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INTRODUCTION

In the recent past attention has been given to the problem of calculating the fields produced by a
toroidal antenna at and around its center (Refs. 1 and 2). Specifically, for a 8-gap generalor it was
determined that a low frequency E/I ratio at the center equal to the free-space intrinsic impedance
can be achieved with a particular uniform loading resistance. The results obtained in the above
papers have been revisited here with a much simpler approach, based on the asymptotic antenna
theory, for the case of a thin Torus. The fields have been calculated at and around the center, in the
frequency and time domains. The cases of one and of two 8-gap generators (one source plus its
image) were investigated. The current was calculated in the time domain at three different
locations along the wire. A "uniformity error” based on the root-mean-square variation of the
principal field component around its average value in a certain domain of interest has been
computed also. In addition, other properties of toroidal antennas, such as the input impedance have
been derived. The case of a finite-gap source with the field configuration at the gap produced by a
biconical wave launcher has also been investigated. The approach has been extended to the
elliptical geometry and the same electromagnetic quantities were derived. In addition, parametric
studies to analyze the field behavior as a function of the loading resistance, the location of the
source, the eccentricity and the thickness of the wire relative to the major semiaxis were also
conducted. In Part I the circular geometry is discussed, whereas Part Il is concerned with the
elliptical one. This approach is particularly appealing since the analytical results can be cast in

closed forms.

1.0 PARTL THIN TOROIDAL ANTENNA

1.1 SINGLE 8-GAP GENERATOR

1.1.1 Current Along A Thin Circular Loop Antenna

Figure 1 illustrates the geometry of the antenna being analyzed, together with the cylindrical
coordinate system used in the calculations. It is shown that the radius of the antenna is a and the
radius of the wire is b. We shall indicate with ap, é¢ and 4, the unit vectors normal to the surfaces
p = const, ¢ = const, and z = const, respectively, and forming a right handed system. In the case of
a single 8-gap source, which is dealt with first, it is assumed that its location is coincident with the
origin of the ¢ coordinate. The same approach is applicable also in the case of multiple §-gap

generators located along the antenna; as will be discussed in Section 1.2. The particular case of a



Figure 1. Geometry of TORUS antenna with §-gap generator located at $=0°.



half circle with single or multiple 8-gaps above a perfectly conducting ground, with the plane of the

antenna perpendicular to the ground, can be treated within this last category.

It is noted that with the approximation of a thin antenna, i.e,,a >> b, kb << 1, one can ignore the
current flow along the circumference of the wire and consider only that along the antenna loop, i.e.
along ¢. That is to say that the current has only one component in the ¢ direction. One can see,
from Maxwell equations and the equations for the vector potential in cylindrical coordinates (Ref. 3)
that, associated with I¢(¢) along the loop are two components of the vector potential, A¢ and Ap.

On the antenna surface the potential can be represented, in terms of the currents, by

. 2 . 2
b on l¢(¢,)e1k 2 [2-2cas(é~-¢'H + b @
A¢(¢) = 4— [ a cos(¢p—¢1d¢’
nle  Va¥2-2cosip—)1+b2
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. , 2
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410 Va2 —2c08¢ -] +b?

where, in the integrand, use has been made of the approximate kernel discussed in Ref. 4. These
integrals can be evaluated approximately when ka is large. Infact, in such case, due to the
oscillatory nature of the exponential terms in Egs. 1 and 2 and the assumption thatb < < a, only
the values of ¢’ close to ¢ are going to contribute significantly to the integral. By using this

approximation, Eqs. 1 and 2 become

u %0 eik\/ hzsinz(()'ﬂ) + b2
A(¢)=—31(¢)J ad¢’
¥ an ¥ o VaZiner2) + b2

(1.a)

Ap< ®) =0 (2.2)

Since, for ¢ ~ ¢, cos (¢ — ¢') ~ 1 and sin($p — ¢’} ~ 0. By making the change of variable
{=2asin(¢'/2), d{= acos{}'/2)d¢’ = a d¢’, because most of the contribution to Eq. 1.a iscoming
from ¢’ close to 0°, it is obtained
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In writing Eq. 1.b one must exclude the point ¢ ==0°. In fact, because of the §-gap generator, the
current is infinite at the gap location. The nature of the singularity of the current has been
investigated by T.T. Wuand R.W. P, King in Ref. 5 who found it to be of logarithmic type, therefore
integrable. Hence Eq. 1.b does not represent correctly, at $ =0°, the relationship between the
potential, which is finite, and the current which diverges. However, for the purpose of calculating
the current everywhere else and consequently, the fields, Eq. 1.b and its approximate forms are

adequate.

