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Abstract

One way to rtidiate m impulse-like waveform is to employ a TEM-fed paraboloidal
reflector mtenna. Various performance features of this antenna, such as prcpulse, impulse
amplitude, impulse width etc., h:~vcbeen an;dyzcd in the past ( 1 to 8]. It hos been obscrveci that
the low frequency or Iatc-time pcrforrmmce of this fotm of an IRA is governed by the elecrnc
and magnetic dipole morncnts. A knowledge of these dipole moments helps in designing an
optimal matching network ‘to be inserted at the junction of the feed horn and the reflector.
Ev:duation of the electric dipole rnomcnt is addressed in this note find the magnetic dipole
moment will bc consicicrcd in a future note.

.

CL~AnCD
FORPLJBLICRELE!SE

.



b

Preface

This work is pexformed by Pro-Tech and sponsored by Phillips Laboratory, Kirdand AFB,
NM under the Small Business Innovative Reseaxh (SBIR) program The encouragement and
guidance of Capt. L Miner, Dr. Carl E. Baum+ and Mr. William Rather of Phillips Laboratory is
gratefidly acknowledged. The authors are also thankful to Dr. Everett FaIT of Farr Research,
Albuquerque, NM for valuable discussions.

Contents

Section

I. Introduction

n. Ideal Dipole Moments of the Feed Horn

m. Normalized Electric Dipole Moment of IlL4s

Iv. Summary and Future Work

References

page

3

5

16

17

18

-2-



●

m L Introduction

One form of an IRA consists of a TEM horn-fed paraboloidal reflector antema [1]. We can
think of the radiated waveform in different time regimes as follows. First, there is a relatively
low qnplitude (negative) step associated with the spherical wave emanating horn the feed apex.
This is followed by a large, narrow reflector impulse (positive) for an observation point on the
reflector axis. This narrow impulse is then followed by a complicated wavefom, returning to
zero level. The temporal behavior of the radiated waveform after the narrow impulse is smongly
influenced by the choice of the terminating impedance Zt at the junction of the TEM horn and
the reflector antenna. It is also well known that the time-domain radiated waveform must have a
zero area to ensure the absence of a dc component in the radiated spectrum.

A simple choice of Zt = ZC s characteristic impedance of the feed horn will help in com-
bining the radiation at low frequencies from the electric and magnetic dipole moments. It is
noted that the electric dipole moment ~1 is produced by the terminating impedance consisting of
(Zt/’2) in each arm. On the other hand, the magnetic dipole moment ZI is produced by the
current flow in a closed loop formed by the feed and the reflector. More sophisticated choice of
Zt in relation to 2= will help in optimizing the late-time radiated waveform after the narrow
impulse. A knowledge of ~1 and fil is desirable in the design of a matching network that
represents 2*. Specifically, we seek to numerically evaluate j?l and ~1 and then require

Clp’ll=ltill (1)

where c is the speed of light in vacuum. Such a balancing of the dipole moments, by a proper
choice of Zt results in combining their radiation and minimizing oscillatory behavior in the radi-
ated waveform at late times.

When we evaluate ~1 and ii?l, it is certainly desirable to normalize them to some “ideal”
dipole moments. Presenting the results with dimensionless parameters increases their utility.
We have chosen as the normalizing dipole moments PO and fro. PO is obtained in the absence of
the reflector under conditions of constant voltage on the feed arms (electric), and IF/. I is
equat&l to c l~o 1. It is observed that fio is not well defined since the “loop” of current is not
closed for an independent calculation of fro. However, this is not critical since i?i’ois used only
for the purpose of normalization. We now define

lp’~I
fP s reduction factor in elecrnc dipole moment = ~ (2)

1)7?11fn = reduction factor in magnetic dipole moment= ~ (3)
. .,-.

These factors fp and f ~ will at most have a value of 1, since dipole moments are reduced by the
presence of the reflector. In the electric case, the reflector antenna is at zero potential and has
negative charge induced on it, resulting in a reduction of dipole moment (i.e., 1~1I < I~o I ).
Similar arguments can be made to justify Iml I < Ifio 1.
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Furthermore, since the normalizing dipole moments are simply related by

Clj?’1 = 1?7?01

so that

Ipl 1 17?201c Ip’11~=&=—— —
f.

