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Abstract

The time behavior is obtained of the radiation field of an infinite
cylindrical antenna loaded along its length with uniform resistance and
excited by a step-function vdltage across an circumferential gap of
infinitesimal width. It is found that the late time behavior of the
radiation field is inversely proportional to the square of time, whereas,
in the case of no loading, it varies in inverse proportion to the logarithm

of time.
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- : I. Introduction

_The present note ;eze“§egere1%zeei;e"9f a previousiene; in which the
radiated field is calculated of an infinite cylindrical, perfectly conduciinélr
antenna excited by a step-function voltage across a delta gap. Instead of T
being perfectly conducting the antenna is now loaded with constant re51staneen'
along its length, i.e., the loaded resistance is independent of frequency
as well as position along the anterna. There are two reasons for studying
this particular problem. The first is a mathemafical one in the sense that
this problem lends itself to exact analysis within the Maxwell field theory.
The second reason is a practical one in that, since any antenna that will
be built must be of finite length, reflections from the ends of the antenna
will occur, thereby introducing undesirable features in the radiation field.
One way to minimize such undesirable features is to damp the current pulse
to an insignificant magnitude by the time it reaches the ends. A possible
method of achieving this is to load the antenna along its length with
resistance. _

Nonuniform resistive loadlng along the antenna will undoubtedly provide
us more freedom in shaping the radiation field but this is a much more -
difficult problem to analyze and may be taken up for study in the future.

In Section II, the time~harmonic far field is obtained by the saddle-~
point method. Then, assuming the generator voltage to be a step function in
time we calculate the radiation field in Section III by performing an
inverse Laplace transform. The time behavior of the radiation field is

graphed as well as tabulated for a wide range of resistance values.



IT, Time-Harmonic Far Field

The point of departure is the integrai~g§uation (20) of Reference 2
for the total current on the surface of an axi-symmetric antenna.2 In the
present case where the antenna is an infinite cylinder of radius a , that

%
equation becomes, in the cylindrical coordinates (p,z,¢) ,

%I(z) + f K(z - 2")I(z")dz" = f ¥(z - z')(E_(z'))dz’ (1)

(<] 2]

where

a 3 Zn eikféz + 2a2 - 2a2 cos ¢
K(z) = _S?B—aj . dé (2)

o Va% + 2a% - 2242 cos ¢

2 eikv"z2 + 22 - 2a% cos ¢

cos ¢ d¢ (3)

o /2% + 2a% - 2a% cos ¢

2m
I(z) = & J H¢(a,z,¢)d¢

[s]
2w
B, = | B n00
Q

and Z0 is the free-space wave impedance and k is the wave number.
When the cylindrical antenna is excited by a voltage V acress a
circumferential gap of infinitesimal width and i1s loaded along its length

by R ohms per meter, we write

*The interested reader may refer to the Appendix for a detailed derivation.



E, (a,2,6) = Vo(z) + RI(z) . @

The physical meaning of R will be discussed at the end of Section III.
Integration of this equation across the infinitesimal gap gives V ,
since the integral of RI will go to zero as the gap's width tends to zern.
This may be seen from the well-known fact that I(z) varies as In k|z|
near the delta gap.
Substituting (4) into (D) we get

% I(z) + [ K(z - 2'")I(z'")dz' - R J Y(z - z")YI(z')dz' = VY¥(z2) . (5)

To solve this integral equation we employ Fourier transforms. Defining

S T(z) = J I(z)e"iCz dz

-0

and similarly for Y(z) and K(z) we have, from (5),

I(z) = 2v A (2 - : (6)
o 1 + 2R(z) - 2RY (%)

Since3

2
7 _ _ mka (1)
() = - Z, ™' (a)d, (Ra) ,



and

?(c) - %% [Tri Hgl)ua)Jo(xa)}

-1 Aa[]o Ga)a (a) + Jluamé”(xa)]

= - %._ %% laJl(Ka)Hél)(la) , (Wronskians)

where X = /kz - Cz , the inverse Fourier transform of (6) is then given by

-]

I(z) = -21? JY(;)JCZ dg
© ¢))
H (ra) .
- o 4 2 v 1 irz
ika 7 D o e dg s N
o AaHo (a) + inaH1 (ha)

where B = ZﬂaR/Zo . The path of integration in (7) is along the real axis
in the complex ¢~plane with upward indentation at ¢ = - k and downward
indentation at ¢ = k .

