] s X >h , (20)

Nz=—&

where the An's are the modal amplitudes.

L — L—

> Z
INTERFACE X:=0

CORRUGATED SURFACE

y D-6086-8

FIG. 2 CORRUGATED SURFACE

One finds from the wave equation that the following condition must

be satisfied:

27n 2 2
B+ I = ko + o

11
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Note that the representation given by Eq. (20) describes the field for

x > h (that is, the region above the crest of the corrugations).

*
When h < 0,2 ho’ one can write approximately that

L 1In2
~ k t h -
ab o tan ko 1 o= (21a)
or
o ~ k tan k h(l - 0.22L {(21b)
o~ "o o h :

From Eq. (21a) we observe that a solution for ab exists only for certain
values of ko and other parameters (QB is always positive); hence the
properties of periodic structures such as the pass and stop bands be-

come evident.

The approximate description of the field component Hy for x > h is
given by
—Qb(x~h)

s S W
H ~A e e ipz e1 t

y , X > h . (22)

From Hy the other field components can be obtained by employing

Maxwell's equations,

Note from Egq. (21) that in the x direction the wave is not

attenuated at all (except for losses due to finite conductivity o):

0.
koh 1 - —~§§E = nm (no attenuation) R (23)
where n is an integer, n =0, 1, 2, .., . Also the attenuation is a

maximum-—-cutoff occurs--whenever

*

This is the regime of interest to us, since lo ~ 30 meters at a
frequency of 10 MHz, and h < 0.6 meter under reasonably quiet sea
conditions,

12




0.22L
h

kh(l - = (@m+1) 7 (cutoff) (24)

where
n=20,1, 2, ..

The expression for Pz, the power flow along the z direction per

unit width along the y direction, is found to be

*
AA Bzo

P , (25)

z ~ 4k o
oo

and the power loss per unit width of one corrugation PL is given by
sin 2k h
o

oK (26)
o

P = % R z AA sec2 koh L + h +

One can also write an expression for the attenuation constant BL’ a

measure of the power loss per meter in the z direction, as

P R ok [L+ h+ (sin 2k h)/2k ]
S 0 0 o o

BL =5ip = > nepers/meter . 27
z BL cos koh

To obtain low attenuation, the surface wave should be loosely bound to

the surface, that is, ab‘should be small.

Note also that, if the wave heights are randomly distributed
according to some probability distribution such as P(h), then by em-
ploying a procedure similar to that given in Sec. ITI-B, one could ob-
tain expressions for mean square deviations of the appropriate electric
magnetic field components or both. The results would show that the
cutoff and‘pass bands are not as well defined as Egs. (23) and (24)

. *
indicate,

%
Similar considerations apply for random variations in L.

13



IV SCATTERED FIELDS NEAR AN EXTENDED SOURCE

Scattering may appreciably modify the signal from an extended
source. Consider a semicircular cylindrical dipole sheet of charge

suddenly created above a conducting plane surface, as shown in Fig. 3.

DIPOLE
SHEET

REFLECTING SURFACE
SO T 77707 77 /}0 ;ST 77T 77T 7777

D-6086-9

FIG. 3 EXTENDED SOURCE MODEL

The source geometry in the x~y plane, normal to the cylinder axis along .
z, 1s shown in Fig. 4. The dipole sheet is created at a time
to =1t + ro/c, where t = 0 is the time at which the ionizing photons

are emitted at the cylinder axis, r, is the radius of the cylinder, and

D-6086-10

FIG. 4 EXTENDED SOURCE GEOMETRY




¢ is the speed of light, A dipole element at 5] can be observed at d,
on the conducting plane surface, only for ct > rO -+ r', where r’ is the

distance from the dipole element to d.

The quasi-static field at d at time t can be written

w2
(28)

where Ez is the static field of a constant line-dipole charge distribu-
tion above the conducting plane, and eo(d,t) is the minimum ¢ for which
the charge created at to can be observed at (d,t). The factor rode is

an element of arc on the surface of the cylinder.

