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Abstract

With numerical inverse Fourier transforms, the reflection of a step
function plane wave from a flat ground or water surface is calculated, using
simplified forms of the soil or water conductivity. Using convolution
integral techniques with these step response functions, one can extend these
results to various pulse shapes for the incident wave. ’
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I. Introduction

An electromagnetic wave in the air propagating toward the ground or
water surface undergoes reflection and refraction at that surface. We may
be interested in this phenomenon from various points of view, including
calculation of the reflected and transmitted fields, measurement of the
fields at the groumnd or water surface, and design of devices to produce
desired field distributions near a ground or water surface. The reflection
and transmission coefficients in the frequency domain are given by Fresnel's
equations. For this note we use a numerical inverse Fourier transform tech-
nique to calculate the reflection of a_step function electromagnetic plane
wave from the ground or water surface. With the aid of convolution integral
techniques these results can be extended to pulse shapes other than step
functions for the incident plane wave. Alternatively one can take a Fourier
transform of the incident pulse shape, multiply it by the reflection coefficient
in the frequency domain, and take the inverse Fourier transform.

For these calculations the upper medium or medium one (air), in which
the incident plane wave propagates, is assumed to have permittivity, g,,
permeability, M,, and zero conductivity. The lower medium or medium two
(ground or water) is assumed to have permittivity, €,, permeability, u
and conductivity, Jp. These parameters are all taken as independent og
frequency. Actually, the permittivity of soil is quite,dependent on
frequency and to a small extent so is the conductivity, However, as
frequency is increased the permittivity appears to level out. Perhaps
for radian frequencies of the order of or greater than aj/ej the permittivity
is somewhat constant. For radian frequencies much less than o,/e, (which
is itself frequency dependent) the role of the permittivity is small compared
to that of the conductivity. Since we do not know the details of the
permittivity (and conductivity) variation with frequency near the relaka-~
tion frequency,;ozle , of the soil, an accurate calculation for a particular
case 1s not feasible. Thus, we assume parameters independent of frequency
and calculate for several cases. Specifically, we normalize the time to the
relaxation time, € /02, and choose different values of ¢ /Eo ranging from
10 to 80. If, for a particular case of interest, the frequency dependence
of € and 9, were known accurately, then the pulse reflection could be
accurately calculated for that case. The present study should, however,
glve some of the significant features of the pulse reflection.
II. Plane Wave Reflection =

Figure 1 gives the geometry for the calculations. The incident and
reflected waves propagate at an angle, 01, with the positive z axis and the
transmitted wave propagates at an angle, 0,, with the negative z axis. The
incident, transmitted, and reflected waves are designated by subscripts
1, 2, and 3, respectively. Two cases, based on two polarizations of the
incident wave, are considered. The case of electric field parallel to
the interface between the two media (figure 1A) is designated by a subscript,
e, for the transmission and reflection coefficients; the case of magnetic
field parallel to the interface (figure 1B) is similarly designated by a

1. Frank Sulkowski Mathematics Note II, FORPLEX: A Program to Calculate
Inverse Fourier Transforms, November 1966

2. James H, Scott, EMP Theoretical Note XVIII, Electrical and Magnetic
Properties of Rock and Soil, May 1966.
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subscript, h. More general polarizations can be considered as combinations
of these two cases.

The electric field in the three waves is taken positive in the directioms
indicated for the two cases in figure 1. It has the forms for the incident
wave

¥ Ele—vl[xsin(el)—zcosgel)] . (1)

for the transmitted wave

E.= Eze-Yz[xsin(ez)—ZCQS(ﬂz)] S (2)

and for the reflected wave

¥ - E3e-Y1[xsin(61)+zcos(61)]- (3)
where in this formulation we use the Laplace transforme&'quantities. The

field quantities and transmission and reflection coefficients have a tilde,
n; over them to indicate the Laplace transform of the quantities. Similar

expressions apply for the magnetic field in the three waves.

The propagation constants and wave impedances are of the forms

Y = Vsu(o+se) ' (4)

and

g ="\ [—3H_ ' :
g+se : (5)

respectively, and they are appropriately subscripted to apply to &
specific medium. There is a convenient ‘relation which is later used
that

Z,

1
T2 2“1 . & (6) -

and since we take Mg = M3 = M, for these calculations the expression
further simplifies.

tl'l':
P

In equations (1) through (3) there is already the result that
the angles for the incident and reflected waves are equal. Another
result of requiring the three waves to match along the interface at
z =0 1is

Y, sin(el) = Y,81n(8,) &)

For a frequency domain analysis replace s by jw. In the frequency domain,
then, 6., is in general a complex number for a chosen real 95, since
ylly i§ a complex number due to the finite conductivity of the lower
médium. This does not affect the validity of the results but makes

the form of the fields in the lower medium a little more complicated.3

3. J. A. Stratton, Electromagnetic Theory, Chap., IX, 1941.
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For convenience we define certain parameters. The relaxation time
of the lower medium is

[
2

Then define a normalized Laplace transform variable

s, = st_ 9
which simplifies the expressions somewhat. In this form an inverse Fourier
transform gives the pulse in terms of a normalized time which we define by

T = % (10)

where t is time. Finally, there is the relative dielectric constant for
the lower medium as

€

_ 2

e = =%
r e

o

(11)

Now consider the reflection and transmission of the incident wave
at the interface between the two media. The reflection and transmission
coefficiezts are developed in another note and can be found in several
places.3’ Consider first the case of the electric field parallel to the
interface (figure 1lA). The reflection coefficient-is given by

. . L. .El cos(92)
E H Z, cos(6,) )
v 3 3 2 1 3 -
I === = == S : (12)
e . E ﬁ Z1 cos(ez)
1 1 1+ -z—"—(é--j-
2.cos 1
and the transmission coefficient by
E oz H :
v o= 2-._2_2_ b
te = 5 = Zl 5 =1+ e (13)
1 1

