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Abstract

In this paper we consider dielectric-lens designs for the specific case of launching an

approximate spherical TEM wave onto an impulse radiating antenna (IRA). Restric-

tions on launch angles are derived yielding a range of acceptable lens parameters. An

equal transit-time condition on ray paths is imposed to ensure the correct spherical

wavefront. Some reflections, ideally small, at the lens boundary are allowed. Illustra-

tions and numerical tables are presented from which examples of these lenses may be

constructed.
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1 Introductioti

Consider an impulse radiating antenna (IRA) in the form of a paraboloidal reflector fed

by a conical transmission line suitable for guiding a spherical TEM wave [1] as indicated in

Fig. 1.1. The paraboloidal reflector is assumed to have a circular edge of radius a with

D = 2a = diameter (1.1}

The apex of the conical feed is located a distance

F’ s focal distance (1.2)

from the center of the refiector. As discussed in [2] the angle from the apex of the conical

transmission line (focal point) to the edge of the reflector is

Ozmax = arccot
(+%%) “arctan(~)

()= 2 arctan ~
2F o

(1.3)

If, as an example of commonly used reflector parameters F/D = 0.4, then we have 6Q~~XE

64.01°. Centering our coordinate system on the conical apex, then O < Oz < dz~,, represents

the range of interest of angles for launching an electromagnetic wave toward the reflector,

the axis of rotation symmetry of this reflector being taken as the z axis in the usual spherical

coordinates.

As discussed in [2], as one extrapolates the desired wave on the TEM launch back toward

the apex the electric field is larger and larger, until at some position before reaching the apex

electrical breakdown conditions are exceeded. This is especially important in transmission

where high voltages (and corresponding high powers) are desired. If the required spacing of

the conical conductors at this cross section is larger than radian wavelengths at the highest

frequencies of interest, or larger than some small rise time (times the speed of light) of

interest, then part icular care needs to be taken in synthesizing the fields at this cross section 9B
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Fig. 1.1: Reflector IRA



(on some aperture spherical surface). One way to achieve the increased dielectric

allowing one to extrapolate the desired wave back to smaller cross sections, where a

/

k-
s:rcngth,

switch or 9

some other appropriate electrical source is located, is by the use of a dielectric lens, Various

kinds of lenses can be considered, including those which in an ideal sense can launch the

exact form of spherical TEM wave desired [7], Here we consider a simple uniform dielectric

lens which meets the equal-time requirement for the desired spherical wave, but has some

(p ~fer~bh small) reflections at the lens boundary which distort somewhat the desired spatial

distribution (TEM) of the fields on the aperture sphere.

The lens region in Fig. 1.1 is shown on an expanded scale in Fig. 1.2. In the notation

of [5] the apex, or focal point for the spherical wave (outside the lens) launched toward the

reflector, is the origin (F2 = ~) of the 7’2coordinate system. Here we illustrate some cut at a

constant ~, the lens being a body of revolution. Defining

Cl
6 =—= relative permeability of lens (1.4)
‘—c2—

we let the permeability both inside and outside the lens be ~o. The outer permittivity C2
e

will often be taken as co in practical cases, and the lens permittivity c1 will be taken as that

for dielectrics of interest such as for polyethylene or transformer oil (i.e. 2.26),

The Oz~,Xpreviously introduced is now the maximum of 62, describing the rays leaving

the lens toward the reflector. Inside the lens there are rays emanating from (z, y, z) =

(O,o,l?z– /1) with the angle /?l with respect to the z axis. With the inside and outside

rays meeting at the lens boundary the various angles are related. Corresponding to @2~mX

there is also a Ol~ZXwith O <01 < O1~.x. For normalization purposes the position on the

lens boundary for this outermost ray of interest is defined as having a cylindrical radius h.

For later use this position will remain fixed for a given 62_ for various shapes of the lens

boundary given by varying 191~,X. Note that the scaling lengths in [5] are related by the

focal-length formula

/;1 = /;* + 4?;1 (1.5]

So given 11 and /2 one finds tO for use in the formulas of [5], and & is scaled in units of h.
e
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2 Restrictions on Launch Angles

As indicated in Fig. 2.1 theie is a potential problem with the lens concerning the fatness

(extent of cylindrical radius Q) and the maximum angle 6Z~.Xfor launching the spheimal

wave outside the lens, In particular as 62 approaches 02~.X from below, the lens boundary

should not cross over the outermost ray of interest defined by 62 = %.~a=. Referring to Fig.

2.1 then we require that the slope of the lens boundary, where the boundary meets this ray,

should satisfy

131max5 e2max

Note that the radius of the Iens boundary W~can be

restriction of (2.1).

