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]
Abstract{

One way to launch an approximate electromagnetic plane wave on a
parallel plate, cylindrical transmission line is to use a conical trans-
mission line with a similar cross section. Such a match is not perfect.
Part of the problem of this match can be approximately treated by con-
sidering the diffraction of an electromagnetic plane wave at a bend in
a perfectly conducting sheet which is taken infinite in extent. The
solution for the magnetic field for an incident step function wave is
obtained as a special case of' a problem solved by Keller and Blank
involving the diffraction at a wedge. The solution is then generalized
to include the electric field components. The distortion of the incident
waveform is least for the smallest angle of bend in the conducting sheet.

e 1By

£

pL 34-077



b
Foreword

The graphs summarizing the diffraction of a step-function electro-
magnetic plane wave are grouped together at the end.of section III.

We would like to thank Mr, Ralph Powell and Mr. Ronald Thompson for
the numerical calculations and the resulting graphs.
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I, Introduction

One way to launch a plane wave on a cylindrical transmission line
is to use an appropriztely matched conical transmission line, Such a
match is only approximate, but it can be improved by lengthening the conical
transmission line. This makes the spherical wavefront on the conical
transmission line more nearly approximate the desired planar wavefront
on the cylindrical transmission line. In transitioning between the conical
and cylindrical transmission lines, the conductors are bent through some
angle. This angle can also be decreased by lengthening the conical trans-
mission line. Nevertheless, the transition is not perfect and some distor-
tion of the wave is introduced at the position that the conical and cylindrical
transmission lines are joined,

In this note we consider part of the distortion .problem by calculating
the diffraction of a uniform electromagnetic plane wave which is propagating
parallel to a perfectly conducting planar sheet when the wave encounters a
bend in this sheet. The straight line aleong which the bend occurs is assumed
perpendicular to the direction of propagation of the incident wave. Actually
the wavefront on a conical transmission line is spherical; the use of a plane
wave for the calculations 1s somewhat approximate. Note that there are
various possible geometries for the cross sections of conical and cylindrical
transmission lines using conducting wires, sheers, etc. The present calcula-
tions only apply to those types of transmission lines which use flat sheets
for the conductors or other configurations which approximate flat conducting
sheets to some degree. In such transmission lines the conducting sheets
are not of infinite width and the wave i1s not uniform., Furthermore, there
can be more than one conducting sheet so that there can be multiple reflec-
tions -+ the transmission line. The present calculations then approximate
the . ctromagnetic fields near the bend in the zonducting sheet for times
before other disturbances can influence the results., TFor the present
calculations we assume an incidenc scep-funtiion wave; the results can be
applied to other waveforms by the use of the convolurion integral,

Diffraction of a plane wave at a bend in a conducting sheet is a
special case of the diffraction of a plane wave at a wedge considered by
Keller and Blank. Although Keller and Blank consider a scalar wave, it
still applies tc the present problem because there 1s only one component
of the magnetic field to consider and this component obeys the scalar wave
equation. Choosing a particular direcrion of incidesnce for the wave,
the diffraction at a conducting wedge is the image problem corresponding
to the diffraction at a bend in a conducting sheet. The two components
of the electric field are also calculated from the magnetic field using
one of Maxwell's equations.

1. Capt Carl E. Baum, Sensor and Simulation Note XXXI, The Conical
Transmission Line as a Wave Launcher and Terminaror for a Cylindrical
ransmission Line, Jan. 1967,

Z, J«B. Keller and A, Blank, Diffraction and Reflection of Pulses by
Wedges and Corners, Comm. on Pure and Applled Math., vol. 4, p.75, 1951,
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II. Diffraction at a Perfectly Conducting Wedge

Consider then one of the cases from reference 2 as illustrated, in
figure 1. A perfectly conducting wedge has its edge on the z axis. The
half angle of the wedge is ¢0. An incident step .function wave (figure
1A) 1is propagating in a direction perpendicular to the z axis and at an
angle, ¢., with respect to the x axis. The magnetic field has only a z
component. We define a normalized. magnetic field as h £ 0 in front of
the wavefront and as h £ 1 behind the wavefront., The wave propagates at
a speed, c, and the time, t = 0, is defined by the arrival of the incident
wave at the edge of the wedge, (x,y) = (0,0). The boundary condition on
the surface of the wedge for the single magnetic field component is that
its normal derivative be zero. We also constrain that 0 < ¢1 < ¢,. Note
that only the case of .a nonconducting medium is assumed for ¢, <¢ < Zw-¢o.

