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The Diffraction of an Electromagnetic Plane Wave
at a Bend in a Perfectly Conducting Planar Sheet

Capt Carl E..Baum
Air Force Weapons Laboratory

Abstract’~

One way to launch an approximate electromagnetic plane wave on a
parallel plate, cylindrical transmission line is to use a conical trans-
mission Mne with a similar cross section. Such a match is not perfect.
Part of the problem of this match can be approximately treated by con-
sidering the diffraction of an electzosnagnecic plane wave at a bend in
a perfectly conducting sheet which is taken infinite in extent. The
solution for the magnetic field for an incident step function wave is
obtained as a special case of’a problem solved by Keller and Blank
involving the diffraction at a wedge. The solution is then generalized
co include the electric field components. The distortion of the incident
waveform is least for the smallest angle of bend in the conducting sheet,
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The graphs summarizing the diffraction ofa step-function electro-
)magnetic plane wave are grouped together at the end.of section 111.

We would like to ehankMr. Ralph Powell and Mr. Ronald Thompson for
the numerical calculations and the resulting graphs.
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Introduction

One way to launch a plane wave on a cylindrical transmission line
use an approprie.telymatched conical transmission line,1 Such a
is only approximate, but it can be improved by lengthening the conical

transmission line, This makes the spherical wavefronc on the conical
transmission line more nearly approximate the desired planar wavefront
on the cylindrical transmission line. In transitioning between the conical
and cylindrical tra.nsm.issionlines, the conductors are bent through some
angle. This angle can also be decreased by lengthening the conical trans-
mission line. Nevertheless, the transition is not perfect and some distor-
tion of che wave is introduced at the position that the conical and cylindrical
transmission lines are joined.

In this.notawe consider part of the distor.tionproblem by calculating
the diffraction of a uniform electromagnetic plane wave which is propagating
parallel to a perfectly conducting planar sheet when the wave encounters a
bend in this sheet. The straight line along which the bend occurs is assumed
perpendicular to the direction of propagation of the incident wave. ActuaSly
the wavefront on a conical transmission line is spherical; the use of a plane
wave for the calculations is somewhat approximate. Note that there are
various possible geometries for the cross seccions of conical and cylindrical
transmission lines using conducting wires, sheets, ccc. The present ealcula-
cions only apply to those types of transmission lines which use flat sheets
for the conductors or other configurations which approximate flat conducting
sheets co some degree. In such transmission lines the conducting sheets
are not of infinite,width and the wave is not uniform, Furthermore, there
can be more than one conducting sheet so that there can be multiple reflec-’
tio~s -.the transmission line, The present calculations then approximate
the ‘:ctromagnecic fields near the bend in che conducting sheet for times
before other disturbances caa influence the results, For the present
calculations we assume an incidenc seep-fun+.cionwave; the results can be
applied to other waveforms by the use of the convola~rior,integral,

Diffraction of a plane wave at a bend in a conducting sheet is a
special case of the diffraction of a plane wave at a wedge considered by
Keller and Blank,2 Although Keller and Blank consider a scalar wave, it
still applies tc the present problem because there is oniy one component
of the magne~ic field to consider and this component obeys the scalar wave
equation, Choosing a particular direczion of inciasnce for the wave,
the diffraction at a conducting wedge is the image problemcorresponding
to the diffraction at a bend in a conducting sheet. The two components
of the electric field are aiso calculated from che magnetic field using
one of Maxwell’s equations,

1. Capt Cari E, 3aum, Sensor and Simulation Note X2X1, The Conical
Transmiss~on Line as a Wave Launcher and Terminator for a Cylindrical
Transmission Line, Jan. 19$57.
2, J,B, Keller and A, Blank, Diffraction and Reilectlon of Pulses by



u, Diffraction at a Perfectly Conducing Wedge

Consider then one.of the cases from reference 2 as illustrated in
figure 1. A perfectly conducting wedge has its edge on the z axis. The
half angle of the wedge is $.. An incident step .functtonwave (figure
IA) is propagating in adirection perpendicular to the z axis and at art
angle, $ , with respect to the x axis. The magnetic field has only a z
componen~. We define a normalized.magnetic field as h ~ O in front of
the wavefront and as h S 1 behind the wavefront. The wave propagates at
a speed, c, and the time, t = O, is defined by the arrival of the incident
wave at the edge of the wedge, (x,y) = (0S0). The.boundary condition on
the surface of thewedge for the single magnetic field component is that
its normal derivative be zero. We also constrain that’O < 01 < $.. Note
that only the case of,a nonconducting medium is assumed for q. <d < 2Tr-@o,