4. Capt Carl E. Baum, Sensor and Simulation Note XXXII, A Lens Technique
for Transitioning Waves Between Conical and Cylindrical Transmission Lines
January 1967. _ )



Rearranging equation (12) and substitutiné from equations (6) and (7) gives

n coa (6 ) ﬂJqYl) (SIH(G ))

r = (14)

e
2
cos(6.) ﬂﬂ ) - (sin(s, )2
1 Yl

where from equations (4), (8), and (9)

I& _ su_(0ytse,)
1 su e rofr
oo

(15)

Letting the incident wave be of the form 1/s , which is a step function
in the time domain, we then have a step response function for the reflected

wave as 1[ T+s
c r
cos(el) =¥ r s,

cos(el) ;V;r

Substituting jw for S and performing the numerical inverse transform gives
Re as a function of T, with 6, and e, as parameters to be chosen. Note that
the pulse shape of the reflected wave is preserved as it propagates away from
the interface. The results calculated here then apply for various heights

- (sin(8)?

w |mr1?

i
s (16)

2|

L - (sin(8,))”
X

above the interface with an appropriate time delay introduced. The step
response function for the transmitted wave is
t
f\' -
¥ =21 4X % (17)
e s s e
r T

This last function, however, only applies at the interface, z = 0, since
the pulse shape is distorted for negative z due to the influence of o,
on yp and on 8,. }
Second, consider the case of the magnetic field parallel to the
interface (figure 1B)., The reflection coefficient is given by

. . L Z2 cos(ez)
H E cos(e )

T =3 =2 = ! 1 (18)
h v %y Z., cos(6,)
H E 2 2
'1 1 l+'z— 55(0.)
1 ¢°%\



and the transmission coefficient by

Ny

a Z E n

th=7H\,l=—l—~2—=1+rh (19)
H A E .
1 2 1

Rearranging equation (18) and substituting from equations (6) and (7) gives

cos(g,) - == ﬁ\/l ~-[7=| (sin(e n?
1 Y 1
n - 2
i Y L1 - (20)
cos(el) + = 1 ﬁ(_—) (sin(6.))
Y2 Y2 1
The step response function for the reflected wave is then
S S
1 ¢ 1 r 2
v cos(64) - [1 - == == (sin(p,))"]
" L 1 € 1+sr €, l+sr 1
B "5, s = = (21)
T cos(ey) +\/—l—¥-— [1 =2 =X (sin(e))?]
1 e 1+s g_-1ts 1
r T r r
The step response function for the transmitted wave is
N
n t N~ :
=0 _ 1
=3 s. T & ' (22)
r r

Again the last functiom only applies at the interface while Ry applies for
various heights above the interface with an appropriate time delay.

The step response functions for the reflected wave are pic:tted in
figures 2 through 9. Figures 2 through 5 cover the case of the electric
field parallel to the interface and figures 6 through 9 cover the case _
of the magnetic field parallel to the interface. Each, figurc :akes a
particular ¢, (ranging from 10 through 80) and varies -~ 6, between zero
and one as a parameter for the curves, The indicated errors (from the
successive calculations of tEe inverse Fourier trapsform computer code”)
are less than .5 x 10~2 for i-elg_.Q and about 107° or less for
2 8.>.9
T L1l 7

There are some things which can be noted about these reflection
step response functions, At T. = 0 there is an immediate rise (or fall)
of a certain size depending on the pgplarization, on 8, and on €.. The
value of this rise (or fall) can be calculated from the initial-value
theorem of the Laplace transform, giving for the electric field parallel
to the interface

5. See reference 1.



cos(el) '-\/;r - (sin(ﬂl))z
R (0+) = 1im s, R = (23)

s> ©  cos(8) +-\/§- (stn(67))?

and for the magnetic field parallel to the interface

cos(6y) --%'\/r (51n(6 ))2

Rh(0+) = 1im srzh = (24)

Sy cos(el) + —7\/F - (sin(® ))2

Note that R, starts negative and continues negative, asymptotically
approaching -1, and that it takes a time of many t, (for small_%,el)

to approach within, say .1, of*this limit. On the other hand, R
starts either positive or negative (somewhere between -1 and +1) and

asymptotically approaches +1. For g_e near one it takes, comparatively,

a very long time to approach the limit of plus one, and Ry is more
sensitive to 6] in this region. Note also that Rp(0+) is zero for
some value of 8,; this is just the Brewster angle phenomenon, which
applies only to the polarization with the magnetic field parallel to
the interface._ Looking at equations (16) and (21) there is a singular
case for 6; = 7 in that R, and Ry are both step functions of amplitude
-1. In such a case the incldent and reflected waves cancel each other,
leaving no net fields.

III. Summary

We have then calculated the reflection of step function waves
from the flat surface of a uniform ground or water medium under certain
simplifying assumptions. In particular, we have taken the permittivity
and conductivity of the lower medium as independent of fr&quency. The
conductivity of soil is apparently roughly frequency independent but the
permittivity is not, although the permittivity does seem to level out
for high frequencies (compared to @ /ez) Using relative permittivities
of the lower medium ranging from 10 through 80, the step response func-
tions are calculated for various angles for the incident wave. These
step response functions can be used to approximate the reflection of
various pulse shapes from a ground or water surface by the use of con=
volution integral techniques.

We would like to thank Mr. John N. Wood for the numerical calcﬁlations

and the resulting graphs.
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Figure 9. REFLECTION OF STEP FUNCTION WAVE WITH MAGNETIC
FIELD PARALLEL TO INTERFACE: ¢, = 80
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