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Abstract

The far-zone field radiated by the VPD-11 EMP environment simula-
tor is calculated. The frequency-domain field is obtained from the assumed
spatial variation of the antenna surface current density, which is determined
by the nonuniform resistive loading. Equivalent circuits for the ?vfarx gen-
erator and for the antenna itself are used to determine the current at the
feed point of the antenna. Numerical results are presented which show the
effect of the wire-mesh ground plane on the radiated field. It is ,found that
both the peak amplitude and the rise rate of the time-domain radiated
field increase as the observation angle increases to around 65°. When the
mesh ground plane is present, these quantities remain nearly constant up
to observer angles very close to 90°; the peak electric-field amplitude at a
distance of one kilometer from the simulator is approximately 3 kV/m for
an observer well above the air-ground interface. When the ground plane is
absent, the peak amplitude and. rise rate decrease rapidly as the observa-
tion angle is increased beyond 65”; the peak electric-field amplitude at a
distance of one kilometer from the simulator is approximately 2.25 kV/m.
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1 Introductory Remarks

The Vertically Polarized Dipole EMP simulator

Kirtland AF13 in New Mexico was designed to

known as VPD-11 and located at

produce an electromagnetic field

in its working volume (close to the air-ground interface) which is similar to that

associated with the high-altitude nuclear electromagnetic pulse (13MP). The peak

electric field produced by VPD-11 at the center of the test pad (100 meters from

the apex of the simulator) is approximately 35 kV/m; the 10?70-9070rise time of

the field is less than 10 m. Our purpose in this note is to formulate an analytical

model from which the electromagnetic field radiated by VPD-H can be calculated

over a wide range of observation angles and distances. Existing field models [I]

account well for the field near the air-ground interface in the working volume but

may not adequately describe the field at higher elevation angles or longer ranges.

Our interest in this problem results from the need to understand the external

electromagnet ic environment created by this and other EMP environment sim-

ulators. By “external”, we mean the region well outside the working volume.

The radiated-field or space-wave part of this external environment is dominant

at observer locations far from the simulator and well above the air-ground inter-

face, and is of particular interest for reasons of aircraft safety. The ground-wave

environment is dominant for observers near the air-ground interface and will be

considered in a separate note.

The electromagnetic design of the VPD-H EMP environment simulator is

discussed in [2]. Differences between VPD-H and its predecessor, known as

ACHILLES I or VPD-1, are reviewed in [3]. Some early calculations of the field
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o
environment at Iocatioris relatively remote from the working volume are presented

in [4], based on the theoretical development in [1]; field mapping of the completed

simulator is discussed in [5]. Related studies of conical antennas over a perfect

ground are described in [6] and [7]. We remark that the

vironment simulator operated by the Navy is similar in

analysis described in this note than therefore be applied

, the external environment of that simulator.

EMPRESS-II EMP en-

design to VPD-11. The

to the determination of

In the next section we develop an expression for the far-zone radiated field of

the VPD-11 antenna. We use the spatial variation of the surface current density

established by the resistive loading on the antenna to evaluate the vector potential

and, from that, the electric field. In Section 3 we determine the antenna feed

current from equivalent circuits for the Marx generator and the antenna itself.

Representative numericaI results for the radiated field are presented in Section 4.

Section 5 concludes the note. Details of the asymptotic high-frequency analysis

of the radiated field are given in the Appendix.

2 Antenna ModeI and Radiated Field

The VPD-11 facility is shown in Figure 1. The simulator consists of a multi-

megavolt Marx generator located underground beneath the antenna; the antenna

itselfi a wire-mesh ground plane; command, control, and instrumentation facilities;

and a test pad. The antenna is a right circular cone with a top cap. The half-angle

of the cone at

the transition

the ground plane is 40.4°, changingto 42.3° when the cone makes,

from solid metal to a resistively loaded wire mesh; the transition

3
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Figure 1: The VPD-H EMP simulator facility.

occurs six meters above the ground. The effective electrical half-angle of the

cone is 40.4° j yielding a value of 60 ohms for the high-frequency antenna input

impedance.

The resistive loading on the antenna (I.] was designed to produce a surface

current density of the form

p)

where 80 denotes the half-angle of the cone, # is the radial coordinate along the

surface of the cone, and @ is the unit vector in the #-direction. The slant height

of the cone is denoted r. and is equal to 52.6 m. lo(t) is the current at the

antenna feed point. The vanishing of the surface current density at the top of the

cone reduces the contributions to the total
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Figure 2: Geometry of the model problem. The z = O plane is initially assumed
to be perfectly conducting.

diffraction at the boundary between the cone and the top cap. The surface current

density on the top cap of the antenna is small, because of the high resistance at

the upper edge of the cone. Its contribution to the radiated field is expected to

be small, except perhaps at very late times, and is not considered herein.