The contribution to A¢(¢) from the second integral is negligible compared to that of the first integral

for large ka. Therefore one obtains

H, . n } (1.0)
’ A¢(¢) = 4_nl¢(¢) X [m Ho (kb)

where H;“ isthe Hankel function of the first kind and order 0. Eq. 1.cforsmallkb, can be writtenas

Ho (1.4)
Ay = 21,@) x{ ~2in (kb)} |

Furthermore, Egs. 1 and 2 can be evaluated approximately at low frequencies also, i.e. when

ka < < 1and the exponential factor in Eqs.1 and 2 is taken equal to 1. In this case the same
argument used before to justify neglecting Ap compared to A¢ can be invoked again. Infact, the
integrand 1/{k2(a2{ 2-2cos(d - $')] +b2)} is very large when ¢ = ¢’ and decays rapidly to much

smaller values elsewhere since a> > b. Then, one is left with the evaluation of the integral

H 2 cosB )
4n oV 4aZsin%0/2) +b°




which yields

P (1.0
A (@)= —1 (¢){2lln (8a/b) — In(2)—3/4]
¢ 4n ¢

which is the result obtained within the Q-theory, as described in Ref. 6. It is interesting to notice

that for frequencies (= ¢/A) such that 2na = A, Eq. 1.d can be written as

lo (1
o — .g}
A (D) [.($)2 ln(a/b)

which is quite close to Eq. 1.fsince In 8 ~ 2 ~ (In2 + 3/4). This approximation is legitimate particularly
when a > > b, which is the case of interest here. Since the approximation (Egs. 1.cand 1.d) used to
evaluate the integrals is also known as w-theory (Ref. 7), the derivations illustrated above show

that the two theories can be reconciled. It will be shown shortly that choosing Eq. (1.g) for the

potential is also equivalent to the approach used in Ref.1, i.e. the same results for the

electromagnetic fields at the center of the antenna are found. This is to say that the more

complicated approach of Ref. 1 when taking the thin wire approximation can also be obtained from a
much simpler asymptotic antenna theory. Again it is stressed that the key approximations invoived

in Egs. 1.b through 1.gare that kb < < 1,a > > b. Therefore, in the following, the reader should

exercise care when interpreting the results in the frequency range in which kb approaches 1.

The surface of the toroid is loaded with an impedance per unit length Z'. The choice of the value of
Zi depends upon the radiated fields’ properties that the designer intends to achieve. Ample

discussion of this issue is presented in Ref. 1 where a value for Z! had been obtained such

that E/H = 377 Q at the center of the loop. In thisnote it will be shown that when this Z:; ischosen,

there is complete agreement between the resuits for the fields at the center, both in the high and low
frequency limits, obtained with the method presented in Ref. 1 and with the asymptotic antenna
theory described in the following. Therefore thissame value ZL isretained throughout most of

Part{.

Because the antenna internal impedance is negligible, one has

. - i
E¢(¢.m) = Iq’((b,w}Z (3)



everywhere along the antenna except at the source location. For the case of a §-gap generator, at the

source location Eq) = -V 8(¢)a.

From Maxwell equations and the equations for the potential one obtains

= : (4)
E¢- - (V¢>)¢+ lu)A¢

with

- .2 (5)
V' A -ikod=0

By combining Egs. 3, 4, and 5, neglecting the contribution of‘Ap since it is much smaller than A¢, as

shown by Eqgs. 2 and 2.4, one can write,

FA ik \

P2 i D
a¢)2 + k A¢— (o[ZI¢ aﬁ(‘b)] {6)

1
a2

which can be rewritten in terms of the current as

AN ke 2 VA ionk? V, o -
o o | — = B —
a? ap? wp Inkb) "¢ wp Inkb) a

to be solved together with the boundary conditions

— (8)
I¢(0) = 14)(211)
and
2
1 d ‘
-—J —1, ad¢ = PV @)
a2 8CrOsS gap 8<b2 ¢ v
2nik?
where P= —— |
wpoln(kb)

Equation 7 is also interpreted formally as a transmission line equation. The "characteristic
impedance” of such line is defined as — Viu /¢ In(kb)/2n. However, this does not imply that the

solution for the current represents the lowest order mode of propagation in a transmission line and



that, thercfore, should be valid only when ka is small. In fact the term “transmission line model” is

used improperly and the more correet term “asymptotic antenna theory” should be used instead.

At frequencies at which 2na = A and below, In(kb) is replaced by —In (a/b), since Eq. 1.d is replaced

by Eq. 1.g. Furthermore, at frequenciesat whichkb > 0.1 In (kb) must be replaced with (—in/2) H:J”(kb)

since the approximation of Eq. 1.e by Eq. 1.d is not very accurate.

By defining

1+ —

A
2= _kzl - (10)
k

the solution to Eq. 7 with Eqs. 8 and 9 can be written as

1@ = Ae¥™?® 4+ B Y™ (11)

where

PV ~-PV, (12)

A= —0._, . —
2y(1 — 2% 2y(1 — e~ 2@

In Eq. 11 the explicit dependence of I<l> on w as well as § has been emphasized. It is noted that this
approximation does not exhibit the divergent behavior at $=0°. However for the purpose of
calculating the fields this approximation is adequate, because the effect of the singular term is very

localized. One could always add this singular term according to Ref. 5.