(2.1)

allowed to exceed h, still meeting the

Take the limit of equality in (2.1) to define critical angles (subscript “c”).. This case

is illustrated in Fig. 2.2, where the region where the critical ray meets the boundary is

expanded. Appealing to Snell’s law in which the phase velocities of the waves in the two

media are matched along the boundary gives

Setting

then we have

fisin(vi) = &sin(4t) (2.2)

Ofc= 02C (2.3)

h=; (2.4)

i.e., the wave in medium 2 is propagating parallel to the lens boundary. By geometric

construction we have

$h = ; + o~c– 61. (2,5)

which gives
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sin
(

: + 02=– elc
)

= COS(62C – e~c) = Cos($lc – 02C)

-~
= 67

61. = t%=+ arccos(e~$ ) (2,6)

where one needs the principle value for the arccos noting that (?lC> 02= in the construction

of Fig. 2.2.

Noting in (2.2) that a transmission angle ~~ ~ 7r/2 gives Oe_ s Oz~,Xas an acceptable

lens boundary in Fig. 2.1, then we have

sin(+~) = sin
( )

; + ezmtx – e~m*x = cos(e& – f3&x )

> #

OIm,, –6z~,X ~ arccos(c~%)

~~~a, ~ dz~.X+ arccos(c~~ )

(2.7)

e
Now we can also allow dl~,X < 02~,X, but then the geometrical construction in Figs. 2.1

and 2.2 do not apply and the lens boundary becomes concave to the right [5]. For present

considerations, since O1_ describes the path of the conical-transmission-line conductors in

the lens region, a region which lowers the characteristic impedance from that of the conical

transmission line outside the lens, our interest centers on O1~.Xnear n/2 which maximizes

the. transmission -line characteristic impedance in the lens. There are other considerations

as well, such as high voltages (breakdown) in the lens near the conical apex at (z, y, z) =

(O,O,./2 –/1), which push in the same direction. So for this paper our

01~,X is limited to

For our example cases

attention concerning

q = 2.26

arccos (e~$ ) = 48.3°

e

#

Note that for large e, the allowable range of 61~,X is constrained close to 62~~X,

(2.8)

(2.9)
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3 Special Case of (?l= (?2: Spherical Lens

A very simple lens is that of a sphere of radius b centered on the origin with

‘& = 1~ =2i?o=b

92 = 81, dz~=.= ‘lmax

(3.1)

In this case, if the conical transmission line in medium 2 has a characteristic impedance Z@,

then continuing the conical conductors back into the lens gives a characteristic impedance

there of

Zc, -$= Cr ZC2

while the TEM modal distribution is the same on both

is a reflection at the boundary with reflection coefficient

R=
2,2 – z., e! – 1

Zc, +zc, =ej+l

and transmission coefficient
2&

T=l+R=-
6?+1

l?or our example case we have

Cr = 2.26

R R 0.20, T = 1.20

(3.2)

sides of the lens boundary there

u

(3.3)

@

(3.4)

(3.5)

The reflected wave in turn reflects off the source point (apex) with an amplitude dependent

on the source impedance, say –1 reflection for a short circuit. This reflection in turn passes

through the lens boundary as another spherical TEM wave.

Note that in principle the lens should be a complete sphere (47r steradians, volume 4rb3/3)

for the above analysis to exactly apply. Otherwise the missing portions of the lens can intro-

duce other modes which affect the fields at the observer with 0 ~ 62 s 02_, complicating

the waveform during the times of significance for the reflections. *
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This points to a possible disadvantage for this kind of spherical lens. Other lens shapes,

while meeting the equal-time requirement for the first wave through the lens going into a

spherical wave outside the lens, can break up the wavefront for successive waves by sending

non-spherical waves back from the lens boundary which need not (in large part) converge on

the source point,
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4 Brewster-Angle Considerations

One can reduce reflections at the lens boundary by changing the direction of incidence for

appropriate polarization (E wave) by use of Brewster angle considerations [3, 4, 6]. Referring

to Fig. 4.1, and using a subscript “B” for this case we have

(4.1)

For our example case we have

?)~B E 56.4°

Noting that the angle @~Bof the transmitted ray is greater than 0° (transmission of *