The static electric field of a line dipole source is

E(r) = _92&_5 (cos e’ir + sin 0’1 f) s (29)

2 eor ©
where ¢gd{ is the dipole strength per unit length, r the distance from
the dipole axis, and e' the angle of r-to the plane of the dipole strip.
In the source geometry of Fig. 4, Eqs. (28) and (29) yield, for the

vertical (x) component of the electric field at (x,y) = (0,d),

ﬂ/z ! !
odd (sin ¢ cos 8" + cos & sin 8°)
E (d,t) = == der_ ~ s

r
o ()

(30)

where gdf now represents the strength per unit area of the surface-
dipole layer, and twice the E* given by Eq. (29) has been used to in-
clude the image of the charge distribution in the conducting plane.
After some trigonometric manipulations, tﬁe integrand in Eq. (30) can

be represented solely in terms of the integration variable 6:

15 —




2) /2

Ir |
of a8 cos B . (31) .

odl r (dz -
[o]

e
(8]

E _(d,t) = 5

2 2 .
eo(t) [d + r0 - 2 rod sin é]

Equation (31) integrates readily to

odd ro(d + ro)[l - sin ﬂo(t)]

E (d,t) = (32)
b4 2 2 .
neo(d - ro)[é + ro - 2 rod sin Go(ti]
Finally, the relation ct = r, +r' yields
d2 4+ rg - (ct - ro)2
sin eo(t) = =73 , (33)
o
which, when used in Eq. (32), gives
(_
4] ct =£d
gd4
Ex(d’t) ~ 11e d(d - r )< (34)
o ) 9 9
(d+ 1 )[(ct = r )" = (d-1r )]
o o o
. > d £ct ‘l‘
\_ 2 ro(ct - I‘O)

Scattering elements, located between r, and the observation point
d, may be treated to first approximation simply as reflecting surfaces.
They produce a contribution to the field at d equal to some fraction
of the field present at the scatterer at the retarded time for propaga-
tion between the scatterer and d, The amplitude of the scattered field
depends primarily upon the shape of the scatterer and its size relative
to the wavelengths of interest. An accurate determination of the
scattering coefficients, with a full treatment of the radiation problem,
has not been pursued here. The buildup of the quasi-static field of
the charge distribution has been calculated as an example (see Chap. V),
but the radiation field has not been calculated. A rough estimate of
the value of the scattering coefficient for the radiation field could
be obtained by comparing the area of the scattering surface with that
of the first Fresnel zone on an infinite plane surface tangent to the

scattering surface at the specular reflection point.

16




The total field is represented by a sum of terms of the form of

Eq. ('34) :

n

i
E_(d,t) =Z E_(d,t) s (35)

i=0

where

d - yi

i i
E(d,t) = oE [y ,t - ——]

(36)
with the primary field at d represented by i = 0, with QB =1, and

with the scattering contribution represented by the remaining terms,

with ai being the scattering coefficient for the scatterer at Y-

17




V DISCUSSION AND CONCLUSIONS

Physical feeling for the attenuation of surface waves normal to

the sea—air interface can be obtained from the following.

From Table II, we observe that the attenuation constant {normal
to the interface) is a small quantity, even at 10 MHz. That is, unless
the detector is located at a height of tens of meters from the surface,

one will not be able to observe any noticeable change in (a component

of) field amplitude at the elevated sensor from the corresponding
(component of) field amplitude at the interface. Note also that the
attenuation constant B’’ along the direction of propagation in the

plane of the interface is very small, and the phase front of the surface

wave is very nearly normal to the interface,

From Eq. (19) we observe that the rms deviation of a field (com-
ponent)--owing to the sea surface being random—-is a function of a",
the decay rate of the field normal to the surface, and of Ty the rms
deviation of the wave heights., Again, because under quiet sea condi-
tions cx is a small quantity, it is extremely difficult to observe by
experimental measurements the effect of random irregularities of sea
surface on surface wave propagation, at the frequencies of interest
here. For a wave height of 0.5m, for example, (xz) - (x)2 is approxi-
mately 0.03 m2 (the mean square deviation of a sinusoidal surface from
the mean height). This value and that of 1.745 X 1073 for o'’ at 10
MHz from Table II yield a value, from Eq. (19), of 1.906 X 10_7 for the
mean square variation of the field relative to the average field. At
lower frequercies, the variation would be smaller, since o'’ decreases

with decreasing frequency.

