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Abstract

A Legendre coefficient expansion of the solution of Maxwell's equations
in spherical coordinates is developed. The solution applies in general to
the case of two distinct media, the origin of the coordinate system being
at the interface. The equations are first developed for the case in which
the conductivities in the two media are functions of r and t but not of 8
or ¢ . Second the equations are simplified by the assumption of an infinite
conductivity for the lower medium. The solution throughout leaves all the
variables as an arbitrary function of r and t because it is intended to use
these in a computer solution for the EMP from a nuclear burst at or very
near the ground plane.
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- Text' -

In MKS units, Maxwell's equations are:;

)
(1) curl B=u (gc + 0K+ ¢ E)

ot =
3
(2) curl E = - a3 2
(3) divB =0, and div D = p; D = ¢E

The EMP problem shall be defined as follows; Consider space divided
into two semi-infinite half-spaces, called the "upper" (air)half-space,
and the "lower" (ground) half-space. The source of Compton current wilj
be located at the origin at the interface of the two half-spaces, If 2
is taken as the direction Perpendicular to the interface, and pointing
into the "upper" (air) half-space, then a right-handed polar coordinate
system (r, 0, ¢) may be described.

The EMP problem is further specified by requiring of Statement of y,
€, 0, and J in all space-time. This will uniquely determine the fields
(to first order). Furthermore, if these quantities are independent of
the azimuthal angle, ¢, then the field components will also be independent
of ¢. Thus, for

a. 0<0<mw/2 (alr-half-space)
I

I
M= =€, 0 = o(, 9, t);_JT_=£c(rs 8, t)

and

b. T/2 < 6 < w(ground half-space)

II II
B = uo; € = Kso; 0" = C(a constant); gc =0
where K is the specific inductive capacity of the ground. These
specifications imply that

<

a. Br = E¢” = Be =0
b. —2i— 2 (in63) - M I, +O0E +¢dg)
r sin 6 36 ¢ c,r r 3t r
13 - 3_
e -3 3T (r B¢) = (crEe + e Y EB)

3 5 L5
& oar FE) - FE =-=(r By)

where, b, ¢, and d, of course, are equations 1, 2, and 3 written in polar
coordinates using condition g.

We shall assume the fpllowing about the sources:
B9 8, 0 = ol 0) k (6, 1/2) + oIl - o, 1/2))
-

b. J (r, 6, t) = Je,e (50 €) k (8, 1/2) £

Here x (8, 7/2) is the Heaviside step function, and GII is a constant.
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Boundary conditions. The initial boundary conditions on the field
components is that they are zero-on and outside the light cone.

a, B¢ (r, 8, t) ='Er (r, 9, _t) = Ee (r, 8, t)y =0, r > ct.
The spatial boundary conditions are taken at the origin, r = 0, and on
the plane dividing "air" and "ground,” 6 = w/2. 1In the first case, we

shall require that the fields be finite at the origin:

= E
r=0

=r E =90

b. B 9

¢

r=0 r=0

This implies that the driving functions J. , (r, t) and o© {r, t) cannot
diverge faster than 2t s E > 07 as r»+0., In the second case, we shall
assume there are no true sheet currents, nor true surface charge at the

® = /2 interface. This implies the following field connection formulae:
upper _ . lower, 9 upper _ | II 9 lower
c. B¢ B¢ ; [U (r,t) + € 3T ] E9 [o + Kso Y Ee ;
g upPPer _ o lower
T r

all evaluated at & = m/2. This completes the unique and general specifica-
tion of the EMP problem.

Angle Dependence. In preparing these equations along with the boundary
conditions for machine solution, it is convenient to eliminate the 6 dependence.
This is accomplished by expanding the field quantities in Legendre polynomials
while noting the following raising and lowering operations:

(4) Pl(l) (cos 8) = -'%5 PE(O) {(cos ©)
) 1@ +1 2, (cos 0) == &= (sin o: Pl(l) (cos 8))

The field quantities, and the step function are expanded:
a. B¢ (r, 8, t) = j{: Bﬁ(r, t) Pn(l) (cos 8) “
n=1
b. E9 (r, 6, t) = j{: En(P) (x, ;) Pn(l) (cos 8)
n=
- (r) )
Ce Er (r,iei.t) = E: En (r, t)_Pn (cos 8)
_ =
=1 _ 2n+1 (1) Q)
d. « (8, n/2) 5 j{: 2n(atD) Pn (0) Pn (cos 6)

=1
(odd)



