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Abstract

The time dependence of the fields in a surface transmission-line

simulator is calculated by using the usual approximations of conventional

transmission-line theory. The line is excited by a step-function current

generator at one end and loaded by an inductor at some other point. Wave-

forms are displayed for several ground conductivities, several distances

from the source, and several values of load inductance.
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I. Introduction

The possible effects of the electromagnetic pulse generated by a nuclear

explosion must be determined. It is particularly important to find out how

such a pulse will affect buried military installations. These structures

are so complex that an approach to the problem based solely on computational

methods is out of the question. On the other hand, actual nuclear tests are

too rare to carry out all of the measurements necessary for a complete empirical

Study . These considerations have led to the development, over the last few

years, of more and more sophisticated ways of artificially simulating the

nuclear electromagnetic pulse over large areas.

During the later part of its life the real pulse varies slowly; this

part of the pulse can be simulated by a buried parallel-plate transmission

line.
1

During the earlier part of its life the real pulse varies rapidly;

to simulate this portion it is necessary to resort to some other kind of
2

structure, such as a surface transmission line. Because of-the complexity

of the possible interactions, however, one must simulate the entire time

history of the pulse in order to get an accurate picture of all the electro-

magnetic effects cm buried equipment. Therefore, if the buried line and

the surface line simulation techniques are indeed used, they must somehow

be used simultaneously.

One way that the buried line and the surface line could be combined

is shown schematically in figure 1. The source of energy in figure 1 feeds

into a tapered transmission-line section leading to the surface line. For

actual simulators, several sources in parallel are probably better than the
3

one source indicated in the figure. One plate of the buried line, made up
4

ofnumerous vertic~l rods, is inserted in the ground at approximately the

position where the surface line starts. The second buried line plate is
.-’

placed at the end of the surface line, and beyond that is a tapered termination

section. In order to make efficient use of the slowly varying portion of the

source energy, it is perhaps advisable5 to place an inductive sheet at the

position shown in figure 1. Such a sheet creates a low-impedance path for.

slowly varying currents and so avoids a great deal of dissipation in the

load resistance, but it also disturbs the waveform of the electromagnetic
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fields within the surface line by generating undesired reflections. Th’is
..

note contains approximate curves of the field waveforms that can be expected

if the simulation scheme shown.in figure 1 is indeed used. By examining

these curves it may be possible to decide if the waveform distortion for a

given sheet inductance is acceptable.

It is impossible to analyze accurately the structure shown in figure 1.

Therefore, taking the attitude of a man who looks for a lost dollar where

the light is bright rather than where he dropped it, we will analyze a somewhat

different problem -- the ordinary transmission line with three sections

shown in figure 2. We will choose the parameters (Z’s and y’s) of the

transmission-line approximation to the”problem according to our best judgment.

(These parameters will be found to differ slightly from those used for similar

analyses in the past.2) Nevertheless, a certain amount of blind faith is

necessary in order to believe that the current and voltage on the transmission

line of ftgure 2 represent the fields within the structure of figure 1.

In Section 11 we treat the special case where the entire line in

figure 2 has a single set of parameters (a real Z and an imaginary Y).

This case, where more can be done analytically than if the line were to have

three sections and complex parameters, may be useful for purposes of comparison;

it also may correspond to the real problem if the ground is highly conducting.

In Section 111, waveforms are computed for the case where the transmission

line parameters are complex. Hopefully, this case represents the real problem

if the ground has a finite, and yet large, conductivity.

In Section IV some further remarks are made on the applicability of

the conventional transmission-line approximation to the analysis of the

structure shown in figure 1.
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II. Lossless Line

Suppose that, in the conventional transmission line shown in figure 2,

we set
‘1 equal to Z (Z being assumed in the present case to be a real,

frequency-independent impedance) and also set yl = y = u/c , where u is

the Fourier-transform variable and l/c = ~ . Suppose, in addition,

that for the time being we allow the load inductor, L , to be in parallel

with any real impedance Z
L

rather than the line impedance as indicated in

the figure. Then we may invoke conventional transmission-line theory and

Fourierfs integral theorem to write the following integral representation

of the current due to a step-function current generator of strength .1 :
0

where

ZL + iuL(l-ZL/Z)
R=

ZL + iwL(l+ZL/Z) ●

Let us denote the transit time of the line by:

and the total time constant of the termination by:
.-’

t z : L(Z+ZL)/ZZL .

(1)

Further, let us define a pair of parameters characterizing the load through

5.



the equations:

g : z/z
L

r: t/t
12”

Finally, let us define a set of normalized variables by:

h(T,~) = i(t,x)/lo .