Ip’ol Ini’11= tm’11

(4)

(5)

The objective then is to choose the terminating impedance Zt that makes 8 = 1, for a given TEM
characteristic impedance ZC,or a given value of the geometric factor f ~ = (ZC/2.). An interest-
ing question is to determine if there is a special feed geometry (opening angle of the feed arms),
for a prescribed feed impedance that makes 8 = 1. Such are the issues addressed in this note.

In section 2, we derive j?. and fib the idealized dipole moments. the reduction factor fp
for the electric dipole moment is evaluated in Section 3. In Section 4, the remaining work for a
future note relating to fil is outlined. The note is concluded with a list of references.
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● IL Ideal Dipole Moments of the Feed Horn

In this section, we are concerned with the “ideal” dipole moments of the feed horn ~. (elec-
tric) and fio (magnetic). The electric dipole moment ~. is to be evaluated in the absence of the
reflector antenna. The feed horn consisting of two triangular shaped plates is shown in figure 1
along with a system of cartesian coordinates (x, y, z ) with its origin at the feed apex. We can
now find the dipole moments.

A. Electric Dipole Moment j7’o

Let us assume that the top and bottom conductors are at a potential of+ V. and – V.
respectively. y = O is a symmelry plane and a reference conductor at zero potential may be
placed on the plane y = O. The horizontal and slant lengths of the feed horn are respectively 1
and 1~. ~ is a coordinate along the top conductor and 2P is the opening angle of the feed horn.
We have

ZCs TEM impedance of feed horn = Zofg (Q) (6a)

20s characteristic impedance of flee space (Q) (6b)

fg = geometric factor of the TEM horn (6c)

~ = coordinate along the slant length (6d)

C‘s capacitance/unit slant length= J- = ~ (F/m)
.7 (6e)

c s speed of light in vacuum (m/s )

[S = l.q)
C s total capacitance = — —

Czc fg

Jg

(6f)

(F) (6g)

Qstotalcharge= ~=* (coulombs)

*V. = voltage on top and bottom conductors (V)

(6h)

(6i)
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Fig ure 1. The feed horn
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Q‘ = charge/unit slant length= ~ = ~ (coulombs/m) (6j)

We observe that in this idealized transmission-line model, the charge density Q‘ on the top con-
ductor is a constant.

?0 = ~y Poy

The resulting electric dipole moment is given by

Poy =1 Q’[2~(z)ld&

(7)

o

Substituting for b(z) = z tan (j3) = ~ sin (~) and integrating, we have

Poy = Q ‘A.q = Q ‘bl~ = Q ‘l? Sin(p)
(8)

‘Qheff=Qb -

We have introduced the equivalent area A.q [=l~2sin(~)] and an effective height heff (a~ ) for the
idealized electric dipole. Substituting for Q, w e have,

Poy = 2v& b[, (9)

fg
The dipole moment per unit voltage between the two conductors is obtained by setting 2Vo = 1
volt in (9).

As discussed above, we choose to define an idealized magnetic dipole moment Z. for nor-
inalization purposes only, as given by

= 2V0 &o 2v0 & sin(~)= ~. 1? sin(p)moz = Cpoy L 1: sin(J3)= >
fg c

(lo)

Once again the equivalent area of the idealized magnetic dipole moment ?i?Ois bl~ = 1.2sin(~).