After the wave has reached the wedge (t>Q).the spatial distribution
of the wave 1s as illustrated in figure 1B, There are regions where the
incident wave has not reached, in which case h = Q. Where the incident
wave has reached, but reflections from the wedge have not reached, then
h = 1. Where the incident.wave plus a reflection from the wedge have
reached, but no.reflection or diffraction f£rom the edge of the wedge has
reached, then h = 2., Finally, there is the region bounded by the surface
of the wedge and a circle of radius, ct, centered on the origin. Inside
this region the solution for h is much more complicated, Note that the
radius, ct, is just the maximum distance that the diffracted fields from
the edge of the wedge have reached. Inside this radius the £fields are
solved by using the boundary condition that h is continuous across the
circular boundary. Such continuity exists because the diffracted fields
whickh reach r = ct from the edge of the wedge come from a surface of
zero area The boundary conditions used are for ¢ = jpo and 0 <r Z2ct then

& @
for ¢o <4 < ¢o + ¢2 and r = cr then

h=2 (2)
for 2n=- (¢O + ¢3) < ¢ < 2w-¢o and r = ¢t then

h=2 3
and for ¢o + ¢y < <2m - (¢o + ¢3) and r = ¢t then

h=1 (4)
The special angles, ¢2 and.¢3, are given by

oy = ¢ = 9 (5)
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and
¢3 = ¢° + ¢1 (6)

The single magnetic field component solves a scalar wave equation
of the form ’

2
vzh-—l-z-—a—% = 0 7)
c” 9t

We use both a cylindrical and a Cartesian coordinate system related by

x = r-cos(9) (8}

and
y = r.sin(¢) (9

The Laplacian is then

2 2 2

5 3%h . 3%h 13 an) . 1 3%n

Vhs—+ z‘rar(rar*z 2 (10)
3x 3y T 3 é

Note that h is taken independent of z.

To solve for h in this circular sector note that h is a function
of r/ct and not of r or t separately. Note that if r and t are both
multiplied by the same factor the same wave equacion and boundary
conditions result. There is no special r except r = 0 in the geometry;
there is no special time except ¢ = 0., Then following the approach
in reference 2 define two new coordinates as

1/2

(11)

[ W |

and 59172
or - (%] a2

2 (pz a_h) S ([qz_l]éﬂ) e (13)

However, since h is only a function of ¢ and r/ct, then it is independent

of p giving



3 2 3h 1 a"h
llg-1]l =} + =<~ —7 =0 (14)
3q 3q 2 1 8¢2

Next substitute p for q where

: -1
o=~3ﬁ-l/z - -ﬁ—t-+[—§-§-]2 -1}1/2 (15)
Equation (14) then becomes
L3 ], 3 i_.iih = 6)
> 3p ("ap) +pza¢2 0 @

Note that this is the Laplace equation in a special (p,¢) cylindrical
coordinate system where p is mathematically the "radius” even though
it contains both r and t.

In this special cylindrical coordinate system the circular sector
of interest has ¢ = 0 at the center (r = 0) and p = 1 on the circle
(r = ct): Using equations (1) through (6) for the boundary conditions
then we can obtain h as a solution of the Laplace equation (in ¢ and o)
in the circular sector. Following Keller and Blank use a conformal
transformation of the form

. -39 A ‘
w=1Red" =]e %9 ej¢) 1n
where _
¢ =
= X - 9
A =3 [1 - J (18)

This transformation maps the circular sector onto a semicircle of
radius, R = 1, in the upper w half plane. The solution of the Laplace
equation can then be treated as an image problem so that we have h
specified on the circumference of a full circle., Using another
conformal transformation we have the solution for ¢ < 1 or r <ct,
which we call hb, as

