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Abstract

The problem of eliminating reflections froman open, two-parallel-

transmission line by an admittance sheet is formulated as an exterior

electromagnetic boundary-value problem and is solved by the extended Wiener-

Hopf technique, a technique specially developed to treat diffraction by a

thick semi-infinite plate. The required value of the admittance sheet is

obtained numerically and presented graphically. The time variation of the

sheet current required for eliminating reflections is also calculated at

several points on the sheet when the electric field at the position of the

sheet is specified to be a step function in time. Realizability of such

an admittance sheet by a gtid of passive networks is discussed.
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TEF!MINATION OF TMO PARALLEL SEMI-INFINITE

PLATES BY A MATCHED ADMITTANCE SHEET

ABSTRACT

The problem of eliminating reflections from an open, two-parallel-

plate transmission line by an admittance sheet is formulated as an

exterior electromagnetic boundary-value problem and is solved by

the extended Wiener -Hopf technique, a technique specially developed

to treat diffraction by a thick semi-infinite plate. The required value

of the admittance sheet is obtained numerically and presented graph-

ically. The time variation of the sheet current required for elimina-

ting reflections is also calculated at several points on the sheet when

the electric field at the position of the sheet is specified to be a step

function in time. Realizability of such an admittance sheet by a grid

of passive networks is discussed.
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I. Introduction

68-3

The present paper is devoted to the solution of the problem suggested
1

in a previous note published in this series. The problem is to calculate

the characteristics of an admittance sheet that would be required to terminate

a two-plate transmission line for zero reflections (figure 1). For wavelengths

much larger than the plate separation, it is well known from transmission-

line theory that the required admittance should have the value of the character-

istic admittance of the line. For other wavelengths, however, the problem has

to be approached from the viewpoint of electromagnetic field theory.

To make the problem amenable to mathematical analysis the real situation,

which is 3-dimensional in nature (figure 1), is first idealized to be 2-

dimensional. Furthermore, the electrical thickness of the sheet is assumed

to be so small that the component of the electric-field vector tangent to the

sheet is continuous across the sheet. Then the problem posed above can be

stated simply as follows. Given that the component of the electric-field

vector tangent to the sheet is constant at the sheet, the magnetic field is

to be sought from the exterior boundary-value problem. A knowledge of this

magnetic field, together with the assumed magnetic field in the interior

region between the plates, will uniquely determine the required current

density on the sheet , and hence the required admittance function. The problem

just stated can be solved by the extended Wiener-Hopf technique specially

developed to treat diffraction by a thick semi-infinite plate.
2,3

It is

found that the admittance function can be expressed in a cosine series in the

spatial coordinate over the sheet’s surface, the coefficients of this series

satisfying an infinite set of algebraic equations.

The numerical results show that, for wavelengths less than about three

times the spacing between the two plates, the admittance function will have

a negative real part at some positions on the sheet. This means that, if

such wavelengths are of interest, active elements may be required in con-

structing the sheet.

In synthesizing the required admittance sheet by passive, lumped

elements it is useful to have available the time variation of the current

that flows on the sheet when the electric field at the position of the sheet
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is taken to be a step function in time. This time variation can then be

collated with that of the current flowing in a resistor-inductor network

connected in series to a step-function voltage source. From this collation

one can determine the approximate values of the lumped elements required

to synthesize the admittance sheet. This approach is particularly appropriate
*

and, perhaps, the best in the present problem. It is found that for time

larger than the transit time across the plates, a resistive-inductive sheet

with no spatial variations would suffice to eliminate reflections from

the edges of the plates.

*
This approach was brought to the authors’ attention by Capt. C. E. Baum.

I
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II. Solution by the Wiener-Hopf Technique

As shown in figure 2, the space outside the two parallel semi-infinite

plates is divided into two regions. The problem at hand is to find

from the wave equation

[5+5+’21HJX”’Y)=”
with H satisfying the following conditions:

z

‘H=’
ay z when y=tb, x<O

~Hz= O. ,ikY E when lyl~b , x=O .

Here Y. is the free-space admittance and E is a constant electric-
0

field strength.

Define

m

‘$+(ci,y) ‘+
J

.
Hz(x,y)elax dx

o

0

@_(a,y) ‘+
J

.
Hz(x,y)elax dx ,

-m

where u is a complex variable and a = a + i~ . As is customary in the

Hlz(”+,y)

(1)

(2a)

(2b)

(2C)

(3)
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Wiener-Hopf technique, one first assumes k to have a positive imaginary

part, i.e., Imk>O. When the analysis is complete, one then sets

Imk=O. Since Hz- exp(%(Irnk)x) as x+~ m , @ and @ as

defined in (3) are regular respectively in the upper (:>- Im k) and lower

(T < Im k) half-planes.