In order to represent products like ¢ E (r, 6, t), it is necessary to have
the following decomposition rule:

1/2
(6) Pil) (cos B6) P( ) {cos 8) = :Z:sx L S P(1) (cos 8) [2§2+12]

L,0,0 L l 0 "L L(L+1)

(7) (O) {cos 0) P(O) (cos 6)

Z(sL 0.0 PL(O) (cos 8)

where S b are the five-index Wigner coeff1c1ents. This rule follows from
the fack Ehat the product of irreducible representations is reducible and
is a linear combination of them. Upon introduction of these series into
Maxwell's equations, we obtain

8 2D g (e = [Jn (r,t) + (x)

3
€ 3¢ E (r,t),

+ Z oPEz(” (r,t) (s 0 o 2]

Fat 1/2
13 _ NO) 2,p 2,P  [a(e+D)
@) =t ar (7 By (56D “[z pEy " (58)S;00,0 50,140 [n(nﬂ)}
P,L
+e 3{ En(e) (r, tJ
1) &« o +E® @=L @5 @

In the above equations,

1) 3 =J_  (r,t) 5 n=0
3, =9, e (0 2L Wigy p (©) (cos 8); n= odd
12) o = WI; a=0
o = [o(r,t) - o] (-1) gzgﬂ) n(l)(O) p (0 (cos 8); n = odd

This concludes the diSCussion of the general case.

The special case of method of images on an infinitely conducting ground
plane. This assumption greatly simplifies the above equations, because now
o(r,0,t) is taken to be independent of 6; thus eliminating the product of
Legendre functions that occurs in ¢E. In the method of images, the current
sources above the plame ( 6 = 7/2) are imaged below the plane with signs
reversed. This implies that the new boundary conditions are: (at 6 = 7/2)
g UPPer _ lower . g upper _ o lower _ upper _ . lower

6 Eg > B r 03 B, B,

Now the set of equations.with the @ dependence removed gives

(13) EL':'—Q B (r,t) = u [Jn (r,t) + g (r,t) El(f) (r,t) + e 3 B g(v) (r,t)]

o
[Tt

ks



as -1 @ (0= u[c(r,t) Er(le) (r,t) + ¢ %E EIEB) (r,t)]

3

2 ¢ 5® @+ - - @, @)

(15) n

where: for this image case -

- -1y 2ntl (1) (0) .=
Jn (r,t) = Jc r (r,t) (-1) a(ntl) Pn 0) Pn (cos 6) ; n = odd

This concludes the discussion of the simplified problem.
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Text - ~

In MKS units, Maxwell's equations are;

]
(1) curl B=u (J + OE+c¢ atlg)
]
(2) curlE=--3

(3) divB =0, and div D = p; D = ¢E

The EMP problem shall be defined as follows: Consider space divided
into two semi~-infinite half-spaces, called the "upper" (aix)half~space,
and the "lower" (ground) half-space. The source of Compton current will
be located at the origin at the interface of the two half-spaces, 1If z
is taken as the direction perpendicular to the interface, and pointing
into the "upper" (air) half-space, then a right-handed polar coordinate

The EMP problem is further specified by requiring of statement of y,
€ 0, and J in all space-time. This will uniquely determine the fields
(to first o%der). Furthermore, if these quantities are independent of
the azimuthal angle, ¢, then the field components will also be independent
of ¢. Thus, for '

a. 0<8<mn/2 (air—half-space)
‘I I
H=HUgs e =¢e; 0 = o(, 6, t); I =4, (=, 8, t)

and

b. m/2 < 8 < m(ground half-space)

II 11 .
u = M3 €77 = Keo; a " = C(a constant) ; gc =0
where K 1is the specific inductive capacity of the ground. These
specifications imply that

<

a. Br = E¢_ = Be =0
b 1 g—-(sin 8 B)=pnQ + 0E + ¢ é—-E )
' r sin 6 30 $ c,r r 9t r
- a_
c. - T 3T (r B¢) =qu (GEe + ¢ 3t EB)

3 3 3
d o P B - FE =-L( By)

where, b, ¢, and d, of course, are equations 1, 2, and 3 written in polar
coordinates using condition a. ’

We shall assume the fpllowing about the sources:
B0 88 = a0k (0, 1/2) + oM@ - (o, 1/2))
b. gt (ry, 8, t) = Jc,r (r, t) « (6, n/2) r

Here « (8, w/2) is the Heaviside step function, and GII is a constant.
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P
Boundary conditions. The initial boundary conditions on the field
components is that they are zero-on and outside the light cone.