To obtain the fields off the surface of the cylindrical antenna we
regard (7) as a boundary condition for H¢ which, due to the symmetry of the
problem, is the only component of the magnetic field and is independent of

the azimuthal coordinate ¢ ., The equation that H¢(p,z) satisfies is
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which is directly derivable from Maxwell's equations. The solution of (8)

that satisfies the radiation condition at inflnity and is equal to I(2ra)

at p=a, I being given by (7), is easily seen to be

® (1)

S Ho ™7 (o) . e
H¢(o,2) = - ;:g J ) L D e™°% 4z , (9)5

_5 M7 () + 1gkH) T (Aa)
from which we obtaiﬁ E

N S -
EZ(Q,Z) ~ " Ter g ap( ch)
(L)

\i M (o) itz o
= I s ) dg : (10)
o M (Aa) + ikgH, ~ (Aa)

In the far zone where 6 # 0 , (r,8,4) being the spherical coordinates,

one may use the saddle-point method to evaluate (10). Thus5

Vie 1
o e Hgl)(ka sin 8) + iB csc © Hil)(ka sin 8)

which becomes, in terms of p = - iw ,

-pr/c
E = - e , (11)

2 ¢ % sin 9) + 8 csc 8 K (p % sin 8)

1

wWhere Ko and K aré modified Besséi functions.



ITI. Radiation Field for a Step Voltage

In the case where the voltage of the siizzvgeneratorris a step function

in time, i.e., v(t) = voU(t) » equation (11) becomes

*DEG 1 e—pr/c -
v 2p a a ? (12)
) Ko(p-z sin 8) + B csc 6 Kl(p-z sin 8)
and its inverse Laplace transform is
ctic
pE,(r,8,¢) 1 j (&= r/edp dp
v 4oi a a ., P
o o im Ko(p S sin 8) + BeKl(p - sin 8)
qu
= e de (13)
4ri K () +8.K.(T) ¢
c © 871

where 4y = a—l(ct - r)ese 6 , 86 = B8 csc 8 , and the path C is shown in
Fig. 2 of Ref. 1.
For Be> 0 (passive resistance) the function, Ko(g) + BeKl(C) , has

no zeros for which larg gl < 7 . Thus, following the same procedure as
in Sec. II of Ref. 1 we have

= =0 , if ct<r-asin® (l4a)

, (14b)

_ lj I () + BT, (x) Ky gy
2 bq

o LK &) - Bekl(x)jz + vztlo(x) + eell(x)]2

if ct > r - a sin ® .



~In terms of the normalized time Te defined by TR

ct = (r -~ a sin 8) e

Tg=gqgtl= a sin 6 ’
equations (l4) become
PE,
=0 , if T, <0 (15a)
O ~ - =
@ 7 -'XTe ) e
= J f(x,Be)e dx s if Te > 0 (15b)
o}
where
I (x) + 8,I,(x) X
£(x,8) = R 5 5 . (15¢)
. [KO(@ - %Kl(x,)], + Tr;[IO(X) + 8,1, (x)] |
Equation (le)"GEé evaluataihumericéliy forra widé:range of 88 values,
and the results are presented in Table I and Table II and also in figures
1 and 2.
Early time behavior of pEe/VO
The technique described in Ref. 2 can be applied directly to the R
integral (15b) for Te << 1, The result is o
pE o
" 6. L L . as T, >0 (16)
) 2 (1 + Be)/fg ,



which is plotted in broken lines in figure 1.

Late time behavior of QEG/VO

An examination of (15¢) shows that so long as 86 #0 , f(x,Be) and
all its derivatives with respect to x exist at x = 0 . Thus, integrating

(15b) by parts ome can easily develop the following asymptotic series:

T -xT, © f“(o,se)
J f(x,Be)e dx ~ Z Ty s for T8 >> 1
5 n=0 T8

Keeping the first two terms In the series we have

pE
8 1 1 1
VO -i (g'z—T—z-i- . T3) . for Te >> 1 . (17)

876 678

This equation is plotted in bfoken lines in figure 2,

In Tables I and II, the radiation field 1s tabulated for a wide range
of Be values and for 0.2 < ‘1‘e < 1000 . If the radiation field is desired
for T, < 0.2 and Ty > 1000 (or Te > 105 when B8, is of the order 10_2),
it can be calculated from the asymptotic forms (16) and (17), respectively.
If the radius of the antenna is about one meter, the value of Te equal to
1000 roughly corresponds to 3 microseconds after the arrival of the leading

edge of the pulse at a distant observation point.

At this point it is perhaps pertinent to say a few words about the

physical meaning of R ( ZOBe sin 6/2ma) introduced in equation (4).