Employing this notation, we may integrate equation (1) in the form:

h(T,~) ‘U(T) + j
[ 1
Fn(r-2n+2C) --Fn(T-2n) ,

n=1

(2)

where U(T) is the unit-step function and



e An examination of equation (3) will reveal that, unless g is unity

(i.e. unless
‘L

= Z), the current has undesired finite jumps at several

values of time. Therefore, for the rest of this note we will assume that

~ is unity. With this value of g , the auxiliary functions, Fn , reduce

to:

[

n-1

1

m
Fn(T) = U(T) 1 - e-r~ ~ w

m=() “
(4)

The representation of the normalized current given by equation (2)

is well suited to numerical work; by using it and the analogous expression

for the normalized voltage,

m
V(t,x) =

e(~,~) ~ ~ z
[ 1

U(T) + ~ (-)n Fn(-c-2n+2<)+ Fn(T-2a) ,
0 n=1

we obtained the data shown in graphical form in figures 3 through 10. The

notation used to label these curves is the same as that given above.

One further quantity may be of interest: the maximum deviation of the

normalized current from unity; it can be seen from the curves that this

maximum occurs when T is 2; so from equations (2) and (4) we can write

(Ah)max= 1- e-2r~ .

This quantity is plotted as a function of r for various C’s in figure 11;

it is plotted as a function of l/r for the same <’s in figure 12.



111. Line With Lossy Section

Consider the situation depicted in figure 2 with
‘2=0”

The problem

is to calculate the normalized current h(~,~) and the normalized voltage

e(T,~) on the line when the current source at X=* is a step function

in time. Direct application of the conventional transmission-line theory

gives the following expressions that have already been arranged in the form

best suitable for numerical computation:

w

-m

a

K +& ~ A(u)e-itiTdwe(T,t) =—
2Trj

& _m

m

h(T,E) = U(T) ++
~

B(w)e-~WT dw

for -1
l>c>(l+a) .

-CQ

Here

‘l=&

.

‘1=*

k+’]+[$-’1=2’”’
z“
++1

1, -1 Iz
– -1 e-2i”c
i

‘1

8

K-—

G

i_—
u

(5)

(6)
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‘L k!—.

‘1
M + 2ir

and f may take one of three forms:

Some straightforward, though

integrancls Al , B1 ,A , and B

(u&

Y 1 , 1+--J .
iq

tedious, calculations show that the

in (5) and (6) are well behaved over the

entire range of integration. In particular, they have the following values

atu= o:

1 1— .
‘l+;+ l+CI <

B1+~

A++

1——
‘+I+CX “
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e As u approaches infinity, they tend to zero sufficiently rapidly that

the integrals exist.

There are in total five parameters (a , B , Er , q , r) and two

variables (T , C) appearing in the above expressions, The geometrical

parameters a and b are defined by

d
6

h
a=—,

‘1
‘f.l+d

(h being the height of the top plate from the ground surface); the ground

parameters, Zr and q are defined by

and the load parameter r is defined by

‘lzl
‘=2L ;

where
‘1

and a are the ground permittivity and conductivity and

‘1
= (Ll + d)lc . The variables T and g are defined by

t- Xlc
T=

~= x
.-’ 9

‘1
Ll+d “

(7)

(8)

(9)

(lo)

Figures 13 through 20 illustrate the time behavior of e and h at

several points on the line for a=2, B=0.04, E=lO, q=90n ,and
r

f=l. These numbers refer to the situation where d = 50 meters, k, = 25
-2

1
meters, h = 3 meters, and o = 10 mhos per meter. Setting f = 1 is
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equivalent to replacing the effect of the ground by a surface impedance

whose value is equal to the wave impedance of the ground. The implications

of the three different forms for f mentioned previously will be discussed

in a future note.
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Iv. Comments

There are two points, mentioned briefly before, that deserve further

comment. The first point concerns the interpretation of the results of

Sections II and III, under the assumption that the conventional transmission-

line analogy is really applicable to the analysis of the actual simulator

structure. From the waveform curves it can be concluded that, if one is

interested mainly in the time dependence of the magnetic field (as opposed

to the electric field), then the idea of inserting a sheet inductance as

shown in figure 1 does indeed make sense. This conclusion is supported

by the fact that there is relatively little distortion of the current

waveform on the analogous conventional line if the time constant involving

the inductance and the line impedance is at least,as great as the transit

time of the line. The case where the ground is perfectly conducting is,

in a sense, a limiting case in that any ground conductivity reduces the

load inductance required to make the distortion small. Whether such a

high inductance can significantly reduce the energy required to inject

the slowly varying portion of the pulse into the ground is a question

that cannot be answered accurately until further calculations are performed.

The second point deserving comment is the basic question that arose

in Section I: How appropriate is the conventional transmission-line analogy

to the analysis of the real simulator? At very low frequencies (A >> 1) ,

there is no doubt that transmission line theory works; at high frequencies

(~<h), transmission-line theory is irrelevant. Up to wh-atfrequency is

the conventional transmission-line analogy valid? I-s-thislimiting frequency

high enough that the pulse waveforms we have calculated look like the real

ones? These questions

made; its results will
.-’

deserve a thorough study. Such a study is now being

be reported in a future note.
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Figure 1. Combined surface and buried line simulator.
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Figure 2. Transmission-1ine representation of combined simulator.
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