When Z! isassumed equalto Z:, =R f2na = n [In(8a/b) - 2)/2na = qoln(a/b)/2na derived inRef. 1,
Egq. 10 it is obtained

In{a/b)
ka[ln(ka) + In(b/a)]

‘ In%a/b) 1
y/\ro: 1+ 5 2><exp i—arctan
k%a?(In(ka) + In(b/a)] 2

} (13)

where ysa = +ika and n, = 377 Q is the vacuum intrinsic impedance. Again, at frequencies at
which 21ta = A and below, the term In (ka) is neglected. The normalized wave number y/y, is plotted
in Fig. 2, as a function of ka, while b/a acts as a parameter. It appears that at high frequency the
propagation along the antenna tends to resemble that in free space, i.e. y = y, = ik, whereas at
relatively low frequency it is characterized by the dispersive behavior illustrated by the two curves.

Note that for a/b = 10% both real and imaginary part of y/y, become infinite at ka=100. Thisis
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Figure 2. Y/y, real and imaginary parts. Note: for a/b =102 the model breaks down
when ka approaches 100.



caused by the term In(ka) + In(b/a) in Eq. 13 which vanishes. However, the asymptotic antenna
theory breaks down when kb becomes 1 or larger and one should not use the results for a/b = 102

when ka approaches 100.

1.1.2 Time-Domain Antenna Current

Equation 11 represents the antenna current in the frequency-domain. It is interesting to calculate
the antenna current in the time domain. This is obtained by performing an inverse Fourier

transform. For the case that the driving voltage is a unit step function this amounts to calculating

+o 1 ()
Lto) = — —J 2 e-ietgy (14
¢ 2nl o i

where [4($, w) is given by Eq. 11 with @ = ke. However one still needs to truncate the integration at
some point te be able to carry it out numerically. To avoid the singularity at w=0Eq. 14 can be

evaluated as

1 [[Y Plod)-T0,8 _;
I (t,Q)):_.—H Hodl-TO8)  —iker-at g
¢ 2nlj_p iw

L 3 * @ gy ’
+ J I(m,(b).—l (0,9) e—iktct—a¢)dw+ [ l(“)l(b).-l 0,9¢) e—ik(ct—a‘b)dw

- 1 L 10

*ro,e) _; 5
+J .: e—lktct—acbldm} (15)

— W

where I'(w,d)=I(w,p) e ~**® and I0,}= lim I'(w,$). The first integralisevaluated numerically
w0
without making approximations on the kernel. The limit of integration is selected so thatkb << 1

and Eq. 1.d holds. We have chosen to terminate the integration at ka =30, corresponding to
kb=0.03. The second and third integrals compensate for the numerical truncation by adding a
contribution evaluated analytically. Such contribution, which is dependent on the truncation value,
is calculated by approximating y with ik and keeping ka, kb fixed at the values 30 and 0.03,
respectively. This approximation is justified by the fact that the integrand of the second and third
integrals is decreasing and the phase varies very rapidly at high frequencies. Therefore one is left
with

-iktct—ad}
@, =i ct—ad

1
__Re{u' (m,cp)—['(ﬁ,ct)l[ —do
fn h.f. L tw

(16)

10
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with I'h r(m,q)): lim ["(w,$)oblained using y =ik in [(w,$) given by Eq.11. By making a suitable change
o G—>
of variable Eq. 16 can be evaluated analytically also, yielding

1 ct \
-—Re[l’hf(m,¢>)—l'(0,¢>)Jsi[ka(——¢)] (17)
n A a

with si(z) being the sine integral defined as

“sin(t 18
si(z)=—J sin{ )dt (18)

z

The fourth integral on the right-hand side of Eqj. 15 can be evaluated analytically and it yields the

unit step function of amplitude I'(0,$) excited at the time t=ad/c.

Figure 3 presents the time domain current response at three different valuesof ¢,1.e. $=10°,

‘. ¢ =90°and 180", respectively.

1.1.3 Input Impedance

From Egq. 11 calculated at $=0° simply by dividing by V_and taking the reciprocal of the ratio, the

Input impedance Z, isderived. It is found

R " —ikan Y~ 2w ikan YT P oweim)
o . In(kb) e - e
Zinz.n— 17Y (W+iT) (19)

In(a/b) o ikan \"W(wn'r,_l_ Jikan Yy~ 2 w+im

with

In (a/b)

- (20.a)
kallnka)+In(b/a)]

1

Y= — (20.b)
o

11
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+ X>0 (20.c)