According to (4)

2%
-l-J E (a,z
yZ40)de
@y Wl E_(a,z)
R = Z_ = 2 = —E (18)
I I 2na H¢(a,z)
a J H¢(a,z,¢)d¢

o]
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where the last step follows from the symmetry of the present problem. Thus,

R 1s defined as the ratic of the aQeraged'longitudinal surface electric

field to the total (conduction and displacment) current flowing through the

cross-sectional area of the antenna. R is sdmgtimés refé&ged to as the
"internal" impedance in contradistinction to tﬁgé"surfacg%‘;mpedance defined
by EZ/Hqb . If one integrates the time-average Poynting.geétorrover the
antenna surface, he will find that the total time-average ohmic loss per
unit length along the antenna is exactly given by R]IIZ/Z . Hence, Az ¢ E
can be appropriately interpreted as the total resistance between two cross
sections of Az apart. Of course, Az should be smaller than all relevant

wavelengths so that AzEz can be meaningfully defined as the voltage drop.



Table I.

Values of

pE

Q

% 10

.02

.03

'04

.05

.06

.07

108

.09

.10

.20

.40

.80

10

14

20

26

30

40

50

60

70

80

90

100

1000

51.5
38.3
32.6
29.3
27.0
21.4
17.3
15.5
14.5
13.8
12.8
11.8
11.3
11.0
10.5
10.3
10.0
9.76
9.74
9.52
9.50

7.20

51.5
37.8
31.8
28.4
26.0
20.3
16.2
14.4
13.2
12.3
11.1
9.98
9.16
8.73
7.87
7.22
6.69
6.24
5.84
5.50
5.22

.369

50.9
37.3
3l.4
27.9
25.6
19.9
15.7
13.8
12.6
11.7
10.4
9.20
8.32
7.84
6.92
6.21
5.64
5.16
4.75
4.40
4.09

<137

50.3
36.8
30.9
27.5
25.2
19.4
15.2
13.3
12.0
11.1
9.80
8.49
7.56
7.07
6.10
5.37
4.78
4.30
3.89
3.54
3.24

064

49.8
36.3
30.5
27.1
24.7
19.0
14.8
12.8
11.5
10.5
9.20
7.85
6.89
6.39
5.40
4.66
4.07

3.60

.036

49.2
35.9
30.1
26.6
24.3
18.6
14.3
12.3
11.0
10.0
8.65
7.27
6.30
5.78
4.79
4,06
3.49
3.03
2.66
2.35
2.09

.022

48,7
35.4
29.7
26.2
23.9
18.2
13.9
11.9
10.5
9.54
8.14
6.74
5.76
5.25
4,26
3.55
3.00
2.57
2.23
1.94
1.70

015

48,1
35.0
29.2
25.9
23.6
17.8
13.5
11.4
10.1
9.08
7.67
6.26
5.29
4,78
3.81
3.12
2.60
2.20
1.88
1.62
1.40

011

47.6
34.6
28.9
25.5
23.2
17.4
13.1
11.0
9.66
8.66
7.23
5.83
4.86
4,36
3.41
2.75
2.26
1.88
1.59
1.35
1.16

.008

47.1
34.1

28.5

22.8
17.1
12.7
10.6
9.26
8.26
6.83
5.43
4,47
3.98
3.07
2.43
1.97
1.63
1.36
1.14
.973

.006

42.6
30.5
25.1
21.9
19.7
14.1
9.75
7.65
6.32
5.36
4.06
2.88
2.14
1.80
1.21
.859
632
479
.371
294
«237

.001

35.7
25.1
20.3
17.4
15.4
10.1
6.26
4.46
3.39
2.67
1.79
1.08
.715
.559
.329
211
144
.103
.077
.059

.047

26.9

18.3

14.4

12.1

10.4

6.22

3.26

2.05

1.40

1.0l

.583

. 304

.181

134

073

.045

.030

.021

.016

012

.010

12




" fabie 11, valuss of o2 107
(o]

Be - 2 3 4
Te 1 2 4 6 8 10 20 40 60 80 10 10 10
.2 239 154 90.3f 63.7{ 49.3} 40,1 20.8) 10.6 | 7.13} 5.37| 4.30| .433} .043
41162 101 57.6| 40.2| 30.9¢ 25,1} 12.9) 6.55] 4.39| 3.30} 2.64| .266]| .027
.61 126 76.51 42,51 29,4 22.4( 18,1 9.26| 4,68 3,13| 2.35] 1.88| .,189} .019
.81 104 61.6 | 33.4422.9| 17.3] 14,0 7.07| 3.56 ] 2.38| 1.78] 1.43| .143} .014
1189.2§51.3127.2} 18.4| 13,94 11,1} 5.60} 2.80 1.87| 1.40} 1.12 .112} .01l
2| 51.3126.2|12.5( 8.05} 5.90| 4.65] 2.24{ 1.10| .726 | .543| .433| .043 | .004