-(1—02A) cos (A <n-¢l)) 1
X N X . [
(1+0°") sin (/\(Tr-¢l))’2p sin(a(m=¢)) J

hb = 1+ %-arctan

[ =" cos (r(rtop)) )

+ 4 {
’T'T‘ arctan 2% A

& (1+p°") sin (A(n+¢l)) + 2p sin(A(m=¢))

(19)

where the values of the arctangents are taken between 0 and 7.
For further details of this solution see reference 2,

7



III. Diffraction-at a Bend in a Perfectly Conducting ‘Planar Sheet

Now set ¢; = 0. Due to the symmetry in the elactromagnetic flelds
a conducting sheet can now be placed at ¢ = 1 without disturbing the
field distribution and the results of the previous section still apply,
Thus, we have the soiution for an slectrcmagnetic plane wave propagating
along a conducting sheet and incident on a bend of angle, ¢ , as illustrated
in figure 2. Equation (19) for the magnetic field in the cSreular sector,
which includes the bend, becomes

( 24 )
hb = ] +*%'arctan ! ;;1_0 )_cos (k“)k
Z(H—o ) sin (A7) = 2p sin(r(m-¢))

-

2% .
+'L.arctan ={l=0 ) cos (im) (20)

T (1492l} sin (AT} * 20ksin(k(v -4))

Using a formuia for adding arctangents of the form

z]_-i-z2 \’

l—zlzzj (21)

arctan(zl) + arctan(zz} = arctan (
!

then equation (20) becomes

~

\ -2(1—02A) cos {(AT) (Ll +92A) sin (hm)

= ] + % arctan d ; : .
hb E {(l+pzx)2 sinz(kn) - 402A51n2{A(n—¢)}-(l—QZR)Zcosz(kﬁ)

~
\

( - 4}' : 0.
=1+ %-arctan < (1~c ) sin {237 7 (22)

Z (l+c4A)cos(2kﬂ)-Zg‘Acos(ZA(v—é)) J
For convenience shift the argument of the trigonometric functions in
equaticn (22; by = giving ‘ I
~
r » |
by _
- Fhee't 1
hy =1 +'% arctan ) fi p_ )sin((2A Q)W;A 7 (23)
[ (0" c0s ((20-15m) =20 ccs ({2-1)7-234) |

The arctangent is taken between 0 and 7. One interesting case from this
result is the limiting case for large t (or small p) giving

(

lim hb =1+ % arctan '4tan((21-1)n)

bt o= ‘
~

-5~

01-1
= {1 - ;—J{ (24)
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Now define a normalized time as

X
TE £t =Tm=ct -cos($)
T —r (25)
c

The initial rise of the magnetic field for an observer at r is at t=0Q, 1In
calculating the waveforms there are two cases. of interest. Pirst, let ¢°< $ < 2¢o.
Then for 1<0

ho = 0 (26)
for 0< 1< cos(2¢0 - ¢} ~cos{¢)

h0 = ] | (27)

for cos(2¢o - ¢) —cos(d)< T £1 -cos(d)

h =2 (28)

h =h (29)
Second, let 2¢0 <4 <£m, Then for r <0

h =0 (30)
for 0 217 €1 -cos(¢)

h =1 (31)

and for 1 -cos{(¢) <t

ho = hb (32)

To solve for the electric field components use one of Maxwell's equations as

> 3E
VXH=€'a—t (33)
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Now set

H=u h
“ "o o (34)

and

a1
(R 7

sdirﬁ ' (35)
€ 0 ©

where we also have

1
¢ T Yue | | (36)

Then the curl equation becomes

-
-> 3 eq

v ho 3 (ct) (37)

The normalized magnetic field is

h =h e (38)
o} (o] 2

and the normalized electric field is —

-> - -> > -
e =e e +e e =e e_+e_ e (39)
0 o X oy o_ T o, ¢
% v r ¢
- -> - - - .
where e s ey, ez, er, and e¢ are unit vecrors for the directicns indicated

by the subscripts.