We shall initially assume that the ground beneath the antenna is perfectly

conducting. The geometry of the modeling problem is shown in Figure 2. It

is evident by symmetry that the radiated field is independent of the azimuthal

angle ~. In the frequency domain (the time dependence exp(jwt) is assumed and

suppressed) the surface current density is given by

i (F’, jw) =
Io(ju)(l – r’/ro)e-~kr’

2m-’ sin 00
I?& (o <7-’ ~ 7-,) (2)
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where ~o(j~) is the frequency-domain current at the feed point and k = w/c

denotes the free-space propagation constant; c is the speed of light. The field

components established by the antenna currents are ~8, fir, and fi+. In the far

zone, the import ant field components are f18 and fi~; these components are related

by

Eg = zoH~ (3)

where -Z. = 120~ ohms denotes the intrinsic impedance of free space. The far-zone

electric field fie is given in terms of the vector potential ~ by

~e = –jkZo20 . ~ (lb + m) (’4)

where de denotes the unit vector

in the far zone by the integral

in the &direction. The vector potential is given

(5)

where iir is the unit vector in the r-direction. The vector r’& is the position

vector of a source point on the cone itselfi r’& is the position vector of the

corresponding image point in the air-ground interface.

Using eq. (4) and carrying out the integration over “r’ in eq. (5), we obtain

the following expression for fie:

(6)
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with

and

(7)

(8)

(9)

(10)

(11)

(12)

d,,, . de = sin 19cos 6’~+ cos (3sin tl~cos(g$ – ~’) (13)

We can readily modify these results to account for the presence of an imperfectly

conducting ground, since we are working with the far field. The second terms in

the integrands for 11,12, and 13 give the field contributions which arise because of

reflection from the plane z = O. We multiply these terms by R(O), the reflection



coefficient for parallel-polarized plane waves incident at an angle O on the air-

ground interface, obtaining

._

o
I

27r

/[
12=& dgY

& “Ze R(o)C&f“Ed
(1– & ,;.)2– (1– E,,,.z,)’1

(1!5)

J[

j.&oiirIiir

13=; ~‘r dq+’
& . i20e R(@)&, . ~0ejkro~~l.~r

(1 – Zrf o3,)’ – (1 – ii,,, . E.)’ 1 (16)

We remark that l?(m/2) = –1 for an imperfectly conducting ground. It is’elemen-

tary to show that & vanishes at 6 = m/2 in this case.

The integrals 11 and 12 can be evaluated in closed form. We obtain

11 = R(@)(cot 0 – CSCO)– [cot O+ csc # sgn(O – O.)] (17)

12 = –sind
[

sgn(d – O.) R(e)
(cm o -cm 0,)2 + (Cos o + Cos0,)2 1

(18)

where sgn(. ) is the signum function. The integral 13 cannot be evaluated in closed

form. It can, however, be evaluated numerically if kro is not too large (say, less

than 20, which corresponds to a frequency of approximately 18 MHz). For larger

values of Iwo, asymptotic methods are appropriate. The details of the asymptotic

evaluation of 13 for kro >> 1 are given in the Appendix. The result is

–1

{

sin(d — @o)e~k~o COS(9-80)

@rjkTO sin 8 sin 60 [1 – Cos(d – 00)]2
F1 (19)
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0
+jR(19) sin(d – d~)e-i~’” cosie-o”j

[1+ Cos(o – 6,)]’ ‘2

+j sin(t9 – ~o)eikro Cos(iwo)

[1 – Cc)s(o + /3,)]’ ‘3

R(6) sin(p + OO)e-~~’Oco’(~+~”)
+

[1+ Cos(o + 6,)]’ ‘4 }

where

[ ( )1
8–8)+ l–cot Otan ~ s~(j kr,p~ )

()0–0,
F2 = cot Ocot ~ S,(jkr,p’ )

[ ( )1

e–o~
+ l–coto cot —

2
s~(jk?-,p~)

FZ =
()

o+$~
cot 8 tan —

2
s, (jkr,ps)

[ ( )1
/3+6,+ l–cot Otan —

2
s~(jkrop’)
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Fd
()

13+/&J
= cot o cot — s~(jk?’~p~)

2
(23)

“[ ( )1
0+00+ l–coto cot —

2
sl(.jk7’@4)

with

and where erf c(. ) denotes

PI = 1 – Cos(o – elj) (24)

p2= 1+ Cos(o – !%)) (25)

p3 = 1 – Cos(o + 00) (26)

pl = 1 + Cos(e + 00) (27)

SO(4) = @ e<erfc~ (2s)

s,(c) = f – (f -~) so(t) (29)

the complement ary error function. It is not difficult

to show that 1) the asymptotic representation for 13 makes the electric field ~%

vanish at O = 7r/2 when the ground is not perfectly conducting; and 2) fio is

well behaved at 0 = 0., the singularity in 13 at d = 00 being cancelled by the

singularityy in 12 at that angle.

