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Abstract

The time behavior is obtained of the total current induced by a transient

electromagnetic plane wave incident upon a finite, perfectly conducting, solid

cylinder loaded at its center with an inductive-resistive insert. It is found

that impedance loading has the effect of (1) decreasing the resonant frequencies

of an otherwise unloaded cylinder and of (2) damping the amplitude of oscillation

of the induced total current. The loading that maximizes the damping is dis-

cussed; the variation of the load resistance with the load inductance for such

loading is deduced.
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1. Introduction

Recently, two notes have been written on the problem of

the technique of impedance loading, the induced currents on a

to an incident electromagnetic wave. One note deals with the

minimizing, by

scatterer exposed

mathematical

formulation of the problem,l while the other discusses the practical means

and desirability of reducing the field distortion caused by the sensor plat-

form housing various electromagnetic sensors for El@ measurements.
2

The

present note should be considered a continuation of the former one, since it

presents numerical results that were obtained, with the aid of a CDC-6600

computer, from pre_viousmathematicalformulas.

The problem at hand is to compute the total current induced by a plane

electromagnetic wave incident normally upon a finite, perfectly conducting,

solid cylinder loaded at its center with an inductive-resistive (L-R) insert.

The incident wave is taken to be linearly polarized with its electric-field

vector parallel to the axis of the cylinder; the wave is also assumed to be

a step function, reaching the nearest surface of the cylinder at time t=o.

The most useful information derived from the numerical solution of the problem

is undoubtedly the variation of the decay time of the induced total current

with the L-R parameters, whose values may be at one’s disposal. With this

information one can choose the value of R for a given value of L (or

vice versa) to obtain the maximum possible damping of the induced total current

on a cylinder of fixed radius-to-length and fixed radius-to-gap-width ratios.



II. Method of Computation

For easy reference we shall reproduce here the necessary mathematical

formulas that were required for numerical computation, along with a few

remarks on the method of computation.

By invoking the Lorentz reciprocity theorem and the principle of super-

position it can be shown that

‘T
I (0)

Ir(z) = lP(Z) - ~I(z) ,
YT + YE It(o) t

(1)

where I the quantity of interest, is the total current induced by a given
r’

time-harmonic, incident electromagnetic wave on a cylinder loaded at its center, .

Z=o , with the admittance ;1
‘L p

is the total current induced by the same

incident wave on the same cylinder with
‘L=w;lt

is the total current due

to some specified distribution of tangential electric field over a circumferential

gap at the center of the cylinder where the admittance is defined in the customary

way. ●
Extensive data on lP(z) are available in a previous

also contained descriptions of the DIPOLE, the DIPLOTK, and

codes, which have been successfully employed in the past in

of a time-harmonic or transient electromagnetic wave from a

3
note in which are

the FORGE computer

computing scattering

finite, perfectly

conducting, solid cylinder. Thus, the quantity that actually needs to be

computed in (1) is It(z) , from which the determination of YT immediately

follows.

By use of the representation theorem that the magnetic field at an

interior point

is expressible

fields, it can

in a simple and

in terms of the

be shown that

source-free region bounded by a regular surface

surface values of the electric and magnetic

r

; It(s) +
J

K(s,s’)It(s’)ds’ = -~&
J

M(z–z’)f(z’)dz’ , (2)
‘T

-w
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where

d$ , (3)
u o V’ZL + 4a’ sin’$

Z. and k being the free-space impedance and wave number, and a the radius

of the cylinder. The variable s is orthogonal to the azimuthal angle @ ,

on both the cylindrical surface and the bottom and top flat plates. In

general, the forcing function, i.e., the integral on the right side of (2),

should influence not only the current on the cylindrical surface but also

that on the top and bottom plates of the cylinder. However, in accordance

with the above-mentioned computer ccldesone need not extend the forcing function

to both end plates of the cylinder. For detailed discussions one must refer

to a previous note.
3

Our.first concern in solving (2) numerically is to evaluate the integral

on the right side of that equation, To this end, let us assume f(z)It(0) = YT .

The implication of this assumption can be found in reference 1. Here it

suffices to say that no appreciable errors will result from this assumption,

The integral that must be evaluated is then given by

w

F(z)
1

‘-7; ~
M(z-z’)dz’ .

-w

From (3) one can easily deduce that

M(z) +- 2i~lnklz\ , for k]zl<ka <l,
o

(4)

and that



,

Thus , the integral (4) exists for every ]z\ s h , h being the half length

of the cylinder. After this integral has been numerically evaluated, (2)

can be solved for I , and hence
t ‘T ‘

by use of the computer codes mentioned

above.
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III. Impedance Loading by a Radial Transmission Line

and a Resistive Sheet

In this section we shall discuss briefly how the load admittance ‘L

(or the load impedance ZL ), which appears in (l), can be realized in

practice. One way to achieve this is to cut a slot around the cylinder

with a resistive sheet surrounding tl~eslot and various appropriate materialfi

filling it (Fig. 1).