normal ly incident wave) but less than 90° (corresponding to transmission parallel to the lens

boundary as in Fig. 2.2), then for tll~t, chosen near the critical case there are 01 < 61~X

and 62 < Ozm,xwhich satisfy this Brewster-angle condition. SO increasing O1~,Xabove (?z_

as in (2.8) can make some of the rays have a better transmission through the lens boundary,



Fig, 4,1: Ttw# Transmission of E Wave at Brewster Angle
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5 Lens Shapes 1,

The equal-time condition for a diverging spherical wave in a medium with permittivity
e

q going into another diverging spherical wave in a second medium with permittivity C2is

given by the equation

(5.1)

where t?l, /2, %band ~b are as in Fig. 1.2. This expression is derived in [5] where it appears

as (4.9). If we use the coordinate relations on the lens boundary,

.z~– 12 = Vbcot(olb) – 4?I= Wbcot(ozb) –

the equal-time condition can then be re-expressed in the form

given by

&. (5.2)

where CT= Cl/c2. There are

this paper, and these are

t3~max

e2max

also constraints on & and 62, derived in the earlier sections of

9

(5.4)
L4 J

Since 6Z~,X= 2 arctan (~) from (1.3), we may choose various F/D ratios to determine lens

shapes. Thus, for a given F/D value, 02~zXis determined. If we then choose h (Fig. 1.2)

and er and dl~ax consistent with our constraints, we obtain the lens parameters 11/h and

42/h. Since 192is a function of 01 (or vice versa) a lens boundary curve is generated for given

e,, l?l/h, and ~2/h with 13~ @l ~ 61~,X, O ~ 62 ~ 02~aX. If we now select a new 6j~,X,

another lens can be specified for our choice of F/D. Thus by varying F/D a large collection

of lens designs are obtainable.

The process described above will now be analyzed in detail. Let us fix 02~=X(via choice

of F/D), choose h and select 191~,Xin accordance with the constraints (5.4). The parameters

*
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-tl/h and -t?z/h are determined by the transit-time relation and we find that

L
e2 [(c?sin 61_ – &M.X) + sin (f3Q~,X)]- sin (O~~,X)

F=
(sin 61~~X– 62~aX)+ & sin (Ozm=) - ‘in (elm=)

Since thegeometry indicated in Fig. l.2gives the relation

/2–11=
h

Cot(e,max) - Cot(olmax)

we can find explicit formulas for L1/h and 4?2/h. The results are

(5.5)

(5.6)

Thus /1 and & are determined once Ol_, %m=x,e, and h are known. We can then use,

once more, the transit time condition to obtain % as a function of %, (regarding ~r> 42/~1 as

*
known), and thereby determine the lens boundary curve, which in general is a quartic curve.

To find t92as a function of 191we obtain a quadratic equation in either COS(62)or sin(6$)

from (5.3), which we rewrite in the form

1? [sin(61) cos(d2) - COS(61)sin(dz)] = A[sin(61) - C$sin(%)]

A= (12/11)– 1, B = (12//1)–c: . (5.8)

Algebraic manipulations then yield a quadratic in COS(62), and the quadratic formula then

yields

ABsin2(01) + IBcos(61) – A$l [B2 – ZABE;COS(&) + A2G]– A2sin2($l)
COS(02) =

B2 – 2ABcj COS(61)+ A2C,
(5.9)

Similarly, from a quadratic in sin(02 ) we may obtain

A(A& – B cos(@I))+ lB\ sin(dl) [B2 – 2AB$ COS(@l) + A2G]–A2sin2(&)
sin(dz) =

Bz – 2ABc$ COS(@) + A2G
(5.10)
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Finally, to obtain the lens boundary curve we need to compute the coordinates z and W as
~.

a function of 02 (and @l). The geometry in Fig. 1.2 then yields the results *

(5.11)

(5.12)

The case ~l~., = z/2 leads to some simplification in the above formulas. We find, for

example, that when dl~t, = 7r/2,

.&

z=

f5#[m(&m.x) +- Sir(f%m.,)] -1
(5.13)

cos(dzmax) + Et sin(6z~aX) – 1

COS(OZ~~X) + c! sin(6z~~X) – 1
(5.14)

(6$ – 1) sin(6&X)
1

[2 d [cos(62m,x) -!-Sin(62m~x )]-1
—=. 1
h (,: – 1) sin(~2m,x)

\,

and the coordinates (z, ~) are as given in (5.11) and (5.12). When 01 j 02 ~ O we find

sin(Oz) .(?1
-+ —
sin(61) 42

tan(6z) 41 0

tan(f3~) ‘z
(5.16)

2+/2

J/+o

as expected.

Numerical results are obtainable from the preceding analysis. In Figures 5.1 through 5,3

we show various lens boundaries corresponding to values of F/D corresponding to 0.3, 0.4,

and 0.5 respectively. As expected, we obtain larger lenses for larger values of F/D. In Figure,

5.2, the results obtained correspond to the choice of F/D = 0.4. For this value, @2~aX= 64.01°,