This completes the evaluation of the radiated field in the frequency domain.

It rem”ains to determine the current at the feed point, ~O(jw). This is done in the

next section.
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Figure 3: Equivalent-circuit model for the Marx generator and antenna. The
voltage across Cm is Vo at t = O.

3 Antenna Feed Current

The Marx generator and antenna configuration is modeled by the equivalent circuit

shown in Figure 3. The antenna impedance 2= is given by [I]

1za=Ra+—
juCa

(30)

where Ra = 60 ohms is the characteristic impedance of the biconical transmission

line formed by the antenna and ground plane, and the antenna capacitance C= =

2.9 nF. The capacitance C~ represents the erected Marx capacitance in parallel

with the peaking capacitor; and Cm= 5.4 nF. The resistance Rm represents the

charging resist ors, the Marx triggering resistors, and the non-zero conductivity

of the liquid dielectric in the peaking capacitor, The total resistance is approxi-

0 11



mately 3.7 kfl [5]. The induct ante L~ represents the total inductance of the Marx

generator and limits the rise rate of the antenna current. We have chosen a value

for Lm of 0.245 pH; this value yields a 10% - 90% rise time for the antenna current

of 9 ns.

The antenna feed current ~D(ju) is found from the equivalent circuit to be

jwTm c= VQ
(31)~“~jw~= 1 + j~ {T. + Tm(l + C=/Cm) + jw [Tarm+ (1 +j~Tm)/w~l}

where TO = Rata,.Tm= RmCm and w: = l/( LmC.); V. is the pulser charge

voltage. Eq. (31) may now be substituted in eq. (6) to yield the frequency-

clomain radiated electric field fio.

A pIot of the magnitude of ~o(jw) /VOas a function of frequency is shown in

Figure 4. The break frequencies in the magnitude spectrum are approximately 5

kHz, 1.5 MHz, and 37 MHz. A plot of Io(t)/VO as a function of time is shown in

Figure 5. The current peaks at t = 14 ns and changes sign at t = 460 ns.

4 Representative Time-Domain Results

.

.-

In this section we present numerical data for the radiated electric field. The

ground surface around the VPD-.U antenna is covered with a wize mesh, so we

must account for its presence in calculating the reflection coefficient R(O). We

use an equivalent sheet-impedance model to describe the mesh [8]. It is simple to

12
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Figure 4: Magnitude of antenna current spectrum I ~O(jQ) I normalized to pulser
voltage Vo as a function of frequency.
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Figure 5: .hienna current 10(t) normalized to pulser voltage VO,
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show that R(O) is given by

~(,,= ‘~(’rcos$-m ‘zocOso-

“S (:,C”SO+W) +“.c”som

where & denotes the (complex) relative permittivity of the ground and

equivalent sheet impedance of the mesh in the air-ground interface. For

polarization, Z. is given by

(32)

2S is the

this field

(33)

where a. is the mesh size (the meshes are assumed to be square) and Tw is the

mesh-wire radius. Z~ is the impedance per unit length of the mesh wire. The

equivalent sheet-impedance model for the mesh is valid over the frequency range in

which the individual meshes are electrically small. The mesh used for the ground

plane at VPD-11 has a. = 10 cm and rv = 1.9 mm,

The complex relative permittivity i?, is taken to be of the form developed by

Messier [9]

where c~m is the high-frequency relative permitt ivity of the ground and ~. is the

low-frequency conductivity. We use e,~ = 8 (currently accepted as a “best” value

for most soils) and ma= 3 x 10-3 S m-l, a value suitable for the vicinity of VP.D-IL ! ..
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Figure 6: Normalized electric field eo(O; t); 0 = 5°,15°, 25°; mesh present.

