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Abstract:

This note calculates the potentials produced between objects in evacuated
cavities and the cavity walls by the Compton current and space charge associated
with gamma radiation, Simplified models of the cavity geometry, geometry of the
internal obJect, and impedance connecting the former two are assumed, Three
simple geometries are considered: parallel plate, cylindrical, and spherical,

I. Introduction

Although the electric fields and voltages induced in evacuated cavities by
the Compton-ejected space charge can be calculated for cavitles of simple
geometry (as discussed in EMP Theoretical Note V, abbreviated TN V), the cal-
culation of the potential of objects in such cavities with respect to the
cavity walls is much more complex, However, such a calculation is needed; since
through this mechanism, noise signals can enter ﬂlrcults and electrical energy
can be deposited in clrcult elements.,

Assuming (as in TN V) that the cavity dimensions are sufficiently small so
that the electron transit time across the cavity and the electrical transit
time around the cavity walls are both short compargd to the times in which the
Y radiation changes significantly, then a "steady state' solution may be cal-
culated, simplifying the problem considerably, In general, the calculations
will involve an evacuated cavity with an inner electrode, electrically
connected to the cavity through some resistance R, The geometries (parallel
plate, cyllndrlcal and spherical) of the electrode-cav1ty system are taken
with a view to simplifying the calculations,

In order to calculate the potentials of the electrodes with respect to
cavities it is necessary to consider three processes:

1. The electrode attenuates the y current, If the potentials in the
electrode-cavity system are much less than the mean Compton electron energy
(about 0,25 Mev) and if the electrode and cavity walls are made of the same
conducting material, then there will be a net Compton electron current into
the electrode. This is the characteristic behavior of some Compton diocdes
(y radiation detectors),
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2, Low energy ( a few e,V,) secondary elé;trons are produced at the electrode
and cavity walls by the high energy Compton electrons, Under certain conditions
these low energy electrons can flow between the electrode and the cavity walls,
partielly cancelling the net Compton current into the electrode, '

3. The space charge associated with the Compton electrons will set up electric
fields which tend to inhibit the flow of the secondary electrons from the electrode
to the cavity walls,which partially cancel the net Compton electron current into
the electrode. Under certain circumstances this space charge effect will then
be a controlling factor, governing the electrode potential,

Certain effects dealing with the secondary electrons will be neglected, such
as their interaction with any magnetic fields and the addition of the space
charge from the secondary electrons to the Compton space charge, In particular,
the latter restriction limits the applicability of the solutions to be developed
to cases in which the secondary electron flux in the evacuated cavity is much
less than the Compton electron flux, The inclusion of large secondary electron
current densities requires a more general solution of the space charge equations.,

II, Compton Current Deposited in-Center Electrode:

First, consider the Compton current deposited in the center electrode,
Since it is assumed that the ratio of the Compton current, Jcé' to the gamma
current, y , (equal in magnitude to the gamma flux, y, in this case) then, as
Aefined in TN V

I = ey amps. (1)
c J 2

(o] meter
vhere cJ, the constant of proportionality, is approximately

e = a2 x 10-8 coulombs (2)
J 2
meter -roentgen

with y in roentgens per second (air équivalent dose), Then, if the y-ray mean
free path in the electrode (and wall) material is r_ and the thickness of the
electrode (in the direction of Jc ) is t, the fraction of &he Compton current ..

. o]
density deposited in the electrode, §, is Just

§ = 1 ~e_t/ry (3)
t<<r
and for Y
t
§ = = (L)
Ty

If the electrode is not of constant thickness to the radiation, then & must be
averaged over the cross-section area of the electrode, A, presented to the
radiation and to the Compton current., Thus, the net Compton current into the
electrode, Ic, is Jjust

I,= 6AJ, = c; SAY (5)
Qo
or

I =~ =2 % 10'8 SAY (6)



If this Compton current were the only current into the electrode (other
than current through the resistor connecting the electrode to the cavity walls),
then a determination of the electrode potential could be made, However, there
are other currents, specifically the secondary electron currents, which should
be considered,