Since the field components can be expressed as functions of T and ¢ we
can write the curl equation

K
de Pe
*:2~= rVxh (40)
3T
which can be expanded in cylindrical coordinates as

Op = 3hy (41)
T 3¢

11



and

3e
[o]
—0 = -rth,  _[30)}5n 42)
———— ar et —
T ar ap

From equation (15) we calculate

rde . ct
ar T

|

r

-7
95)2_1

which is used in equatiom (42), From equation. (23) we calculate

. 7)1
M1}, Ll a=e® sincer - v
A (1 + 0% cos((2h = 1)7) - 202 cos((2A ~1)1 - 214)
_ékp4k—l sin((ZA-l)w)[(l+pak) cos((2k—l)v)-2p2R cos((ZA-l)w-2A¢)] (44)
-(1-0% sin((zx-l)w)[axp4*‘1 cos((2a=1) m)=4rp 2 "1 cos((2k—l)w—2l¢)]
Lx 2Xx 2
I+ ™) cos(@r=1)7T) =20°" cos((2A=1)T=2X¢)
and
-1
3 4 2
3y, _l)1+ _(1-p"") sin((2A-1)7)
3% 7 4A 2)
(1o ") cos((2Xx-1L)7) =2 cos((2x=1) w=2X¢)
(45)
. (1-6*M sin¢22=11) 21

> ° 4ip
[(1+94*) cos ((2A-1)7) =202 cos((2A-1)n-2A¢J

Substituting these expressions in equations (41) and (42) the cylindrical components

sin((2x-1)T=21¢)

of the normalized electric field can be obtained.in terms of an integral over the

‘normalized time.

The Cartesian components can then be obtained from

12



e, =7e° cos(¢) -e rsin (ﬁ) (46)
X T ¢

and

e, = e, sin(¢) + e, cos (9) (47>
y r ¢

Equations. (41) and (42) are used to obtain the normalized electric field for
r <ct, For r > ct the normalized electric field is somewhat simpler; it can
be calculated by considering only the incident wave and the reflection of the
incident wave from:cthe conducting sheet at ¢=¢, under the assumption that this
is an~infinite condugting plane:. .As withithe magnetic field in equations (26)
through €32), there-arg two-cases of interest fot daIéqlatimg the wavefarms.
First, let ¢o._< ¢ <205,
Then for t <0

e =20 (48)
and

e =20 (49)

for 0 21 < cos(2¢o-¢) ~-cos (¢)

. 1 , ) (50)

and

e, = 0 (51)

for cos(2¢o-¢) -cos(¢) =T £ l-cos(¢)

e, =1+ cos(2¢o) (52)
y
and
e, = -sin(2¢o) (53)
X —
and for 1 =-cos(¢) < T
e = l+cos(2¢ sin(¢) —51n(2¢ ) cos(¢) + ahb “
o, 3o dt (54)
l-cos (¢)
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and

T
Bhb .
] dt
eo¢ = sin(2¢°) sing + [l+cos(2¢o)] cos(¢) - (rg%) 3 (55)
1-cos(¢)
Second, let 2¢0 <¢ 27, Then for r <0
e = 0 .
o, (56)
and
e =20 .
o, | (57)
for 0zt 21 -cos(9)
e = 1
oy (58)
and
& =0 (59)
X
and for 1 -cos(4) <1
T
e = sin(¢) + EEE dt” (60}
Or 3
l-cos(¢)
and
T
o, o0 - | (g) B e o
¢ arf 3o
l-cos($)

For ¢=¢O and ¢=2¢0 both the normalized electric and magnetic fields can be

calculated by taking the appropriate limits in the appropriate foregoing
equations.
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There are limiting forms for large 7 for the normalized electric field
components. Note first that the limit of large t is the same as the limit
of small p. At p=0, the position of the bend, there can be no electric field
because the electric field can have no component parallel to a perfectly
conducting surface. As long as we restrict 0 <¢_ <7 then any nonzero electric
field at p=0 would have a component parallel to a perfect.conductor because of
the two orientations of the conducting sheets which intersect at p=0. Thus .
we have .