We have performed representative calculations of the normalized time-domain

electric field e., defined by

?-Ee(r, (3;t – r/c)
ee(~;i) =

Vo
(35)

The results are shown in Figures 6-8. One will observe that the peak amplitude

and the rise rate of the field increase as the observation angle 8 increases to

approximately 65°, and remain nearly constant for 19up to approximately 85°. At

larger observation angles, the rise rate and the peak value decrease, and the space-

wave field vanishes at 9 = 90°. Most of the decrease takes place in the angular

range 89° < 6 < 90°. The space-wave field “holds up” to such large observation

angles because of the efficacyof the mesh in establishing a ground plane.

In Figures 9-11 are shown plots of e6(O; -t) vs. t for various values of 19,for

the case in which the mesh is absent from the air-ground interface. The peak
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amplitude and rise rate of” the field again increase as the observation angle O

increases to approximately 65°, but then decrease rapidly, in comparison to the

case in which the mesh is present, as 19is further increased. The peak amplitude

reached near O = 65° when the mesh is absent is about 7570 of the peak amplitude

attained when the mesh is present.

The mesh beneath the VPD-H antenna is actually of finite size and a more

nearly complete analysis of the radiated field should take its size and shape into

account. However, the radiated field would lie between the results p~esented here

for the “mesh present” and “mesh absent” cases, depending on the observation

angles 0 and ~. In general, one would expect that if the observer location were

such that the image of the antenna could be “seen”

“mesh present” results would better represent the

“mesh absent” results would be more accurate.

in the mesh ground plane, the

radiated field. Otherwise, the

In order to convert values of ee obtained from the calculations into estimates of

field strength EO, one must know the ranger and the charge voltage VO.The pulser

which drives the VI?D-11 antenna was originally designed to produce a peak output

voltage greater than 5 MV, but because of the existence of breakdown problems

in the output switch housing, the peak voltage obtainable i: only about 4 MV. A

typical value for VOto use in field calculations is 3.5 MV.

I
I A.
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Figure 7: Normalized electric field e6(@; t); 0 = 35°,45°, 55°; mesh present.

5 Concluding Remarks

We have used a model for the surface current density on the VPD-11 antenna to

obtain the far-zone radiated electromagnetic field when the antenna is situated

over an imperfectly conducting ground with or without a wire mesh in the air-

ground interface. It is found that the rise rate and the peak amplitude of the

radiated field increase as the observation angle increases from 0° (directly above

the antenna) to around 65°. When the mesh is present, these quantities are nearly

constant up to observation angles very close to 90°, where the space-wave field

vanishes. The peak electric field intensity in the space-wave field is approximately

840 VOM/?’k~ volts per meter, where VOMis the pulser charge voltage in NIV and

rk~ is the range in kilometers. For a charge voltage of 3.5 MV, the peak electric

field intensity is approximately 3 kV/m at a range of one kilometer for an observer
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well above the air-ground interface.

When the mesh is absent, the rise rate and peak amplitude of the space-

wave field begin to decrease, after reaching a maximum around O = 65°, much

more rapidly with increases in # than do these same quantities when the mesh is

present. The peak intensity in the fieId when the mesh is absent is approximately

640 VO&.f/Tk~volts per meter. For a pulser charge voltage of 3.5 MV, the peak

electric field intensity is approximately 2.25 kV/m at a range of one kilometer for

an observer well above the air-cart h interface.

Our treatment of this problem accounts only for the space-wave contribution to

the total field. Since the ground is not perfectly conducting, this field contribution

vanishes in the air-earth interface. The field at great distances from the antenna

is dominated, for observers close to the air-ground interface, by the ground-wave

contribution to the total field. This field contribution is considered in a separate

note.
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APPENDIX: Asymptotic Evaluation of 13

Contributions to an integral of the form

/

b
I= J~oP(#’)~(@y#/ (Al)

a

in the limit of large kro can arise from the endpoints of the integration interval,

from stationary points of the integrand, and from poles or other singularities. The

integral 13 is made up of two integrals having the form given in eq. (Al) with p(#)

and q(~’) periodic with period 2~ and with b—a = 27r. The endpoint contributions

thus cancel, and we consider contributions to the constituent integrals of 13 from

the stationary points #~ where p’(g$~) = O.

The contribution to an integral of the form given in eq. (Al) from a stationary

point at #’ = #~ within the intervaI (a, b) is [10]

(A2)

where the upper or lower sign is taken as p“(~~ ) is positive or negative. Define

p(q$’) = sin 9 sin 00 cos ~’ (A3)

~+(d,) = _ (+ sind cos do – sin 60 cos ~ cos ~) e+ikTO cOseCos00

(1+ Cosecosoo –
(A4)

sin 6 sin 60 cos @)2

so that 13 can be expressed as



where we have set # = O and shifted the limits of integration without loss of

generality. The stationary points of p(qY) are located at # = O and # = r with

p(0) = sin Osin 00 (A6)

I

,

,,,1

0

!