- X<0

w= /1Y (20.4)
2

The calculation of Eq. 19 resulted in the two curves presented in Fig. 4 for the real and imaginary
part, respectively. Because of the lack of the singular term in the solution for the current at ¢ =0°
one should expect to see large errors in the calculation of the input impedance at ¢ = 0°, particularly
as far as the reactance is concerned. In fact, theoretically, the reactance shuld be zero. On the other
hand, since the antenna is resistively loaded, the resistive part is controlled by such load. However,
one should remember that the singularity in the current is associated with the presence of a slice
generator, which is not a realistic generator, In practice, measurements of input impedances
associated with use of feasible sources would reveal the presence of a reactance different from zero.
At low frequency the calculated impedance is purely resistive and equal to the value R of the
loading resistance. Asthe frequency increases the resistance gradually decreases to zero. The
reactance is always inductive and decreases to zero also, both at the low and high frequencies.
Intuitively it was at first expected the reactance to change sign, maybe even several times, before
vanishing (transmission line behavior); however this does not happen. Mathematically this can be

understood if Eq. 19 is rewritten in the form

R 4 In (kb) €°(cosA —isinA) — e~ B(cosA +isinA)
Z == VI4XE W) o) D)

in~ g In(a/b) B(eosA —isinA) + e~ B(cosA +isinA)

4 4 —_—
withA=kan V1+X?W, B=kan V1+X?T.

As ka increases, T—0 and W—1. However, ir the range of ka considered, B assumes fairly large

values anyway which cause the exponential eB

(e"B) to become very large (small). Therefore the
ratio containing A and B in Eg. 21 is not oscillatory but is always very close to 1, and the impedance
does not exhibit a strong resonant behavior. It is evinced that the loading resistance R, iscausinga
pronounced damping effect and only a small portion of the loop in the vicinity of the source is the
“effective” antenna. A simple circuit representation is thus given by an open circuit voltage source
in series with the loading resistance and the inductive reactance. A possible capacitive reactance
would be in parallel to this series of elements. However, as the frequency increases, this reactive

element is shorted out and the only surviving reactive element is inductive. Because of the high

13
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all frequencies at ¢=0°, corresponding to slice generator. In addition values beyond ka
equal 100 are questionable because of theory breakdown,
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" value of the loading resistance the radiation resistance may become negligible and may be omitted

from the circuit representation.

1.1.4 Fields At The Center Of The Antenna

Once the current is known one can calculate the potential Ap, A¢ everywhere. In general these

components are given by

n d eik 82 + p2 - 2apcosd’ + 12
A i) = 4—° J 1@ - ¢ a sing’d¢’ (22)

¢ - 2n \/;2+ p2—2apcoscp’+z2

¢ iik\/a2 + p2 - 2apcos¢’ + 12
A (p,d,2) = —OJ I @ -¢) a cosp’'d¢’ (23)
¢ 4nl¢ ~2n ° \/;2+ p? ~ 2ap cosdp’ + 2°

Consequently, the electromagnetic field at the center of the TORUS, i.e.forz = 0,p = 0, is

- - = 1] F
' B =(VXA)= a_lim—-|—(pA )-—A ] (24)
¢ zp'z—’op dp ¢ op p
_ [ oA, a’Ap
=a [2—_-—£|
L op apap |2=p=0
E =(-%iwVX B (25)
¢ 2=0,p=0
_ _ (1B, B
‘ VX B hmla ——i——gl
z=p=0 pz—0 p od o
+a,|— - -— a |=———-=—
*la o lp op p 8
and — oA oA oA
B=—2 B =—F B—-[-—(A) . 27)
T & ¢ &'’ 2~ PAg ab

15



Taking the limit in Eq.25 , it is obtained ‘

2 3 3 2
_ s |- |1 TA,  OA g, | FA FA, (28)
E =(~ctliwja |[z—7—-—7F]| —-a_ |~ -z + =02=0
¢ Pl2 5% *l250%0 2 apip? a2 llP=02=
Equations 24 and 28 can be carried out analytically for p=2z =0 by first calculating the derivatives .

in p and z and taking the limits for p,z — 0 of the integrand and then performing the integration and

finally the derivative with respect to ¢. .

It is obtained

- B ha =PV o

Bc=—°(l—ika)—( - °)az (29)
4n a véa

- n : eika PV a _

Ec=—°(1+-l——ika)—(-2—2°—)a (30)

By evaluating ~ PV/(y2a) and PV/(y2aZ + 1) in the low frequency limit the same results of Eq.

6.13 and Eq. 6.22 of Ref. 1 are obtained. Similarly, in the high frequency limit, by evaluating Eq. 30 .
with use of Eq. 1.¢, a result equivalent to that of Eq. 6.28 of Ref. 1 can be easily established.

Furthermore, the ratio Ao = - chI}OHc isgivenby

_ 1tika-ika y’a? 31)
¢ 1—ika yal+1

It is noted that in both the low frequency and high frequency limit, the value of A4 is 1, in agreement
with Ref. 1. Equations 29 and 30 have been plotted in Fig. 5 together with the correspondent
quantities from Ref. 1. It is noted that they compare quite well, especially at low and intermediate s

frequency. At high frequency the asymptotic antenna theory breaks down when kb approaches 1.