After the wave has reached the wedge (t>O}.the spatial distribution
of the wave is as illustrated in figure lB. There are regions where the
incident wave has not reached, in which case h = 0, Where’the incident
wave has reached, but reflections from the wedge have not reached, then
h = 1. Where the incident.wave plus a reflection from the wedge have
reached, but no.reflection or diffraction from.the edge of the wedge has
reached, then h = 2. Finally, there is the region bounded by the surface
of the wedge and a circle of radius, et, centered on the origin. Inside
this region the solution for ‘nis much more complicated. Note that the
radius, et, is just the maximum distance that the diffracted fields from
Ehe edge of the wedge have reached, Inside this radius the fields are
solved by using the boundary condition that h is continuous across the
circular boundary. Such continuity
whicl-.reach r = ce from the edge of
zero area The boundary conditions

exists because
the wedge come
used are for $

and for$o+~2 ~$ <2r-($o+$3)andr= cc then

the diffracted fields
from a surface of
= +$_oandO <r <ctthen

h=l

The special angles, $2 and,$3, are given by

‘$2= ‘$0- $1
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FIGURE 1. DIFFRACTION OF A STEP-FUNCTION WAVE AT A
PERFECTLY CONDUCTING WEDGE: O S +1< +0
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and

The single magnetic field component solves a scalar wave ”equation
of the form

(7)

k use both a cylindrical and a-Cartesian coordinate system related by

and

y= r.sin(o)

The Laplacian is then

(9)

(10)

Note that h is taken independent of z.

To solve for h in this circular sector note that h is a function
of r/et and noc of r or t separately. Note that if r and t are both
multiplied by the same factor the same wave equation and boundary
conditions result. There is no special r except r = O in the geometry;
there is no special time except t = O, Then following the approach
in reference 2 define two new coordinates as

1/2

In these coordinates equation (7) becomes

(11)

(12)

(13)

, \

,

However, since h is only a function of $ and r/et, then it is independent
of p giving
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Next substitute p for q where

Equation (14) then becomes

la. [)&l +Ia’h=o.—
TF bfl

p’ N’

(14)

(16)

Note that this is the Laplace equation in a special (P,#I) cylindrical
coordinate system where p is mathematically the “radiust’even though
it contains both r and t,

In this special cylindrical coordinate system the circular sector
of interest has P = O at the center (r = O) and P = 1 on the circle
(r = et), Using equations (1) through (6) for the boundary conditions
then we can obtain h as a solution of the Laplace equation (in P and $)
in the circular sector, Following Keller and Blank use a conformal
transformation of the form

“U

[

-j$0
w~ReJ=e Ipej$ ‘

where

$ 1-1

[1

a : 1-$.=-

(17)

(’18)

This transformation maps the circular sector onto a semicircle of
radius, R = 1, in the upper w half plane. The solution of the Laplace
equation can then be treated as an image problem so that we have h
specified on the circumference of a full circle. Using another
conformal transformation we have the solution for P s 1 or r Act,
which we Call hb, as

\

( -(1-(323Cos (/l(lT+l+l)) 1

where the values of the arctangents are taken between O and ~,
For further details of this solution see reference 2,
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111. Diffractionat a Bend”in a Perfectly Conducting Planar Sheet

NOW set 1$1= ~. Due to the symmetry in the electromagnetic fields
a conducting sheet can now be placed at $ = ITwithout disturbing the
field distribution and the results of che previous section still apply,
Thus, we have the solution for an electromagnetic plane wave propagating
along a conducting sheet and iricidencon a bend of angle, @ * as illustrated
in figure 2, Equation (19) for the magnetic field in ‘thec?.rcularsector,
which includes the bend, becomes

Using a formula for adding arctangents of the form

(21)

then equation (20) becomes

For convenience shift the argument of the trigonometric fur,ctionsin
equaticn (22] by ~ giving

.