For the case of the corrugated surface model, let us consider the

following example.

18




Assume:
Frequency of EM wave = 10 MHz

Height h of the wave (corrugation) = 0.5 meter.

(This value of h represents fairly quiet
sea conditions.)

For a surface wave to exist, we require that ab be positive. Re-

call that
0.22L
@ =k tan k h [1 = (21b)
Since ko is always positive, we find that we need here
N
™
0<8 <=
6 2
or,
< i
- (2n + 1)m 6 < - |[2nm + E R (37)
where
6=%kh [1- 0.22L
[] h
J

In this example, we fi?d that surface wave propagation occurs when
0<L<2,7  meters
or
[n(136) + 36.4] < L < [n(136) + 70.5] meters_ s (38)

where

The first cutoff occurs when L = 36.5 meters.

19



The behavior of OB as a function of frequency f (with h and L
fixed) and the behavior of QB as a function of L (with h and f fixed)
is shown in Figs. 5 and 6, respectively., Since we are dealing with a
periodic structure, the general behavior of Qb repeats itself

periodically.

o
T

FIELD ATTENUATION CONSTANT,ao—m"
(o]
o
f

0 | | 1 | | I L
10 12 14 6 - 18 20
FREQUENCY—MHz D-6086-12

FIG. 5 ag AS A FUNCTION OF f WITH h AND L CONSTANT

Figures 5 and 6 indicate that in principle (when the surface is

represented by a periodically corrugated surface), one would observe
the stop and pass bands. However, since the sea surface is not as
well defined as in the case of the assumed model, it would be ex-
tremely difficult to correlate any experimental measurements with

theoretical predictions.




. AL

o
y-

and

oo ' 1 T T T |
| kro ® FOR
| L=36.4m
|
0.7'JI -
|
|
|
0.6 !
< ' —} h=0.5m
£
| I f 210 MHz
o |
Sl
'_.
Z 05 —
=
w
5 |
(o}
d |
z |
© 04 —
[
= |
>
= |
e |
-
< I
=4
o 0.3H -
= I
wl
r I
|
|
0.2H -
I
I
I
- I
ol —
|
|
!
o ] | ] | L | ]
35 40 45 ) 50 55 . 60 65 70
L———m D-6086-11
FIG.6 a; AS A FUNCTION OF L WITH h. AND f CONSTANT
Finally, note that the effects on surface wave propagation of
moisture (dampness) due to temperature gradients (near the surface)

of spray due to winds have not been considered in the present

treatment.
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Regarding the effects of scattering upon the signal from an ex-
tended source, the model developed in Chap. IV exhibits some interesting
features. The shorter the distance from the source, the more rapid is
the signal rise at early times. Equation (33) indicates that this be-
havior results, in part, because the different elements of the surface
become observable at a faster rate at the shorter distance., Thus, the
signal scattered from some point between the source and the observer

has a faster rise at early times than does the direct signal,

This characteristic of a faster rising signal at shorter distances
is enhanced if the charge distribution resides at the surface of a con-
ducting cylinder, rather than in empty space. In this case, a portion
of the charge distribution (that for which e' > 1n/2 in Fig. 4) is
shielded from observation by the intervening cylinder. Thus, the time
required for e'(t) to change from 0 to m/2 is characteristic of the

rise time of the observed field. This time interval is given by

. Y] T i
c[}e =1 —t(e =o)]
5
[dz - r2 + r‘:l -d . (39)
(o] (o]

The shielding action of the cylinder is greater at the higher frequencies,

c At

Ir

where diffraction of the fields around it is less.

Now consider scattering from some perturbation of the surface at
(O,yo), T, < Y, < d. The rise time at d of the scattered field from Y,
is determined by the time at which the shielding action of the cylinder
becomes evident(at Y, rather than by the time at which this action be-—~
comes evident at d. Thus, this rise time is characterized by the in-

terval between 8'/(t) = 0 and 8’/(t) = /2. This time interval is

given by

22




AW T

—~ S
c At = 2.2 © + rﬂ +(d-y)-4d
s 1 Vo o o Yo
- -
L -
-rhz—r22+r - d (40)
= _ YO o ° .