ITII, Secondary Electron Current from Center Electrode:

warpasy

As discussed in the previous section, the Compton current into the electrode
tends to drive the electrode to a negative potential with respect to the cavity
walls, However, neglecting any retarding space charge fields, low energy ( a
few e,V.) secondary electrons knocked out of the electrode surface by the Compton
electrons (both on entering the electrode from one side and on leaving the electrod
from the opposite side) tend to cancel the net Compton current deposited in the
electrode, Defining the net current of secondary electrons leaving the electrode

as Is' the net current into the electrode, Iel' (neglecting displacement current)
is

el ~ Ic - IS (1)

One must be very careful in using the secondary electron current, Actually
there are secondary electrons with energies extending up to the Compton electron
energies, complicating the picture considerably, A significant fraction of these
electrons are grouped in energy between zero and a few e,V, and it is these
electrons which are of concern here. However, there will be some effect because
of the presence of the higher energy secondary electrons, This effect is diffi-
cult to estimate. Only the low energy secondary electrons are included in this
analysis,

There will be a maximum number of low energy secondary electrons emitted from
each side of the electrode (as referred to the direction of the yrays), propor-
tional to the number of Compton electrons entering or leaving the electrode
surfaces, Defining the secondary current from the side of the electrode toward
the vy rays as Is and the secondary current from the opposite side as I_ , then

1 : e
each of these currents will have minimum values (because they are negative)

= {
ISl flmaxA JCO amps _ (8)
(min) e - : %, , —
and
I = 1, A(1-8) J, amps . (9)
2. max 0
{min)
where f1 and f2 ars the maximum ratios of the magnitudes of the secondary
max max ’

current to the Compton current for each side of the electrode., These two ratios
are usually, but not necessarily, nearly the same., Note the factor of (1-6) in
equation (9) which expresses the reduction of the Compton current leaving the
electrode from that ineident on the electrode, A Jc 0
o
The total low energy secondary current is then

I =I +1 (10)



where

= A~
I £, A, (11)
1 o)
and
I, =1, A(1-8) I, (12)
2 o
Thus,
I, =4 Jco [fl + f2(1-6)] (13)

where in general f, and f, are less than or equal to their maximum values,
For the case 6<<1 Equation (13) reduces to -

I =2f AJd (14)
s e,

where f is the average of f. and f,.

1 2

IV, Compton Space Charge Limitation of Secondary Currents:

To determine the interaction of the Compton and secondary currents so that
one mey find the net current into the electrode surface, one must consider the
electric field and voltage distribution in the cavity-electrode system from the
Compton space charge density, Po If the electric field is directed away from

o}
the electrode surface, no secondary current will flow from this surface since
the secondary electrons are assumed to be of zero energy. On the other hand,
if the electric field is directed toward the electrode surface, the maximum
secondary current will flow from the surface. The region of interest is then
where the electric field at the electrode surface is zero because in this region
the magnitude of the secondary current can vary from zero to its maximum value,
depending on the detailed solution of the space charge equations, If the magni-
tude of the secondary space charge density, Pgr is much less than the magnitude
of the Compton space charge density, pc s 1o€)
o]

(15)

<<

0 P

c

S
Q

then for purposes of an approximate calculation p_ can be neglected, This
criterion will be generally true for "thin" electrddes, i,e,, for

§<<1 : (16)

because in a thin electrode only a small fraction of the Compton current
density contributes to the net Compton current into the electrode. No.more
than this small fraction of the Compton current density then will appear as a
secondary current density to cancel the difference in the Compton currents
into and out of the electrode., To approximately convert the ratio of secondary
to Compton currents to a ratio of space charges, one can multiply this current
ratio by the ratio of Compton electron velocity to mean secondary electron
velocity, This, in turn, is given approximately by the square root of the
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ratio of the Compton electron energy (in e.,V,) to the magnitude of the voltage
between the electrode and cavity walls. . It is this last ratio which determines
how small the secondary current must be to satisfy the restriction of equation

(15).