Inside the slot (b s p < a’ , - w< z ~ W) let there be onlY an axial

component (Ez) of th~ tangential”-electric field with no axial or circumferential

variations. Consequently, the only non-vanishing component of the magnetic

field is Hb , which varies only with the axial distance o . Then, the simple

theory of a’short-circuited radial transmission line applies and gives, for

the admittance Y; at p = a’ ,

1121TpH nk J1(\a’)yo(~b) - Jo(kLb)yl(\a’)
Y;=& , (5)

= &$ Jo(~a’)Yo(~b) - Jo(\b)Yo(~a’)
z ~=a’

where
< = “2PL&L + ‘WPL”L ‘ ‘L ‘ ‘L and ‘L

being the electrical parameters

of the material within the line.

When ~ is real, the required ~ to make Y; = O is given by any

of the roots of the numerator of (5) for

(n)roots
!L

with bla’

(n) =
‘L

becomes obvious

(1

(2n-l)7r~ b
2(a’-b) n~

a given bla’ . The variation of the

if one writes

9 n= 1,2..... 9

4
since curves of F_ versus bla’ are given in Jahnke and Erode.

When lkLa’1“<< 1 , equation (5) yields



1
Yp -

-iuL ‘
(6a)

where the equivalent inductance, L , is given by

(6b)

Similarly, the equivalent conductance, G , of the resistive sheet is

defined by

Let the sheet be geometrically as well as electrically thin. Then, integrating

Q x ~= GEthe equation _ _ through the thickness of the sheet one has

(8)

where AWa-a’.

Thus, one can see from (6), (7) and (8) that the load admittance, YL ,

is a parallel combination of an inductance and a resistance ----- the so-called

inductive-resistive insert. Before concluding this section, perhaps it is

worth pointing out that the assumptions that are required for the derivations

of (6) and (8) in no way violate the condition f(z)It(0) = YT , which is the

basic assumption in the present theory.
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Iv. Time Behavior of the Induced Total Current
. . ...-,.... ,.-.,-..!.,----

F<gures 2-17 illustrate the time behavior of the induced total current

at the midpoint of the cylinder for two values of al’n ratio, two values of

wla ratio, and various values of L and G (or R). The magnetic vector

of the incident wave is assumed to have the form (Fig. 1A)

:- ~inc x+a
.(x,t)=% HoU(t --& ,——

where U is the unit step function, c the vacuum speed of light, and

the unit vector in the y direction.
%

Studying these curves, we find

that the period of oscillation, which can roughly be determined by the zero-

point crossings on the t axis, increases with decreasing G for a fixed

L, and increases with increasing L for a given G . From this finding

we immediately deduce that the shortest period of oscillation occurs when

L ,orR, or both have zero values, that is to say, when the cylinder is

unloaded. Our deduction is, in fact, consistent with the information one
.

may draw from figures 8 and 10 of a previous note.j Thus we conclude that

impedance loading has indeed the effect of decreasing at least the lowest

resonant frequency of an otherwise unloaded cylinder.

In figures 18-21, the time history is given of the induced total current

at z = h/2 rather than at z = O on the cylinder. These curves are similar

to the corresponding ones at z = O .

In addition to having the effect of decreasing the resonant frequencies

of a cylinder, impedance loading may result in a significant reduction in

the amplitude of oscillation. Further discussions of this point will be

left to the next section.
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v. Decay Time of the Induced Total Current

The curves presented in figures 2-17 take approximately the analytical

form I(O,t) = F(t)exp( - a *), F(t) being an almost sinusoidal function
-1

and a the decay time constant. By fitting the envelope of any particular

curve in figures 2-18 to an exponential function, the value of ~ can be

determined for that particular curve. Figures 22 and 23 give the variation

of the decay time constant with the normalized load inductance
L

— , the
uoh

value of G being chosen to maximize a for a given L . These curves

show that a varies roughly as $n(l +~) . Referring to figure 27 of

3
0

a previous note, which shows the variation of the decay time constant with

alh for an unloaded cylinder, one can easily see that a can indeed be

increased significantly by inductive-resistive loading. For example, when

L N 5Uoh henries and R= 6071 ohms for a/h = 0.1 (or R= 1207rohms for

alh = 0.01) , a is about one order of magnitude larger than it would be

in the unloaded case.
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VI. Optimum Loading for Maximum Damping

From a designer’s viewpoint, it is useful to have the information

available regarding what value the load conductance should take for a given

value of the load inductance so that the induced total current will be most

rapidly damped out. This value of conductance will be referred to as the

optimum load conductance G h figures 24 and 25, Z G
Op “

is plotted
o Op

against ~ for two values of a/’n and two values of wla . These curves
o

were obtained from figures2-17 by using the criterion that a be a maximum.

Since there are insufficient numerical data for accurately determining the

maximum a , these curves are rather approximate in nature. Nevertheless, it

is felt that they would provide useful, though rough, information concerning

(1) the range of Gop and (2) the dependence of G on L . For more
Op

accurate information on these two points one may first interpolate the

data available from figures

versus ZOG for a fixed L

G
Op

,may be determined more

resistance given in figures

2-17. For example, one may first plot a

. From this plot the maximum u , and hence

accurately for that L than the optimum load

24 and 25.

.—
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