The fields at the center have been obtained in the time domain also by performing the inverse

Fourier transforms of Eqs. 29 and 30 as

—iwt
e '““da

— W . .

16
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Figure 5. Comparison between the fields at the center obtained with the asymptotic antenna theory ((a), (b)) and those calculated by
C. Baum|[1]((c), (d)). Inbothcases R_=n_In(a/b), a/b= 103. The fields are normalized to their respective static values.
Note: The asymptotic antenna theory starts breaking down at ka around 100.




I—S.L_(tl=—— e” e

f +ch(ka) (33)
11

@ lw

where, again, it was assumed that the source was a step function of amplitude V. By following a

similar procedure to that illustrated in Section 1.1.3, (see Egs. 15 through 17) one can write

_ 1 ([t E.kal-E(0)
E (t)=— — { J e—lklct-aldw
¢ 2n -L iw
LE = o Tt
+J Ec(ka) EC(O) e‘ik‘c“a’qu—J hc(ka} EC(O) o -ikiet-a) g
— iw i. iw
. J +o E::(O) e‘“““"*“dm] (34)
—Co 1w
_ | ( (L B.ka)=B(O)
B ()=— — [J : e—:k!ct-a)dm
¢ 2nl) g iw
-L B (ka)-B (0) | = B (ka)-B (0}
+ J c M e_lk(cl_a)dw_{_[ < C e—lk(CL—&ldm
—» iw L iw
+o B
+J Etﬂ e—iklct-aldm] (35)
—m  1W

withE_(ka)= E tka)e™*?, B (ka)=B (ka)e ™' The resultsshown in Figs. 6 and 7 were obtained, for
the magnetic and the electric field, respectively. In this case the time domain response is triggered
att=a/c to account for the propagation delay between the source and the center of the antenna. It is
stressed that, because of the error at high frequency due to the failure of the asymptotic antenna
theory as well as the numerical error introeduced in performing the integrations in Eqs. 34 and 35,

the early time results are certainly affected by error. This is confirmed by the fact that the ratio
Ey/(Bzc) obtained from the curves in Figs. 6 an 7 is not exactly 1 at all times, but deviates from it at
early times by as much as 20%. This must be accepted as a penalty intrinsic to the approximations

used.

1.1.5 Fields Off The Center Of The Antenna

At points other than the center the fields cannot, in general, be evaluated analytically. [lowever the
computation of Eqs. 22 and 23 and their derivatives is straightforward and can be handied with
relatively modest computational resources. This section presents the derivation of the fields and

their computation in some regions of practical interest.

18
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Note: since the results in the frequency domain are good only for ka up to 102 (kb—0.1) the time
response att < 10"} a/c is affected by error.
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In these calculations the delta gap source is supposed to be located at $=0°. From Maxwell’s

equations B =Vx X, —icocopoﬁ =Vx B it isobtained:

-3A aA aA
. 1| 8
Bo_ ¢ B o= B=—l—(pA . p] (36)
L ¢ & @ plap ¢ &b
18, aZAQ 1 a2Ap aZAp 37)
-u.oepoE——; + —_— -

FA, 1 A, L A | FA FA (38)
= ¢ ¢ P P o
—iwepE s | —t+ - — - —A t— — - ——  ——
o ¢ 392 p dp p2 ¢ P2 ad p abop &2

1 oA, FA | FA, (39)

Inthe following we report the expressionsof the partial derivativesofthe vector potential A. All pairs
of derivatives of Aj,Ag whose expressions are very similar except for some factors having been

written as a single equation with the derivative of Ay, appearing inside braces { }. This means that

the reader can switch from one quantity to the other by substituting the correspondent quantity

within braces on the right-hand side of the equation.

Letting\/a2+p2—2ap cosq>+z2 = Cfa,p, ¢,2), it wasfound

A 3A ¢ ikC

p $(_Ho a € . (40)
—_— —_— ) — — —&' —_— ] ] d '
od [ ad ] 4n I¢_% adbn((p ¢ C asing’ {osg'tdo
7A, | 82%,_ B0 125 i st
a¢2 a¢2 . ¢_2HY -9 C a sing’ {co ¢

Ho 9 . elC (41)
+ Zr: PVoa sing {cosd} C

Writing v for either p or z and S for either p-a cos¢' or z, correspondingly, it was obtained



A [ aA T ikC 1
__p{_¢}= [ =) a sing foos'}S (ik = =)d¢ “?

8V2 3V2 4n ¢-2n C
77 1 s? 2.2 (43)
—[-1+ikC+ — (3-3ikC~kZC )l)d(p'
c? c?