This completes the evaluation of the idealized electric @o) and magnetic (fiO) dipole
moments used in normalizing the practical dipole moments ~1 and fil respectively.
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III. Normalized Electric Dipole Moment of IRAs ●
In this section, we consider ways of evaluating ~1, the electric dipole moment of an IRA, as

sketched in figure 2. Figure 2a shows the TEM feed with triangular shaped plates facing each
other and in figure 2b, they are replaced by equivalent conical cylindrical rods. The equivalent
rods of circular cross sections help in fonrdating the problem and in numerical computation of
the electric dipole moment. The problem at hand may be posed as follows. With reference to
figure 2b, the TEM feed is characterized at low fkquencies by an electric potential of *VO on the

two rods. We then seek the charge -disrnbution on the feed conductors and the parabolic
reflector, assuming an open-circuit at their junction. In the absence of the parabolic reflector, we
obseme that the electric charge distributes on the feed conductors in a certain fashion, resulting
in a certain dipole moment. However, when the reflector is present, the charges redistribute in a
manner that results in a lowered dipole moment.

The electrostatic problem of determining the charge disrnbution on the feed horn and the
reflector, under the conditions of constant potential on the feed horn plates and open-circuit junc-
tion, may be solved via the Laplace differential equation for the potential or an integral equation
for the charge distribution. In the method of Poisson’s equation,

(11)

one solves for the potential distribution @(x,y, z ) while noting that in charge free regions, the
Poisson’s equation reduces to Laplace’s equation. $(x, y, z ) also satisfies the equipotential con- ●
ditions on the feed horn, the image plane and the reflector surface. One then finds the norrmd
electic fields on the metallic surfaces by taking the appropriate component of the negative gra-
dient of the potential. The normal electric field on metal surfaces is relatable to the chaxge distri-
bution. One can then find~l, the electric dipole moment from the known charge distribution.

An alternate approach is to numerically solve for the electric charge distribution on con-
ducting surfaces using an integral equation. Basically, by integrating the Poisson’s equation
above, one gets a complete solution for +(x, y, z ) as [9]

(12)

If the charges are distributed with a volume density p(x, y, z ) in a volume V bounded by a sur-
face S and if there are no charges exterior to the surface S, the surface integral in (12) vanishes,
resulting in the potential integral,

w-,Y7z)=--&p+&Qciv (13)

withl? = (x-x’)2+(y-y ’)2+ (z-z’)2
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Equation (13) is a particular solution of the Poisson’s equation valid at (x,y, z). We have ●
numerically solved the above integral equation satisfying the boundary conditions of

()=VO on the top feed arm

@= -VO on the lower feed arm

$)=0 on the symmetry plane y

$)=0 on the parabolic surface

A. Numerical Implementation

= o

(14)

The potential integral (13) that uses volume density of charge may be cast in a form that
uses surface density of charge. For example, we are modeling the feed horn plates by a conical
conductor that is divided into N 1number of elements. The volume integral becomes

JJj~dv=JJp~(x,y,z)rded&
=JPs(x,Y,z)2nrd&

(15)

where p$ is the surface density of charge {C/m2). Similarly the paraboloidal surface is broken
up into iVZnumber of surface patches. We have developed computer routines that solve for the
surface charge density in each of these segments along the feed conductors and each of these
patches on the paraboloidal surface. A spherical coordinate system was defined at the feed apex
to facilitate the numencal scheme. Once the surface charge densities are determined, a total
charge Qi (coulombs) can be assigned at the center of the segment or patch by a product of the
surface charge density p~ and the area of the segment or patch. The electric dipole moment then
is evaluated via

(16)

As an example, if a typical surface patch along the paraboloidal surface extended from (01 to fJ2)
and $1 to ($q+A~), the arc lengths are

& ls arc length along e =
Z$fde

u+ cos (c)p

6s2 = arc length along $ = 2~ ‘in(e)d@
I + cOS(e)
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ti = elemental area = 4fi~Qsin(@)d@d@

[1+ Co,s(e)]5/2

=: fiff[sec(e2)13’2-[sec(
where ~ is the focal length of the parabola. We experimented numerically with several types of
patches, finally settling on nearly square ones. Thesymmetryplane at y = O is exploited and the
computations are performed in one quadrant of the paraboloidal surface while accounting for the
image plane and reflections. For any observation point, one has 6 contributions, i.e., upper arm,
lower am and the 4 quadrants of the paraboloidal surface. Similar integrals are used with
appropriate sign changes to account for all conrnbutions. In principle, this is a straight forward
computation, but numerical convergence in the results was not trivial. Typically, we needed
about 100 segments along the feed arm and about 1500 surface patches in one quadrant of the
paraboloidal reflector.