The criterion of equation (15) will also hold for "thick" electrodes in
which the maximum ratio of secondary to Compton electrons (as in egquations (8)
and (9)) is much less than one, again, with the restrictions as discussed above.

Neglecting the secondary space charge, one can solve for the vcltage of the
center electrode, V', by the use of Poisson's equation with the boundary condi-
vion that the electric field at the center electrode be zero. This voltage
will then be the electrode voltage, V_ ., for the case in which the magnitude
of the secondary current is greater than zero but less than its maximum value
with the restrictions as discussed above.

A, Parallel Plate Geometry:

In parallel plate geometry (as in figure 1) this parameter (V') can
be calculated fgom Poisson's equation,

VYV = T— (17)

With the assumption that the electrode dimensions are much greater than either
d, or d4,, equation (17) reduces to

1 2
p
2 - c
a Vv - o] (18)
2 £
o0z 0

where as in TN V

p . - CpY coulomgs . (19)
o] meter
with
-1
e = -.9 x 10—16 co?lomgs (rp::;gen) o (20)
o . meter
However, the charge density is pc only on the side of the electrode toward

o]
the gamma source, On the side away from the y source the Compton space
charge density will be multiplied by the same factor, (1-8), as for the
Compton current density.

On the side of the electrode toward the y rays, then, one can integrate
equation (17) once, giving

P
-Fe
9V _ o (z-d ) volts
3z € * meter (21)

o]

where 2z = 0 is taken as the cavity wall and g%- is zero at the electrode wall,
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By integratingpequation (21) one can obtain the electrode voltage, V. ', as

c 2 1
Vl' = 532~ dl volts (22)
o)
c, s
or Vl' = 5= v 4 volts (23)
)
or Vl' = .,5x 10-5 Y d12 volts (24)

On the side of the electrode away from the y source one can calculate the
corresponding voltage, V.’ , by including the factor (1-§) and changing 4. to

d.2 in equation (22), Thus 1
P
Ve (s C 2
Vo (1-8) o d, volts (25)
2€ :
(o]
or c 2
V,' = py (1-8)d volts (26)
2 e 2 S
2e
(o]
or 5 2
v2' = -,5 x 10~ Y(l-G)dZ volts (27}

For parallel plate geometry, then, one can consider two voltages (corres-
ponding to each side ¢f the electrode) which determine the flow of the secondary
currents., Howewver, in the cases of cylindrical and spherical geometry, for
simplicity of solution, it will be necessary to assume that the Compton space
charge density is the same on both sides of the electrode. For comparison
with these cases one can consider the special case of parallel plate geometry
in vhich

§<<1
! o~ t = oyt
VitE Y, v _ (28)
. “ -
and thus
¢ 2
vt = -0 d volts (29)
2¢e
o
or o o
Vi= p vd volts (30)
2€
o
or V' = -,5 x 1077 Yd2 volts (31)

In this special case there is only one voltage which determines the flow of
- secondary current., Since V' is negative, electrode voltages less than V'
mean that all the secondary current is flowing, while electrode voltages
greater than V' mean that no secondary current is flowing (again under the
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restrictions discussed in the first part of th}s section),

B. Cylindrical Geometry:

In cylindrical geometry (as in figure 2) with the assumption that the
length is much greater than the diameter, i.e,,

1>>b | (32)

Poisson's equation reduces to

Pe
1 2 rov)_ " o
r or ( Br)__ € (33)

assuming that Pe is a constant, i.e,,
o

§<<l (34)