(44)

" 4n

Fa (FA L p (o n LikC

- e 1

Pl ¢} o J -9 ——asing' {oosd'}S Gk - =)do’
apav | apav p-21 8 C c

The principal components of the electromagnetic fields B, and Ey have been computed using the

above equations along the line x/a = 0 or 0.5 and at the heights y/a = 0.1, 0.2 and 0.25. The results

are presented in Figs. 8 and 9.

1.1.6 Field Uniformity Error

In practice one is interested in the behavior of the electromagnetic fields in a volume around the
center of the antenna or, in the case of a semicircular loop above the ground, in a region elevated
above the ground plane itself. Ideally one would like to design the antenna in such a way that the
principal components of the fields are as uniform as possible in such region and, in addition, the non
principal components are small. One convenient and well accepted quantifier of the deviation from

field uniformity in a certain domain is the 2-norm error.

Two domains have been considered for this case; for simplicity they are taken to be one dimensional.
One is a semi-circle. This is suitable to quantify a uniformity error intrinsically related to the
circular geometry of the antenna. Another domain, perhaps more interesting from a practical
viewpoint, when the test article is an aireraft, is a straight segment of total length equal to the
radius a, located above the ground at a variable distance y in a symmetrical position with respect to
the y axis. These domains are visualized in Fig. 10. The 2-norm error, 2-N, written here for the

principal component Py of the fields, is given by
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Figure 8. Principal field components of TORUS calculated at x/a=0, z/a=0and

y/a=10.1
yla=02
— y/a = 0.25

Source is at $=0°, a/b=103, R =n, log(a/b). Note: Results for ka approaching 100 might be affected

by error since the asympteotic antenna theory starts breaking down. Magnetic field has units of Siemens,
electric field has units of Farad/meter.
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Figure 9. Principal field components of TORUS calculated at x/a=0.5,z/a=0and

y/a = 0.1
yla = 0.2
yla = 0.25

Sourceisat¢p=0% abh= 103, R, =n, logla/b). Note: Results for ka approaching 100 might be affected by
error since the asymptotic antenna theory starts breaking down. Magnetic field has units of Siemens,
electric field has units of Farad/meter.
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Figure 10. Illustration of the domains of integration used in evaluating
(a) Eqs. 45 and 46, (b) Eqs. 47 and 48 for computation of
2-norm errors.
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for the circular domain of integration and
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P2
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nge = [ Ps(ka. x‘lar ylalz-’a}d(x/a) (48)
-0.5

for a straight line. Pjis either Ey or B, for the case of a single 8-gap source located at = 0°.

Figures 11 and 12 illustrate the results for the two chosen domains. As intuitively expected, the
2-norm error is smaller when calculated along the circle {p/a = const) than along the straight line
(y/a = const). Atlow frequency (ka < 1) the error can be made quite small, i.e. about 10% for either
field component up to the distance of p = 0.2a from the center. For frequencies such that ka > 1 the
deviation from uniformity increases quite dramatically and the effect of the resonances of the

antenna clearly appears in the 2-norm error in the form of spikes.

1.2. MULTIPLE §-GAP GENERATORS

1.2.1 Current Calculation

The results of Egs. 11 and 12 for the current can be generalized for the case when there are two

8-gap sources, located one at ¢ = ¢_and the other at ¢ = 2n- ¢ , this being the image of the first
source with respect to a conducting plane perpendicular to the plane of the antenna. This situation
arises in practical systems where large semicircular antennas are erected above conducting grounf.is.

The problem amounts to solving Eq. 7 with 8(¢) replaced by {8(¢ - ¢,) + 8(¢p + ¢, —2m)}.
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Figure 11. TORUS: Two-norm error calculated according to Eq. 45 (a) B ; (b) Ey. Source is located at $ = 0",

p/a = 0.01

p/a = 0.1

p/a =02

_ p/a=105
- p/a = 0.8

0° < ¢ < 360°
z/la=0
ab=10" R = n,log(a/b)

Note: Since fields at high frequencies (ka approaching 100) might be affected by error, also 2-norm error

must be taken cautiously.
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The solution for 1¢(¢) can be written in the following form, with the symmetry condition

1,(¢) = 1,(2n— &) imposed,

_xald-¢ ) -yald—¢ )
) (Ce °®+De ° 1) 0<¢<¢,
VEO-®) —velg—¢)
T Fe +Ge 1) ¢ <d<n
1 @)= < Zore (49)
¢ -yald+¢d -2n) yalo+4 ~2n)
Ce ° 4+ De ° () 2n—¢ <¢p<mm
-val¢+¢ -2n) yaio+¢ ~2n)
\F e °  +Ge ° () n<¢<m-¢,
with the coefficients C, D, F and G chosen such as to satisfy

ol
1 =2 » =0 (50.2)

oo ¢=04=n
2) L=1, aty =¢_ (50.b)

" 812 all

3) — - — ’ =PV a (50.¢)

3 P lo=¢ °

The solution for C, D, Fand G is
2yad

PV(l+e 9
F = L —

2y(1 — 2" (51)