and lens boundary curves are obtained for choices of Olin,, equal to 70°,80°,90° as well as

Oama,itself. In Tables 5.1, 5.2, and 5.3 numerical data is presented for the case 61~aX= 90°

~,ith F/D = 0.3, 0.4, and 0.5 by allowing 01 and 62 to vary up to their maximum values and

calculating the coordinates z/h and IO/h.
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63.00CJ
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78.000
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S7 .000
‘50.000

Tabfe 5.1 Lens

and

,-0 -

● 000
2.636
5.272
7.909

10.545
13.282
1s.818
1s.45s
21.093
23.730
26.368
29.007
32.646
34.286
36.927
39.569
42.213
44.858
47.505
50.154
52.805
55.460
58.128
60.7~0
63.446
66.218
68.795
71.479
74, :7’1
76. ~72
79.583

Shape Data for F/D‘=0.3,

Zfi
—-

1.517
1.514
1o508
1,496
1o481
Ze461
1,436
I*40G
1.37*
1.340
2.301
1.258
1.212
2.164
1.112
1.059
1.004

.947

.888

.829

.769

.708

.647

.586

.526

.466

.407

.349

.292

.237

.184

—

and

with

Ylh
-~

.000
● 070
.139
.208
.276
.342
.407
.470
.531
.589
,645
● 697
.747
,793
.836
,875
.921
.942
.970
.993

1.013
1.029
1.040
1.048
1.052
1.052
1.048
1.041
1.032
2,017
1.000

lm*x
79.6°,

-

&~ = 2.26
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9,

● 000
3.000
6.000
9.000

22.000
15.000
18.000
21.000
24.000
27.000
30.000
33.000
36.000
39.000
42.000
45.000
48.000
51.000
54.000
57.000
60.000
63.000
66.000
69.000
72.000
75.000
ia .000
al.000
34.000
87.000
90.000

.M-..--o

.000
2.34S
4.690
7.032
9.371

11.706
14.036
16.359
18.675
20.981
23.278
25.363
27.836
30.093
32.335
34.560
36.764
3s.947
41.107
43.240
45.345
47.418
49.457
51.458
53.417
55.233. -
57.196
59.005
60.753
62.435
64.044

Zfi
-900~

2.236
2.232
2.222
2.20!5
2.181
2.151
2 ● 115
2.073
2.02!5
1.972
1.914
1.851
1.785
1.72s
1.642
1.567
1.490
1.412
3..332
1.253
1.173
1.095
1.017

.941

.867

.796

.728

.662

.600

.542

.488

.000
● 091
.182
● 272
.360
.446
.!329
.608
.684
.756
.823
.886
.943
.994

2.040
1.080
1.113
1.141
1.163
1.178
1.188
1.191
1*189
1.182
1.169
10151

1.129
1.202
1.072
1.039
1.002

Table 5.2:Lens Shape Data for F/D = 0.4, with 0< e 1< e Imax

and 0< 62S 62maxand e I ~ax= 90°, 62max= 64.0°5

&r z 2.26
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● 000
3.000
6.000
9.000

12.000
15.000
18.000
2$.000
24.000
27.000
30.000
33.000
36.000
29.000
42.000
45.000
48.000
Sz.000
54.000
57.000
60.000
63. ooo
66.000
69.000
72.000
~5.000
73.000
al. coo
24.:00
S7. COO
?O.000

O*
~.

● 000
2.180
4.3S8
6.532
8.700

10.861
13.021
ZS.250
17.274
19.381
21a469
23.536
25.577
27.591
29.574
33?.523
33.433
35.303
37.122
38.891
40.604
42.254
43.836
45.342
46.767
48.102
49. s39
50.471
51.488
52*382

53.143

z/h Y/h

2.748
2*743
2-732
2,710
2.681
2a644
2-600
2.548
2-490
2*425
2.355
2.280
2.200
2 ● 1X7
2.031
le942
1.851
1o760
1.668
1.s77
1.486
1.398
1.311
3.228
Z.147
1.071

.998

.929

.865

.806

.751

.000
● 104
.208
.310
.410
.507
● 601
6690
● 774
.853
.926
.993

2.053
1.206
16152
1.191

2*222
2.246
1.263
1.272
1.274 9
2.270
1.259
2.243
1.220
1.193
1.162
1.126
1.087
1.045
1.002

Table 5.3:Lens Shape Data for VD= OS, with 0< e~< e Imx

and OS e2s e2max and el ~axs 900, e2max=53. I O,
&r = 2.26
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e 6 Concluding ~Remarks

It has been noted that one significant application of the type of dielectric lens discussed

here is its possible use for launching an approximation to a spherical TEM wave onto an

IRA. As one goes to higher and higher voltage pulses launched onto the TEM feed, the

possibility of electrical breakdown is a consideration. The desire for faster and faster pulse

rise times means that one needs to establish the TEM-mode field distribution over the cross

section of the feed. In this case one would require that such pulses be treated as waves, and

one in general wants to match these waves from

distortion and reflection.

The lenses considered here have been treated

one region to another with a minimum of

from an “equal-time” point of view. Thus

some reflections are introduced at boundaries. However, these reflections can be small in

certain cases, and the wave passing into the second medium can approximate a dispersionless

TEM wave. Future investigations will take up the issue of impedance matching.
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