The arctangent is taken between O and i’r+One interesting case from this
result is the limiting case for large t (or small c))giving

(
>$

I [

q 7-1
lim hb=l+$ arctan ~tan({2~-1)~) \ = 1 - ~ (24)
t- J- J‘s
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Now define a normalized Cime as

-.
-\
)

$==t-=.- t-—. -Cos(cj)
r r
F

(25)

The initial rise of the magnetic field for an observer at r is at T=O, In
calculating the waveforms there are two cases.of interest, First, let 40~$~240,
Then for T4)

h=O
o

(26)

for 0~~~cos(2$ - $) -COS($I)
o

ho=2

and for 1 -cos($) ~ T

ho = hb

Second, let 240 <$ sm. Then for T ~ O

(27)

(28)

(29}

hO =
o (30)

for O i T 51 -cos(+)

~o=l (31)

and for 1 -COS(4)ST

ho=h
b (32)

To solve for the electric field components use one of Maxwell.fsequations as

!?xi=c# (33)

10



(35)

where we also have

equation becomes

‘“Y+ (36)

Then the curl

3 :0
vxxo=———

a (Ct) (37)

(38)

The normalized magnetic field is

and the normalized electric field is

+ + + +
(39)

+
e=
o

e e +e =e eri-e’
ox
x ‘Y

‘Y or O+e@

. -b-b-b +

for the directions indicatedwhere ex, e , ez, er, and e
Y ‘$

are unit veccors

by the subscripts.

Since the field components can
can write the curl equation

as functions of T and $ webe expressed

a’&’.rVXX
r.

o (40)

which can be expanded.in cylindrical coordinates as

(41}



and ‘-)

(42)

From equation (15) we calculate

which is used in equation (42), From equation (23) we calculate

[
(Hp4k) cos((2A-l)lT)-2P2X Cos((2A-l)lT-2A$)1

2

and

([

-1

a% 1 1 + .(1-p4A) sin((2A-l)r)
2

—=—
a+ R

(1+P4A) cos((2A-l)Tr)-2P2A COS((2A-1) lT-2A$)1]
(45)

[ ‘p)
~- 4A

a sin((2A-1)~)

[ 1]2
0 4Ap2A sin((2A-I)Tr-2A$!)

(l+p4’j Cos((2 A-l)n) -2p2k Cos((2A-l)?T-2A4)

Substituting these expressions in equations (41) and (42) the cylindrical components
of the normalized
normalized time.

electric field can be obtained.ti terms of an integral over the
The Cartesian components can then be obtained from

I ..- . . ...=



..\
)

e =e
o. 0

COS($) -e. sin (*)
x r 4

and

e.=e ~ sin($) + e Cos ($)

‘Y r 04

(46)

(47)

Equations.(41) and (42) are used to obtain the normalized electric ,f:Leldfor
r < ct. For r ~ ct the normalized electric field is somewhat simpler; :Ltcan
be calculated by considering only the incident wave and the reflection of the
inci$ent v%%. fromrthe conducting sheet at $=$. under the assumption that this
is an-infinite conducting plane. .As:with;the magnetic field in equatiorls(26)
through f329$ thereazq e,wo-casesof ifiterest.fok dd?qlating the wavefcmms.
First,,Let ~o-:$ <.2$.. .. , . ‘

,,

Then for r ~ O

e =0 (48) “-

‘Y

and

e =0
0

x
(49)

for O ST ~COS(240-4J) -cos(@)

e =1
(50)

‘Y

and

e =0
o

x

for COS(2$0-+) -cos(@) ST sl-cos(~)

e = 1+ Cos(z+o)

‘Y

and

eo = ..sin(z~o)

x

(51) _ ,

(52)

and for.1 ‘COS(I$) ST /-T

[1 \= l+cos(240) sin($) -sin(2~o) cos(I#I)+ a% d~de
o
r T

(54)
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y )%d~”
e = sin(2$o) sin$ + [1+cos(2$O)] cos($) - * ~ (55)
04

I-coS(+)

e =0

‘Y

and

e =0
o
x

e =1

‘Y

and

e =0
o
x

and for 1 -cos(d) ST

rT
eo = sin(+) +

\

a% d.”
r T

1-COS($)

and

f T

(56)

(57)

(58)

(59)

(60)