2yain—¢ )
D=p X ° 52)
- yad (
l1+e

G= ezyam_%) (53)
C= De2ya¢° (54)
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1.2.2 Electromagnetic Fields

As for the fields at the center of the antenna, from the results for a single §-gap source, the magnetic

field Ec isfound tobe 2 timesEq. 25, because there are two sources with the same strength VO.
Such field isstill directed along z. Tocalculate E one must account for the different polarization
of the electric field which arises when the source is displaced from the original location at ¢ = 0°.
Such polarization is in the direction perpendicular to the line passing through the center and the

source location. As aresult, at the center of the antenna the two sources give rise to both E‘.y

components oriented in the same direction (Ey ToT= 2Ec c0S 4)0) and Ex componentsoriented in opposite
directions, thus resulting in a cancellation of the latter. When ¢, is equal to 90°, the E, components

are zera. The results were verified by using Eqs.36, through 39 to calculate the fields at the center.

The general expressions of the fields everywhere in space are given by Eqs.36 through 39. The
derivatives of the vector potential, as given by Eqs. 40 through 44 can stil! be used provided the

¢
function 1{(¢) isgiven by Eq. 49. In thiscase the integration J appearing in each of the equations
Egs. 40 through 44 must be performed as follows Lt

¢ ¢ o9,
[ - - - d¢'=[ L-9) - - dq>'+f L¢=¢) - - do’
o-20 o-6, o-n

o-n
L@-9) - - dq>'+J Io—¢) - - do’ (55)

¢3+¢-mt
+
q>0+q>-2n

¢—2n

One change occurs affecting Eq.41. In fact the finite term outside the integral sign becomes

u ikCt@-«pﬁ) ikC(qa-ch}
o 2| € ) e .
— PV a%| ——— ~¢ }{oosld - ————— sin(o + +
- 8 C(¢—¢o) sin(¢ ¢, {cosid ¢o)}+ C(¢+¢o) sin(¢ q>0){eos(q> (bo)} {56)
u ikC
in place of 4—0 PV a’® < sing {cos¢}. It is pointed out that C(q:—-(bo) = \/32+ p2—2apoos(q>—q>0)+2.2
n u

and C(¢ +¢ )= \/a2+ 92—23 pcosig+¢ ) +22

Using the above equations the principal components of the electromagnetic fields, E and B, have

been computed along the lines x =0 and x/a = 0.5 at the heights y/a=0.1, 0.2, and 0.25. The results
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are reporied in Figs. 13 and 14. By comparing Figs. 13, 14 with Figs. 8, 9 one can see that, at low
frequency, B, is indeed nearly twice as large for the present case than for the single source case. On
the other hand the electric field is nearly a factor of 10 lower in the present case because of Lthe close

proximity to the conducting ground which makes the tangential E field small.

By using equations similar to Eqs. 34 and 35 except for the different locations and delay factor
ct/(a-y) the time domain response to a step function excitation was calculated at x/a=0, y/a=0.1,
2/a=0and is illustrated in Fig. 15. The large peak of the E field is very likely affected by error since
the early time results suffer from the difficulty of the asymptotic antenna theory to give correct

results at the highest frequencies.

1.2.3 Field Uniformity Error (Two sources: One at & = 90° and its image at & = 2709

Analogously to what was done for the single source configuration, the 2-norm error was calculated
in the case of the double souf(;éialso, using the same definitions Egs. 45 through 48 already
introduced. It is noted that in this case the principal component of the electric field is E, while the
principal component of the magnetic field is still H . The results are reported in Fig. 16 (integration
on the circular domain) and in Fig. 17 (integration on the straight line). By comparison of Fig. 11
with Fig. 16 and of Fig. 12 with Fig. 17, one can notice that: 1) the uniformity of the magnetic field
improves for the two sources over the single source case. In fact the magnetic fields add up, therefore
resulting, by symmetry, in a more uniform distribution along a circumference. Again the
uniformity is worse along the straight line than along the circle, for a given distance from the
center. 2) the uniformity for the electric field is in general worse. This is due to the fact that now the
principal component is E_, which vanishes along the ground plane. Precisely, each source produces
equal and opposite E_ contributions along the ground plane. Therefore the variation of E_ alonga
circle, for any value of the radius p, is much larger than in the case of the single source. This
explains why the 2-norm error at the lower values of p/a is much higher in this case than in the
single source one (compare Fig. 11 to Fig. 16). In addition one must consider that a further cause of
error might originate from numerical problems, like round-off errors in the computations. These
tend to affect particularly the calculations at the lowest values of p when E_ is very small and
theoretically vanishing at the ground plane. On the other hand, given a certain distance from the
center, unlike for the case of a single source, the uniformity along a straight line'is better than that
along acircle. (See Fig. 12and Fig. 17). From what has already been explained one can intuitively
understand that the variation ofEx along a circle is more dréstic than along a line, since E vanishes