a. B¢ (r, 6, t) ='Er (x, 8, t) = E0 (r, 6, t) =0, r > ct.
The spatial boundary conditions are taken at the origin, r = 0, and on
the plane dividing "air" and "ground," 6 = /2. In the first case, we

shall require that the fields be finite at the origin:

=Er
r=0

b. rB =r E =0
¢

r=0 e r=0

This implies that the dr%ving functions J¢ r (r, t) and o (r, t) cannot
diverge faster than r~ + , € >0 as r+0. In the second case, we shall
assume there are no true sheet currents, nor true surface charge at the

@ = m/2 interface. This implies the following field comnection formulae:
upper _ . lower, 9 upper _ | II 3 lower
c. B¢ B¢ H [o (r,t) + o 3E ] Ee [o + Keo e Ee H
g UPPer _ o lower
T T

all evaluated at 8 = 7/2. This completes the unique and general specifica-
tion of the EMP problem.

Angle Dependence. In preparing these equations along with the boundary
conditions for machine solution, it is convenient to eliminate the 8 dependence.
This is accomplished by expanding the field quantities in Legendre polynomials
while noting the following raising and lowering operations:

) pz(l) (cos 8) = - —33 Pz(o) (cos 8)

1 4

sin 6 d6 W (cos 6))

(sin 6: P

(5) 2 + 1) Pz(o) (cos 8) = .

The field quantities, and the step function are expanded:
_ 1 . - —
a. B¢ (x, 8, t) = z Bn(r, t) Pn( ) (cos 0) = :
=1
e 1
b. E, (r, 0, t) -'z £, 2P (cos 0
n=1

ce E; (r’;e? t) = E: En(r) (r, t)_Pn(o) (cos 8)

n=0
1 2n +1 _(1) 0)
d. « (8, m/2) 2 j{: 0ol Pn (0) F_ (cos 8)
=1
(odd)



In order to represent products like o E (r, 6, t), it is necessary to have

the following decomposition rule: A 1/2

(6) Pil) (cos 8) P( ) (cos 06)

]
[%2]
[l
-
[l
o
[47]
[ ali -0}
w
»
pd -
o

(1) L(241)
B;"" (cos 0) [L(L+l)]

7) PEO) (cos ) P( ) (cos 8)

ZEZ(SL 0, 0) PL(O) (cos 6)

where S ab are the five-index Wigner coefflcieuts. This rule follows from
the facE%Ehat the product of irreducible representations is reducible and
is a linear combination of them. Upon introduction of these series into
Maxwell's equations, we obtain

@ 282D g =y [Jn @ +e g e ® @0,

DY opE, " (1,0 (B0 0)2]

P,2 1/2
© -2 @5 () ='"[Z £, D ey s ,o Si:i,o [J_li(iﬁ)]
P,
+e ?E En(e) (r, c)]
1) &= @ ® e+ 5 o = @)
In the above equatioms,
an I = I (5,6 L ,-0
3= I _(r,t) (-1) ggﬁﬂ) (1)(0) P (O (cos 8); n= odd
LI1
a2) o= ﬂz.&z-l-g . n=0
o = [ a(rt) - o] (- 1) %) p (D g P_ (0 (cos 8); n = odd

B i ) e
This concludes the discussion of the general case.

The special case of method of images on an infinitely conducting ground
plane. This assumption greatly simplifies the above equations, because now
o(r,0,t) is taken to be independent of 8; thus eliminating the product of
Legendre functions that occurs in 6E. In the method of images, the current
sources above the plane ( 6 = 7/2) are imaged below the plane with signs
reversed. This implies that the new boundary conditions are: (at 6 = 7m/2)
upper _ . lower E upper - lower upper lower

E T =10; B =B

Eg 9 » B r 5 By s

Now the set of equations with the 6 dependence removed gives

(13) l(:—"'-ll B (r,t) = u [Jn (r,t) + o (r,t) El(lr) (r,t) + ¢ g—t El(1 r) (r,t)]



s

as -1 @B @)= u[a(r,t) E? 0 +e 3 EI(‘B) (r,t)]

(15) %_— (r Etge) (r,t)) + Er(lr) = - %E (r B_ (z,t))

where:for this image case -

(e (1 2 p (U

Jn (r,t) = Jc n{n+l) n

(0) Pn(o) {(cos 8) ; n = odd

This concludes the discussion of the simplified problem.