.,,

“,

p“[o) = —sin Osin $0 (AT)
—

p(m) = – sin t9sin 00 (A8)

p“(r) = sin Osin 00 (A9)

– sin(d – O.) ~~~,0~O.s@~0,00

‘+(0) = [1 – Cos(o – 0.)]’

– sin(O + 190) “kro COS 8 COS @o

‘+(m) = [1 – Cos(o + 00)]’ “

sin(~ + 00) – “kroCos$Cos00
‘-(0) = [1+ Cos(o – 00)]’ e ‘

sin(tl – O.) - “kro COSt?COSf?O

‘-(T) = p + Cos(d - 00)]’ e ‘

(A12)

(A13)

Substituting eqs. (A6) - (A13) into eqs. (A2) and (A5] as appropriate, we obtain

the results for 13 given in eq. (19) of the text, except for the factors Fi.

We observe that the contribution to 13 which arises from the stationary point

y = O in the integral involving q+ (#’) is singular at O = O.. The presence of

this singular behavior, which is not cancelled by the singularity in 12 at O = 190,

indicates that a more careful evaluation is needed. We employ a modified saddle-

point method to evaluate that contribution to 13.

,0
.,.

.-
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We begin by expressing cos #’ near the point # = O as

cos#=l- :4’= (A14)

so that the integral is written as”

I = – +ik”oCos(e+l )
J

[W~ - OCI)+ $ sinoo cos ~]~-j~rosin~sinOo~’2,2

[1 – cos(6 – 6.) + $ sin 6’sin 0,]2
d~f

(o)

(A15)

where the integral is to be evaluated “near # = O“. Next make the substitution

so that the exponential factor in the integrand becomes

~-jk~o sin% sin Oo@2/2 = ~–kTo sint?sin @op2/z (A17)

and integration along real values of the variable p is equivalent to a steepest-

descent integration. We recall that O <0< 7r/2 and O <00< 7r/2, so that the

exponent on the right-hand side of eq. (A 17) is negative and real.

Now recognizing that the integrand is an even function of p, we have

~–i~ld
I=–— ~~kro Cos(e-eo)

J

m [sin(8 – 6.) -j; sin OOcos 8]

T O [1 – cos(~ – f90)– $sint9sin60]2”

e -kro sin@ sin t?op2 /2dP (Als)

Change the integration variable to t, where

2
t=~sin6’sin(30 (A19)

23



0
and define

so that

where

P = 1 – Cos(o – o~) (A20)

I=–
/

&/4ejkT0c4Q-QO) co

e-~’O’G(t)-f$
r 2sini9sin$0 o

I

(A21)

We note that if t is set equal to zero in G(t) and the integral in eq. (A21) evaluated,

we recover the first term in eq. (19) of the text, except for the factor F1.

Expand G(t) in a Laurent series about –jp:

G(i) =
j sin(d – 190)– jp cot O cot Q

(t+ jp)’
+—

t+jp

yielding

I=–
ej~~dejkr~cos(O-80)

{
cot d + ~cot O– sin(O –

}
6.)1+ “

7T 2 sin 6 sin 190

This integral is known. We have [11]

(A23)

(A24)

(A25)

I

‘o
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where erfc(. ) denotes the complementary error” function. Performing the differen-

tiation in eq. (A24) and using eq. (A25), we obtain, after a little algebra, the first

term of eq. (19) in the text.

We remark that the function FI defined in eq. (20) approaches unity as krO ~

coif O-6’0 #0. It is also not difficult to show, using the series expansion

for the error function, that the singular behavior near 6’ = 60 of the asymptotic

represent at ion for 13 exactly cancels the singular behavior of Iz (cf. eq. (18))

at that point. Thus’ the asymptotic representation for the radiated field is well

behaved near 0 = 190.

Each of the integrals 11, Iz, and .13 vanishes at 6 = 7r/2 for an imperfectly.

conducting ground. The same is true for the asymptotic representation of 13

developed from a stationary-phase analysis at the beginning of this Appendix. The

more refined analysis, however, yields correction terms in the function F1 which are

not cancelled by corresponding terms in the stationary-phase contribution from

~– (o). In order to correct this minor defect and to obtain a consistent asymptotic

representation for 13, we simply perform the more refined analysis on each

remaining contributions to 13. The result is given in eq. (19) of the text.

of the
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