41 25,44 10.7 | 4,29 2.,55| 1.78] 1.36 .608| .285| .186} .138| .109} .C1l1| .001

6{ 15.2| 5.55{1.96| 1.09| .732| .543} .228} .103 | .066 | .049| .038| .004 0

8} 10.0( 3.28 | 1.05) .557 | .362{ .263] .104} .045{ .029| .021| .01l7| .002 0
10 7.02f 2,11} .630| .321} .204{ .146] .055} .023| .015| .011| .008| .001 0
14]3.89(1.04| .283} .138| .085{ .059| .021 | .008 | .005| .004| .003 0 -0
204 1.95¢ .474 | .121] .057| .034} .023| .008} .003 | .002| .001] .001 0 0
26| 1.13] .264 | .066 | .030| .018| .012} .004} .001 | .001 0 0 0 0
301 .8321¢ .191 | .047} .022| .013} .009| .003]| .001 0 0 0 0 0
40| .446 .101 ] .025] .011} .007 ] .004} .001 0 0 0 0 0 0
50} .273] .062} .015| .007] .004 | .003} .00L 0 0 0 0 0 0
60| .183{ .042 | .010| .006{ .003| .002 0 0 0 0 0 0 0
70f .131f .030] .007} .003}] .002 )] .001 0 0 0 0 0 0 0
801} .098} .023 | .005| .002| .001 | .001 0 0 0 0 0 0 0
90| .076; .0181 .004} .002] .001 0 0 0 0 0 0 0 0
100 | .060| .014 | ,003] .001§ .001L 0 0 0 0 0 0 0 0
1000 0 0 0 0 0 0 0 0 0 0 0 0 0

13
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Figure 1.

Radiation field for a step~function voltage.
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Figure 2.

Radiation field for a step-function voltage.
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Appéndixm

For pedagogical reason we shall give here some steps that lead to

equation (1) in the text. Instead of treating the cylindrical structure

as a specilal case of an axially symmetric body we consider, ab initio, an

infinite cylindriéélygt;ﬁctﬁférﬁé %ﬁich“EEEEEiaﬁ (1) égﬁiies. From the
fact that i at an interior point T in a source~free region bounded by
a regular surface S can be expressed in terms of the values of E and

Z 6 . -iwt .
H on S, we write, with the time factor e suppressed,

HE) = - J {{we(a' x )G - (@' x B) x v'G - (n' - H)v'Glds’ (A-1)
5

where

eik/bz + p'2 - 20p" cos($d - ¢') + (z - z')2

/pz + 0'2 - 200" cos(d -~ ¢') + (z - z')2

and n' is the inward unit normal to S . In the case under consideration
there are no sources at infinity and the surface S 1is just that enclosing
the infinite cylindrical antenna. '

Taking the ¢-component of (A-1) and noting that V' = - ¥V we obtain,

after some vector algebra,
. . 3
H¢(p,z,¢) = iue j cos (¢ - ¢’)Ez G ds' - 3 f H¢ G d%'

—%%—JHDGdS' o (A-2)

where dS' = ad¢'dz' . We now multiply (A-2) by a , the radius of the

cylindrical antenna, and then integrate the resulting equation with respect

16



" i

to 7¢ from 0 to 2r . Since the last term on the right side of (A-2) e

integrates to zero, we have - eer
itz
2T © 27 27 L

a j H¢(p,z,¢)d¢ = 2niwsaz I dz' 5%-J Ez(a,z',¢')d¢' J dy cos ¢ G(p,ajz,z";y)

o - 'f°° ~ o ) o
. ! o= 27 2T o
- a‘a—ap' J dz' J qu;(a’Z',(b')dd)' J dv Glp,azz,z'30) (A-3)
= o o}

where we have made use of ——

2T 27w 27 2T
j f £(6"')G(¢p ~ ¢")de'de = j £(¢')de’ J G(y)dy
o o o) o

which follows from the fact that G(¢) is a function of cos ®

Noting that

(B—G(O:a;Z,Z'W)] =%§%G(a9a;232';¢) (A-ll')
0 o=a
and
© 27
Lim J f I(z") 2 Glp,asz,2's¢)ady dz'
Ip
p>a
-0 O
© 27
= - % I(z) + j f I(z')[g% G(o,a;z,Z';w)] ady dz' » (A=5)
p=a
-0 o



one immediately obtains (1) from (A-3). (A-4) can be verified by straight-
forward differentiation. The term - I/2 on the right side of (A~5) comes
from the contribution of the integral over a small area on the surface

surrounding the point that the observation point approaches when taking
the limit p-a .

18
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