Setting _3_\[_ at r = a equal to zero, one can multiply equation (33) by
r and 1ntegra£e to obtain

v o —pco 2 2
r .3—; -j € dr = 2¢c (r (35)
o o
and, therefore,
BV _ -0 (. _ a” volts (36)
ar 2'eo r " meter
Integrating equation (36) to obtain V', one has
4] P
o ¢ a.2 o b2 a.2 2 b
' = I-.—--— —— _— - — - =
v == \f (r—) ar B, ~5— - am (7) |volts (37)
b
or A : i . -
% v2.a® 2. b
t - -—---n—- - 1 —
' 25 Y 5" a 1ln (a.) volts | (38)
or
.2 2 _ .
V' = .,5 x 10"5 % Lb ;8' - a21n (g-):l volts (39)

This last equation gives the relatlon, similar to equation (31) for parallel
plate geometry, determining the secondary current flow in cyllndrlcal geow-
metry.
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C. Spherical Geometry:

In spherical geometry (as in figure 3Y'with the restriction of equation
(34), Poisson's equation reduces to

Pe
1 2({23V) _ -0
2 Aaré. Br) - € (40)
r o

Again setting Natr=a equal to zero and multiplying equation (L0) by r?

one can integrate %Eis equetion gnd cbtain

e r -c
2oV _ =0 2. _ (o) 3.3
T e err R (41)
o] o
A
and, therefore,
p
v _ - o r ;@_3 volts (42)
ar 3eo r2 meter

Integrating qua.tiona(h2) to obtain V' one has

c 3 c 2 2
v.z-_._ef r =2 dr=_£1_>..:.%_+a3(%—)_"§- volts  (43)

3(-;0 r2 390 2
b
or
R 2 2
V' o= 3!;- Y P—-—E-?’-- + a3 %‘-- -i- volts (hk)
or
2 2
vt o= .3k x 1070 y P._.é.‘i. + a3 %-%; volts (45)

With this last equation one now has the relation between V' and y for the
three simple geometries: parallel plate, cylindrical, and spherical,

One can now consider the interaction of the Compton current, the
secondary current, the Compton space charge, and the resigtance between
the electrode and the cavity walls, This interaction, wh¥eh will deter-
mine the electrode potential, can be considered for two general cases:

1, thin, symmetrically-placed electrodes,

2, electrodes in parallel plate geometry,

These considerations follow in the next two sections.

V. Voltages and Curren:ts for Thin, Symmetrically-Placed- Electrodes:

A first case to consider is that in which the restriction of equation
(34) {thin electrode) holds, This will be applicable to all three geo-
metries, considered with the additional restriction that the electrode
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in parallel plate geometry is centrally placed, Then there will be a single

V' which determines the flow of secondary current, This is illustrated in figure
%, in which the electrode voltage, V_., as a function of the resistance, R, which
connects the electrode to the cavity walls, is divideAd into three regions. In
region 1, V . is greater than V' and is given from the Compton current calculations )
in equation %5) as

V.=IR=RSAJ volts (46)
el ¢ e
o
or
Vel = cJBGAY volts (47}
or -8
Vg =-2x 10" RSAy volts (L8)

where § and A are as considered in Section II, § being the average y attenuation
factor for the y rays and A being the cross section area of the center electrode,
For cylindrical geometry

=2 al meter2 (49)
and for spherical geometry
A= 7a meters (50)

There is no necessity for restricting the dimensions in parallel plate geometry
to a specific shape. '

As R 1s increased, Vel will approach V) and in region 2.

vel = V! (51)

where V' has been calculated for the three geometries in equations (29), (371),
and (43), In this region the current through R will be given by

—_ — = - [ =4
Iel R Ic Is (52)
and thus P -
= LA
I,=1I, -3 (53)

H

= 2f =) - (54)
C

Since V' and I are both proportional to vy, this ratio is independent of
vy (within the range of V! as discussed in Sectlon I11I),

Finally, if the maximum ratio of secondary to Compton current is small
enough, then as R is increased V_. will again decrease, This is shown in
region 3 of figure 4, For this %o occur, it is necessary that

12
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I > I (55)
P

(remembering that these currents are negative), When this is true, then in
region 3

vo,= (I,-I_ JR=AJ  (s-2f )R volts (56)
min o]
or
vel =cy A (6-2fmax)y R volts (57)
or —8 ’
V,, =-2x 107 A (8-2f ) vy R volts (58)