In region (I), we multiply (1) by e‘ax/2-K , integrate the equation

by parts, and use (2c). Then

[1d2—_ Y2 ‘$j+(%y) = -~H#,Y) +~yoEo
dy2

where y=]a2-k2 and yE- ik when a = O .

To eliminate the unknown
‘lZ

in (4) we change CY to –et in that

equation and add the resulting equation to (4). Then

[ ][

d2—_ Y2 Ol+(%y)
dy2

the solution of which is

‘$l+(%Y) + C’l+(-%Y) = -

where the condition of evenness about

From the definition (3) we have

+ 1
.

‘$l+(-%Y) =$ YOEO

$ YoEoy
-2

+ B(a)cosh yy ,

the y = O axis has been used.

m

1=—
J

HIZ(X,Y)COS 12X dx .
n

(4)

(5)

(6)

o
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Consequently,

m

Hlz(x,y) = 2
H 1‘l+(~sY) + ~l+(-%y) Cos CfXda .

0

Substituting (6) into this equation and evaluating one of the integrals by

the method of residues we obtain, after setting x = O ,

m

H#+-,Y) = YOEO+ 2 )B(a)cosh Yy du .

0

(7)

I

I
\

I
I

!

To find B we differentiate (6) with respect to y and set y = b . ~

Thus t

B(a) =
1

ysinhyb [
@;+(a,b) + @;+(-a$b)1

1
(8) /

I
(
1

where the prime denotes differentiation with respect to y . Thus, finding ,

B is tantamount to finding the quantity in the square bracket in (8), which ‘

will now be obtained by the standard procedure in the Wiener-Hopf technique.

To this end, we first set y = b in (6) and obtain with the aid of (8)

Cj+(a,b) + @l+(-a,b) =- % YOEO +
coth yb

[
@~+(a,b) + @i+(-a,b)

Y 1 .(9) ~~
~’

We now consider region (II) in figure 2. Multiplying (1) by eiax/2Tr and ~

integrating the equation with respect to x from -~ to m we have

,

[ ][

d2—_ Y2 1@2+k Y) + ‘32_(%Y) = o
dy2

I
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t
}

the solution of which,with proper behavior at infinity, is

:
02+(u,y) + @2_(a,y) = A(a)e-yy

1

I
I
I
1

1

<
!
1
1
I
8
!

I

I
{

I

!

1

I

I

I

I

I

Differentiation of (10) with respect to y gives, after setting y = b

and using (2b),

A(a) = - y
-1

O;+(a,b)eyb .

Eliminating A from (10) and setting y = b we obtain

@2+(a,b) + @2_(;,b) = - y
-1

@;+(u,b) . (11)

We now subtract

Q;+(a$b) = O;+(a,b) .

(9) from (11), noting that @l+(a,b) = @2+(a,b) and

Thus

s+(u)
+ cothyb

Ye-’b
S+(.-U) + I/J_(u) -:’-2 = o , (12)

sinh yb Y

where S+(a) s (YOEO)-l @{+(a,b) , and O_(a) ~ (yoEo)-l

which is,

Let

of course, regular for T < Im k.

the admittance function Y be defined by

.

Y = Y. - H1z(o+,Y)/Eo

O (a,b)
-2-

- O1+(-a,b)1
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Then, in terms of S+(a) and S+(-a) we obtain from (7) and (8)

co

Y
~=- J{S+(u) +S+(-a)} ~c:;:hy;bda .

-m

(13)

The remaining problem is first to find S+(a) from (12) and then to evaluate

the integral (13).

Equation (12) is valid within the strip - Im k < T < Im k in the complex

a-plane. Following the usual Wiener-Hopf technique2 we write

(yb)-le-ybsinh yb = L+(a)L_(a) ,

where

a = kdl -
s

(sm/kb)2 = ik~(sm/kb)2 - 1

(14a)

9 (14b)

.

It can be easily shown that A_(a) , as defined in (14b), is regular for

T < Imk . Substitution of (14) into (12) gives

s+(a) ikb L_(cY)
—- b(a-k)L_(a)[v_(a) +A_(CdS+(-Cd]

(a+k)L+(a) = ~ a + k

+ (a-k)L_(u)S+(-a) ~ > 1
S=o 2 Us(a+lls) “

—— —–—



68-1o AFML EIIP 1-5

First, we add extra terms to both sides of this equation to make the left-

hand side regular for T > - Imk and the right-hand side regular for T < Imk.