I For $=$0 and $=2$0 both the normalized electric and magnetic fields can be

calculated by taking the appropriate limits in the appropriate foregoing
equations.
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There are limiting forms for large i for the normalized electric field.
components, Note first that the Limit of large r is the same as the limit
of small p. At p=O, the position of the bend, there can be no electric field
because the electric field can have no component parallel to a perfectly
conducting surface. As long as we restrict O z 41 < r then any nonzero electric

field at P=O would have a component parallel to a“perfect.conductor because of
the two orientations of the conducting sheets which intersect at c=O, Thus .
we have

lim e. =lime =0 (62)
o

:- r ~+= 04

Furthermore, we can obtain approximate forms for the normalized electr:Lc
field components for large T. Consider the derivatives of ~ in equations
(44) and.(45), together with equation (43) in the.limit of small O or large
et/r. Define

r~= p = 1
3r v

equation (44) is

(63)

(64)

4k)
21-1

sinI(2i-l)r)cos((2A-1)7-2Ad) ~

COS2((2A-l)T) (65)

~ P2)’-1sin((2~-1)~) cos((2~-1) 7T-2A$)= ~ (2T’1) 1-2Asin((2A-1)~) cos((2A-l)7r-2A4)

and equation (45) is

-1

(66)

41p2A sin((2A-1)~) sin((2A-l)7r-2A@). ~.— (2T’’)-2ASin((2A-lj~) sin((2k-l)r-2A~)
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For large Tr’ equations (41) and (42) then become!’

~eo
r=

3T”
+ (zT’’)-zASin((zA-l)?T)sin((2A-l)7f-2A4)

and

a~

(67)

-3= - ~ (2T’’)-2A sin((2A-l)n) cos((21-l)7r-2A@) (68)

Using equation (62)
field components as

\

m

ae
o

e =-
0
r +

we can then calculate the approximate forms of the electric

d~” = ~ [1-2@(2T’’)1-2A sin((2A-l)m) sin((2A-l)7r-2A+) = “

(69)

\

: ~e
e

‘$‘- +d~a+ [1-2A]-1 (2T’’)1-2Asin((21-l)n) cos((2A-l}7r-2A$)=

These last two equations are more convenient than eqwtions (54)1 (55}, (60),
and (61) for large T, In face, we found it convenient in the numerical calcu-
lations to use equations (69) and (70) to calculate the electric field components
for sufficiently large T that these equations are accurate. Then for sma~~er T,

the values from these last two equations were used as the starting points for
integrals which were run backwards in T, using the accurate values of the
derivatives in equations (43), (44), and (45),

.

The pulse shapes for the three normalized electromagnetic field components
(ho, e. , and eo ) are plotted in figures 3 through 7 for five values of $., the

Y x
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angle of b~nd,of the conducting sheet. Each figure is for a separaee I#Io_,
Each graph includes curves for several values of ~. The maximum values
of ho, and e. and the minimum values of e are summarized in figure 8 as

‘Y ow
a function.of @ for five values of $., As &e can see, the distortion of the
incident step-function waveform is mznimized by making +0 small. F&agiven $ the wave
ffrfnidistortio.nis minimized at $ clo.se.to IT. There is a region, $o~kZ$3!
where the distortion of the incident waveform can be quite significant, To
remove significant waveform distortion it is necessary that $0 be small and ~
be somewhat larger than 2$.. Note thaz in the l$rnitof large T the electric
field components.go to zero far $0 ~ 0. However, in applying the results of
these calculations to the region near a transition between a conical and
cylindrical transmission line, note that the long time limit does not apply
when reflections from t_heedges of the conducting sheet.or’from other con-
ductors can influence.the.waveform at the position of interest.
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Iv o summary

We have calculated the diffraction of an elecczoutagneticplane wave ac a
bend’ina conducting sheet where the uniform incident plane wave is propagating
perpendicular to the bend and parallelm the sheet on me side of the bend.
Taking first a solution for the single ccnnponent.of.the magnetic field using
the scalar wave equation, the two components of the electric field have been
calculated from the magnetic field by using one of Maxwell’s equations. This
solution can.be approximately applied to the diffraction of a wave which is
~ransi~ioning from a conical to a cy~~ndrical Cransm.ission line for times
before reflections from.irregularities other than the bend can influence the
waveform. Note that this solution applies to .conical-to-cylindricalzransi-
tionswhich.are bends i.na conducting sheet or something-which approximates
thiso

Basedon these calculations one can see the advantage of a small angle
of bend, $., in minimizing.the waveform.distortion. Also, che angle, t, at
which th~ waveform is observed should be somewhat larger zhan 2$0 for a small
wavefo~ distortion,
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