Comparison of Eqs. (39) and (40) reveals that Ats < At. The contribu-
tion from a given dipole element of,the source arrives at (0,d) later
via the scattered path than via the direct path. However, some source
elements are visible via the direct path that have greater propagation
delays (up to At) than does the element at 8’ = n/2, that has the

maximum delay (Ats) via the scattered paths.

Values of Ats are given in Table III for ro = 1 and 2 km and a
range of values of Yo between 2 and 10 km. The difference in charac-
teristic times between the shorter and the longer distances in Table
III is large enough to suggest that the form of the observed signal can

be appreciably altered by scattering of sufficient amplitude.

Table III

RISE TIME OF SIGNAL FROM AN EXTENDED SOURCE

Yo Ats (us)
(km) [To = 1 km | ro = 2 kn
2 2.44 -
3 2.%7 4,13
S 3.00 5.27
7 3.10 5.70
10 3.17 6.00

Equations (34) and (35) have been used to calculate the quasi-
static field at d = 5 km from a conducting cylindrical source of 1-km
radius with a series of scatterers at various distances between r, and
d. As noted previously, the scattering is treated only roughly in these

examples, by simply taking some fraction of the field present at the
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scatterer [at the retarded time (d - yo)/c] to represent the scattered
field at d. Each of the scatterers then contributes a term of the form

of Eq, (34) to the total field.

Until the time at which 8’ = m/2 is reached Eq. (34) is a reasonable
representation of the quasi-static field. After this time, it presents
difficulties however, since it fails to represent properly the contribu-
tion made to the signal at d by dipole elements beyond e' = n/2, which
are partially shielded by the conducting cylinder. For angles 8! > n/2,
the field bas been held constant at its value at §’ = n/2 in the calcu-
lations made here. This is essentially a high-frequency approximation,
and it overemphasizes the effect of the conducting cylinder upon the
lower-frequency fields.* Thus, the rate of change of the field from a
given scatterer can be expected to show a rapid decrease at 8'’ = n/2
but not to zero, as assumed here. This approximation somewhat exag-

gerates, therefore, the distortion of the signal by the scattering,

Figure 7 illustrates the fields calculated for a series of
scatterers spaced uniformly at 0.5-km intervals betWeen r, = 1 km and
d = 5 km, with a linearly increasing scattering coefficient from 0,04
at Yy = 1.5 km to 0.1 at Yy = 4.5 km and with exponentially increasing
coefficient (factor of 2 per 0.5-km interval) from 0,003125 at y1 =1.5
km to 0.2 at Y, = 4.5 km, The primary-field term (i = 0) is also
plotted separately.

The plots, which are of the gquantity eOﬂEX(d,t)/odﬂro, have been
normalized to facilitate comparison of the rise rates of the three
signals. The final amplitudes reached are 5 X 10—8m-2, 9.15 X 10d8m_2,
and 1.79 X 10—7m_2 for the primary field, the exponentially increasing
scattering-coefficient case, and the linearly increasing scattering-
coefficient case, respectively. The latter of the two scattering cases
has the greater contribution from scatterers which are much nearer the

source than is the observation point; this condition yields both the

*
Note that in Eq. (28) the ultimate static field is exactly given by
the integral over 6 from -1/2 to m/2.
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faster rise and the larger amplitude of this case relative to the other. .
An increase in rise rate relative to that of the primary field is evi-

dent in both cases, however,

Note that the scattered field contributions at 5 km were calculated
by multiplying the scattering coefficients and the fields at the
scattering point, with no further decrease in field amplitude between
this point and 5 km. Thus, these calculations involve stronger
scattering, especially from the scatterers near the source, than may

be suggested by the values of the coefficients used.

The mean square variation of the field from its mean value could
be estimated for a stochastically rough surface using the model described
in Chap. 1IV. However, this development seems best deferred until the

model has received a more precise treatment than that presented here.
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