Then, we apply the Wiener-Hopf technique and assume that both sides are identically

zero at infinity. Thus

S+(a) co c (us+k)L+(as)

(a+k)L+(a) +1$
S=o as (a+as)

where we have made use of the fact L+(a) =

a = an (n = O, 1, 2, ...) in (15) one then

simultaneous linear algebraic equations for

ikb L+(k)
S+(IQ -——=0 , (15)

Tr a+k

L_(-cY) .
2

By setting

obtains an infinite set of

S+(an) .

To reduce (15) to dimensionless form we define

S+(an)
a = E
n n anb \

~n=Jn2-e2=_iJe2- n2

kb
e=.=—

Then (15) becomes

[

; 2> dns + “:Ao;(:~Ao)
S=cj n n s

.

1
2iA

LnLs as = & LoLn

n=O, 1, 2, ....

(16)

where d is the Kronecker delta function, and Ln denotes L+(An) , which
ns

.— —.. —_
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will be examined in the next section.

We now return to the integral (13). Since S+(a) is regular in the

upper half-plane, the integral involving S+(a) can be evaluated by the

method of residues by closing the contour at infinity in the upper half-

plane. The only poles within the contour are the zeros of (yb)sinh(yb) .

The contribution from the integral over the semi-infinite circle can be shown

to be zero. The integral involving S+(-u) can be evaluated in the same

manner by noting that S+(a) is regular in the lower half-plane. Thus,

the evaluation of (13) gives

where the coefficients a
n

satisfy (16).

(17)
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I III . Computation of LL(~n)

In this section, we shall briefly discuss how to numerically compute

L+(An) , which is denoted by Ln in (16). In addition, we shall discuss

two limiting cases of (17), namely, @ + cu and e + (). The factorization

-1 -yb~ifi ybof (yb) e into L+(a)L (a) can be found in Reference 2 where

.
‘+ ls’

in terms of our notation , given by

1 where

F (An)

Here

which

-F (An) -Anfm
L+(An) = e R’{41 - (0/m)2 + A=lm}e 9

IA I
=~lAn]- i[ncos-l -$-+ lAl(l+ln 2-C-in(3)] , if e>n

n

\

=An(l+ln2-C-lne)- nln

COS-l$ = n/2 if @ = O , and

In computing L+ the infinite

may be overcome by introducing

c

(18)

(19)
l’mn
—_

e
iZ(n-A)

2 Y if e <n .
n

is Euler’s constant.

products may cause some difficulty,

the Gamma function r :

1
Anc ~ -Anlm

~= ‘ne
TI (1 + An/rn)e .

m= 1
(20)

Combining (18) and (20) we have, after making use of the infinite-product
-1

representation of x sin x ,

.

1/2 m
L+ = ~~lr-l(~n)exp(-F - ~nC)(sin en/e7r) 11 (1 + A#~m)(l + ~n/m)-l , (21)

m=l

.,.,
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where, as before, ~ is understood as -i . The infinite products in

(21) can be written in the form

;= exp [ ~ ln(l + Xn/Xm)(l + An/m)-l] ; ,
m= 1 m=M m= 1

(22)

where, for brevity, the factor (1 + l-/l_)(l + ~-/m)
-1

has been omitted

in the products. From (22) one can re;di~y deduc; that, if M > (Ane2/2)1’3 ,

} < ‘i < exp[(M+ 5)(Ane2)/(4M3)] ! . (23)
m= 1 m= 1 m= 1

Thus, by choosing M properly one can compute the infinite products to any

degree of accuracy.

It is interesting to examine (17) for two limiting cases, namely,

e +cu and e + ()(e= kb/~) . In the first case (e +-m) , one has

~s+--ie , for all s < ~

L+(As) + 0
-1/2

.

Substitution of these into (16) gives an = O(@-l) for all n . Thus, from

(17) we see that Y goes to zero as 9 + @ , as it should.

In the second limiting case (e + O) , one may make use of the limiting

forms of L+ ,

— .——-—

1.
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which can

Thus, as

be obtained

expected, Y

L+(AO) + 1 + 0(6 In 9)

e-nnn- 1

L+(~n) + r(n)

from (18) and (19), to

(n

show

‘AFML EMP 1-5

+ o)

from (16) that

a+ ++ 0(e)
o

(24)

an + o(e) , (n # O)

approaches Y. as e +0.

—
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Iv. Discussion of Numerical ResultP

Figure 4 through 9 illustrate the variation of the admittance function

(17) with frequency

while, in figures 10

position for several

B are related to Y

Due to our choice of

(e = kb/m) for some typical pointt~ (y/b) on the sheet,

through 19, the admittance function is plotted against

representative frequencies. In thrse figures, G and

by

Y
~=G+iB ●

(25)

the time-harmonic factor e
-iwt

, the case B > 0 means

an inductor in parallel with G , whereas the case B < 0 implies a capacitor

in parallel with G .