If the restriction of equation (55) does not hold, then region 3 (in figure U4)
does not exist and Vel is limited to V',

Thus, for thin, symmetrically-placed electrodes in evacuated cavities, one
can, by this approximate analysis, arrive at the dependence of the electrode
potential on the electrode-cavity parameters and the y radiation intensity,

As illustrated in figure 4, however, this dependence is not described by one
simple function, but broken into several functional dependences for different
ranges of the various parameters,

VI. Voltages and Currents for Electrodes in Parallel.Plate Geometry:

The results of Section V can be generalized to some extent for parallel
plate geometry since neither is it necessary to assume that the electrode
is centrally placed nor that the fractional attenuation of the Y rays by the
electrode is small, However, in this treatment it is still necessary to assume
that the secondary current is small compared to the Compton current, In this
case, one can consider two V' 's as in equations (22) and (25), as well as two
secondary currents as in equations (8), (9), and (10),

The results of this analysis are illustrated in figure 5, which divides the
dependence of V on R into five regions, Region 1 is the same as in figure 4,
X e : . .

i.e,, no secondary current is flowing and the results are the same as in
equation (L6). Unless V' and V', from equations (22) angi(zs) are equel —
(in which case the result§ are as“in figure L), then V_. is given for region

2 as the largest (because V., 1s negative) of V', and VY,

Similarly, region 3 will occur as in figure L4 except that in this case
I > I - (59)
51'2 ¢

(min)

where the secondary current is the one associated with the larger V', Region
4 is then given by the minimum of the two V' 's, i,e,

V.=V (60)
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Finally, region 5 occurs if

P
I I > I ~ (61)
S + N c
(min) (min)
so that
Vel = (Ic - [isl + ISQ-] min) R volts (62)
or
v_ = AJc (G—fl -(1—6)f2 JR volts (63)
el o] max max
or
Vg = cJ[AJc (G-fl —(1-6)1‘2 )] Ry volts (6k4)
max max ‘
-8
or Vel = .2 x 10 [AJC (G-fl -(1—5)f2 {] R y volts (65)
X max

Depending on §, fl y and f2 s any regions beyond region 2 may not
exist, max max

Thus, for the more general case allowable in parallel plate gecmetry,
the electrode potential can be related to the various electrode-cavity
parameters and the y radiation intensity in much the same manner as for the
previous case involving thin, symmetrically-placed electrodes, However,
as illustrated in figure 5, this dependence is more complex.

VIII, Summary:

By the techniques outlined in the previous sections, one can, under certain
restrictions, obtain a steady-state solution for the potentials of objects in
evacuated cavities (in simple geometries) by considering the resistance
connecting the object to the cavity walls, together with three phenomena:

1, The Compton current deposited in the object, .
2. The secondary electrons emitted from the object by the Compton electrons.

3. The Compton space charge voltage which determines the interaction of
the previous two phenomena.

The analysis carried out in the previous sections can be extended to include
reactive impedances between the objJects and the cavity walls, but, in this case,
the time history of the radiation will have to be considered, since at any given
time the interaction of the Compton and secondary currents will be strongly °
influenced by the previous radiation time history.

However, from the analysis presented in this Note one can see how the para-
meters associated with the Compton current (e,g,, §A), the secondary current
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(e.g., f___) and the Compton space charge voltages (as determined by the cavity
and electzode dimensions) determine thesvoltage and currents associated with ‘
objects in evacuated cavities, It must be remembered that these results apply
only to the cases in which the secondary current density is much less than

the Compton current density in magnitude and in which the electrode potentials
are significantly larger (in magnitude) than the secondary electron energy

(in e.V,) and correspondingly smaller than the Compton electron energy,

17



. Los Afamos
- Sclentific Laboratory

\/ P. 0. Box 1663
X Mail & Records

—

Ry

Py