lim e. = 1lime =0 (62)
o) o)
T )

ey T

Furthermore, we can obtain approximate forms for the normalized electrilc
field components for large 1. Consider the derivatives of in equations
(44) and. (45), together with equation (43) in the. limit of small p or large
ct/r. Define

n . Ct
e = (63)
Then for [p|<< 1 or |t"| »> 1 equation (43) is
rip=p=_1
3r 27" (64) B

equation (44) is

5h -1

el {1 + can2<<za-1>n>; . 830" sin ((2A=1)m) cos ((2A=1)7=216) |
cosz((ZKfl)W) (65)

2 2L gin(@a-1)m) cos((2a-1) 1-23) = 2 (2097 Pain((2a-1)m) cos ((2A-1)1-2120)

and equation (45) is

-1
o YO {1 + tanz('(z*‘l)“)} sInC@ADM_ 4002 sin((2a=1)1=229)
36 m cosZ((2A=1)1) i

(66)
-‘-‘—7’}- 02! sin((22-1)7) sin((2A=1)m=216) = 2 207 sin((2h-1)7) sin((2h=1)7-218)

15



For large t" equatioms (41) and (42) then becomer

de
[a}
- % 2t "2 gin((2A-1)71) sin((2r=1)7=214) (67)
and
aeo
—% = - -‘% 21" "2} Sin((22-1)7) cos((2A=1)1=218) (68)

Using equation (62) we can then calculate the approximate forms of the electric
field components as

de
o . .
%o, 77 | 5% et = B o T T sin(@a-Dm sin(@2i-1)7-230) =
s T"'
——i- 2t sin((2a-1)7) sin((2A=1) ™23¢) (69)
[s]
and .m
e = = | aeo
% \—star =- % (1227 (21172} gin((2A-1)7) cos((2r=1)1=21¢) =
T"
% 212 Sin(2a-1)1) cos((2A-1)1=216) (70)

o]

These last two equations are more convenient than equations (54), (55), (60),

and (61) for large 1. In fact, we found it convenient in the numerical calcu-~
lations to use equations (69) and (70) to calculate the electric field components
for sufficiently large 1 that these equations are accurate. Then for smaller T,
the values from these last two equations were used as the starting points for
integrals which were run backwards in T, using the accurate values of the
derivatives in equations (43}, (44), and (45),

The pulse shapes for the three normalized electromagnetic field components
(ho’ e, » and e, } are plotted in figures 3 through 7 for five values of ¢0, the
y X
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angle of bend of the conducting sheet. Each figure is for a separate ¢ _.
Each graph includes curves for several values of ¢. The maximum values®
of ho’ and eby and the minimum values of e, are summarized in figure 8 as

X
a function of ¢ for five values of ¢ , As one can see, the distortion of the
incident step-function waveform is mgnimized by making $¢o small. For agiven ¢ the wave
form distortion is minimized at ¢ close.to m. There is a region, ¢5%% s 2¢ ,
where the distortion of the incident .waveform can be quite significant. To"°
remove significant waveform distortion it is necessary that ¢0 be small and ¢
- be somewhat larger than 2¢g5. Note that in the limit of large t the electric
field components.go to zero far ¢o > 0, However, in applying the results of
these calculations to the region near a transition between a conical and
cylindrical transmission line, note that the long time limit does not apply
when reflections from the edges of the conducting sheet.or from other con-
ductors can influence. the waveform at the position of interest.,
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IV, Summary

We have calculated the diffraccrieon of an eleccromagnetic plane wave at a
bend in'a conducting sheet where the uniform incident plane wawve 1s propagating
perpendicular to the bend and parallel wo the sheest on one side of the bend.
Taking first a soiution for the single component .of. the magnecric field using
the scalar wave equatiom, the two components of the electric field have been
calcularzed from the magnetic field by using one of Maxwell’s equations. This
solution can. be approximately applied to the diffraction of a wave which is
transitioning from a conical to a cylindrical transmission line for cimes
before reflections from irregularities other than the bend cam influence the
waveform. Note that this solution applies to conical-to-cylindrical cransi-
tionswhich are bends in a conducting sheet or something which approximates
this. '

Based ‘on these.calculations one can see the advantage of a small angle
of bend, ¢4, in minimizing the waveform distorrion. Alsc, che angle, ¢, at
which the waveform is observed should be somewhat larger than 2¢, for a small
waveform distortion.
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