Examination of these curves shows that G > 0 if the wavelength z

three times the plate separation; otherwise, G can be Pegative at some

positions on the sheet. That the required values of G may be negative is

also true for the case where the two parallel semi-infinite plates have a

perfectly conducting, right-angled flange. In this case, the required

admittance function for zero reflections can be easily-found to be

k (b+y) k(b-y)

I
o

Jl)
where is the Hankel

o
integrals are tabulated in

at a given position on the

unflanged case.

} H(l)(u)du ,
0

(26)

o 0

function of the first kind of order zero. These

Reference 4. The variation of (26) with frequency

sheet is very similar to that of (17) in the

In practice, the required admittance sheet for a given frequencY is

probably synthesized by a grid of passive-element networks. In figure 3,

the sheet is divided into meshes, the maximum linear dimension of each mesh

being smaller than the wavelength of interest. Then, within each mesh the

1“

~—-

.—.
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variation of H with y is negligible (Ey being constant by assumption);
z

that is to say, one may regard the admittance function given by (17) within

each mesh as the wave impedance for the wave with propagation vector normal

to the sheet. For the mn-th mesh (figure 3) the required lumped admittance

(YL)m is equal to the wave admittance (17) multiplied by a geometrical

factor, viz.

where W denotes the width of the sheet and M x N equals the number of

meshes.

For very low frequency we may talk about the total admittance of the

sheet and obtain from (24) and (27)

(YL)total = j +;Yo

~ ~ (YL)mn

9

n
m

which simply insures the correctness of the definition (27) for the mesh

input admittance.

The simplest,and perhaps the best , way to synthesize the admittance

function (27) is the following. At the sheet we assume the electric field

to be a unit step in time, i.e., Ey = EoU(t) , and calculate the time

variations of the required sheet current at various positions on the sheet.

Then, we try to approximate the time variations by those of some passive-

element networks, thereby determining the required values of the lumped

elements. Defining the sheet current K by

.

K(W,y/b) = Hlz(O-,y/b) - H#l+,y/b)

(27)

(28)

i
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we obtain, from the definition of Y/Y and for E
o

= EoU(t) at x = O ,
Y

w

IK(~,y/b) = u(~) 1 (~- 1) e
-i(m)6

_—
K. 2ni Y e

dO 9
0-m

where K = Y E , T = et/b , and
o 00

Y/Y
o

is given by (17). Equation (29)

was computed by a CDC 6600 and the results are shown in figure 20, which

(29)

illustrates the time variations of K/K. at several positions on the sheet. I

In the flanged

Fig. 20 except

after carrying

K=(~,y/b)

case, the situation is largely the same as that shown in

for smaller rise time. Substitution of (26) into (29) gives,

the Fourier inversion,

I
J.

K.
= U(T) -~U(l-y/b-~) - @+y/b-~)

‘l(=U(~-l-y/b) .1 1‘l(~U(~-l+y/b) -~sin = )- ~ sin
T)

When a voltage source, V(t) = RIoU(t) , is connected to a series

combination of an inductor L and a resistor R , the current is given by

Rt
I(t) _ (l ‘~
T -e )U(t)

In terms of the variable T(= et/b) we have

(30)

1

I
I
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where 6 =Rb/(Lc) . If one takes

R= o==l/Y Y

then

AFUL EMP 1-5

(31a)

(31b)

Equation (30) is plotted in Fig. 20 in broken lines for ~ = 1 and ().5.

It is seen that the equation (30) with f3= 0.8 fits all the solid curves

very well for T22.

Figure 21 through 25 plot Re(~o/Y) and Im(Yo/Y) against i3 at

several points on the sheet. We wish to approximate these curves by the input

impedance of a R-L network. In accord with the preceding paragraph we set

R=ZO and choose L appropriately. In terms of 6 and f3 defined in

(31b) we have

(32)

Equation (32) is plotted in broken lines for some appropriate values of a

in figures 21-25. These curves may be used to supplement figure 20, although

they do not yield additional new information in our method of synthesizing

the admittance sheet.

.
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/\ ADMITTANCE SHEET
z

Figure 1. Two parallel semi-infinite plates with an admittance

Y

t
(II)

sheet
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(I)
2b -x
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——— ——— ——

(II)

Figure 2. The exterior boundary-value problem
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Fig. 4
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Fig. 6 ylyo. G + iB
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