B. Illustrative Results

For numerical purposes we have held the focal length $ = lm or 1 unit of length. Sum-
marizing the various parameters,

—.
f=lm
d= I, l.5,2.0,2.5and3m —_

(f/D) =1, 0.667,0.5,0.4 and 0.333
2b=D

(b/a) =7 (fixed)

As the diameter of the dish D is varied, the plate separation 2b (=D) changes, as well as the feed
angle ~. However, the plate width 2a is varied so that (b/a) is held constant. Consequently, the
characteristic impedance ZC is held constant nominally at 400 L2.

A typical example of the charge distribution on the paraboloidal surface is shown in figure
3, for the case of

D = 2.5m, r= D/2= 1.25m, f=lm
(f/D) = 0.4, 2b = 2.5 m, 2a= 0.36 m,
(b/a) = 7 ZC = 400 K2.

Itisobserved that
the circular rim of the

the charge distribution on the paraboloidal surface is concentrated along
reflector, as well as near the junction between the feed arms and the
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● reflector. This is, as one would expect horn physical considerations. The detailed zoning of one
quadrant into roughly 1500 surface patches is also visible in figure 3.

The results of our numerical computations are presented in Table 1. The five cases
correspond to (f/D) values ranging horn 1 to 0.333. As the angle ~ is increased, keeping ZC
fixed, the reduction factor monotonically decreases. ~ = O corresponds to the case of no feed
arm and fP = 1 (no reduction in dipole moment). At ~ = 90°, one would expect to have some
“shielding”and hence fp will have a finite non-zero value, as can also be seen in figure 4, where

fp is plotted as a function of & In Table 1, the normalizing dipole moment 1~. I is also listed
computed both analytically from (6) and (9) as well as through the computer routine by eliminat-
ing the parabolic reflector. The close agreement in 1~0 1 estimated by two methods enhances
our confidence in the numerical procedure.

The remaining work consists of finding f ~, the corresponding reduction factor for the mag-
netic dipole moment reduction, to see if f ~ can equal f ~ which is a desirable condition for late-
time radiated waveform characteristics.

a
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TABLE 1. Computed electric dipole moments (for the case of

(b/a) = 7; fg = 1.061; Z,c= 400 $2

focal length f = 1 m

c
:

D b 6 4, Q i~o] = Qb IF, I 1;, I
e degrees m

f/D f =—

# m
m coulombs coulomb-m coulomb-m P ;0

1 1 0.50 27.53 1.06 1.771X1O-” 0.885x10-” 1 0.823x10-” 0.93
(1.75OX1O-”) (0.875x10-”)

2 1.5 0.75 41.03 1.14 1.9OIX1O-” 1.426x10-11
-11,

0.667 1.128x10-11 0.79
(1.883x1O (1.412 x10-11)

3 2.0 1.00 53.13 1;25 2.083x10-11 2.083x10-11 0.500 1.399X1O-” 0.68
(2.067 x10-11) (2.067 x10-11)

4 2.5 1.25 63.97 1.29 2.318x10-11 2.897x10-11 0.400 1.691x10-11 0.58
(2.3x10-11) (2.875 x10-11)

5 3.0 1.50 73.62 I 1.51 2.604x10-11 3.906x10-11 0.333 1.735X1O-” 0.44
(2.583x10-11) (3.875x10-11)

-1. .&.

NOTE*: The numbers in the parenthesis are analytical calculation (eqns. 6 and 9).
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IV. Summary and Future Work

In this note we have determined the electcic dipole moment of an IRA for a set of –
parametric values of fm, while holding the feed impedance nominally constant at 400 Cl What
remains to be evaluated is the corresponding magnetic dipole moment. If the two dipole
moments are related by the speed of light, the late-time behavior of the radiated waveform from
the IRA is improved and better controlled. This is the goal of computations such as these. The
problem of evaluating the magnetic dipole moment will be addressed in a future note.

..

.
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