along the ground plane.
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Figure 13. Principal field components of TORUS calculated at x/a=0, z/a=0 and

y/a = 0.1
yla = 0.2 R,=n, logl(a/b)
— yla = 0.25

Source is at ¢ =90° with image at =270, a/b =10°. Note: Results for ka approaching 100 might be
affected by error since the asymptotic antenna theory starts breaking down. Magnetic field has units of
Siemens, electric field has units of Farad/meter.
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Figure 14. Principal field components of TORUS calculated at x/a=0.5, z/a= 0 and

y/a = 0.1
y/a = 0.2 R =n logla/b)
- y/a = 0.25

Source is at ¢=90" with image at = 270°, a/b=10°. Note: Results for ka approaching 100 might be
affected by error since the asymptotic antenna theory starts breaking down. Magnetic field has units of
Siemens, electric field has units of Farad/meter.
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Figure 15. TORUS: Time domain response to step function excitation at ¢ = 90° plus
image al $=270". Calculationatx/a=0,y/a=0.1,z/a=0,ab=103,
R, =n_logla/b). Note: since the results in the frequency domain are good only
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error. Magnetic field has units of Siemens, electric field has units of
Farad/meter.
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Figure 16. TORUS: Two-norm error calculated according to Eq. 45 (a) B ; (b) E,. Source is located at ¢= 90° with
image at $=270".
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Note: Since fields at high freguencies (ka approaching 100) might be affected by error, also 2-norm error
must be taken cautiously.
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1.3 DISTRIBUTED SOURCE - -

So far the discussion has been concerned only with §-gap generators. In practice, however, such
sources do not exist. A realistic source extehds over a certain léngth Aiong the antehna, let's say
(-C,, +{,) chosen for convenience around the origin. Figure 18 illustrates the distributed source
together with the coordinate ( running along the surface S which is the finite antenna gap, for an
infinitely lonrgycr:iylindrical antenna. The choice of thé ;'alue of { is felated to the physical size of the
pulser, or CW source, which are selected according to the overall performances of the system. Foran
infinitely long cylindrical antenna the distribution of the electric field at the mathematical surface
S can be approximated by that associated with a biconical antenna whose angle is such that the
conical surface intersects a circular cylinder of radius b at {,,asshownin Fig. 18. Such biconical
antenna radiates a spherical wave emanatihg from its apex. The corresponding electric field
tangential to S has been derived in Ref. 8. Assuming that the bicone voltage is a unit step function

V u(t), then the electric field in the frequency domain turns out to be (Ref. 8)

Vi eiu\/ b2 + (2 /e
oo _£l- (57)

where both rg = Vb? + anda care indicated in Fig. 18 and{ = {2 In (cot(60/2))}". Strictly

speaking this expression is valid for an infinitely long linear antenna. In the case of a circular

E_(r ) =
s &

antenna the curvature introduces a distortion in the wavefront, which results in a change in the
phase of the fields at the surface S with respect to the distribution corresponding to Eq. 57. However,
for very large antennas compared to the size of the source section one can, as a first approximation,
neglect the effect of the curvature. Therefore one can find the electric field at the origin by
integrating Eq. 26 over the source while using, in place of the voltage per unit length, the expression
givenby Eq. 57. By makingagainR = n In(a/b) = 2naZl, it is obtained, for the field at the center of

the antenna

d¢ a

\ /b2+(2 iw y (58)

E = -

¢, dis 5

Ro —ika—1+k%?

. 2 .2
aike [(S Vofocos([/a) RE (“+b7 /e
a =<

Similarly for the magnetic field
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Figure 18. Cylindrical distributed source specified by an infinitely long biconical antenna.
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H =—
¢dis  9R \1+ika/ a 2. .2 iw z
s c +b (59)

0

Therefore the ratio of E over n H becomes

. E. g I ika —1+kZ%a?
= = X

v dis nH, g —ika—1+k%?

sV cos(fa) ei““/(2+b2
ao d(

[ ika+1 L45'V3+b2 i (60)

~ika+1 em\/c2+ b2

B J CS vof«)

_Cs ‘ /c2+;§ iw

d¢

Atlow frequency, i.e. w—0, Eq. 60 can be evaluated analytically. The resultis

{'I' b2 &

A =14 ——— 2+b2/ln[
dis 4a2 482 Z‘s

Q+Vf+ﬁl

b (61)

Equation 61 provides the expression for the dependence of‘A:’ﬁs on the extent of the source relative to
the radiusofthe antenna. Figure 19 illustrates A?iis at low frequency asa function ofCE/a, whileb/a is

being used asa parameter. Figure 20 shows A:h's asa function of ka for different values of(s/a. In this

calculation b/a was assumed equal to 103, It is pointed out that the variation is contained within a

. few percent of the value A°calculated for the §-gap generator.
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2.0 PARTIl: THIN ELLIPTICAL ANTENNA

2.1 SINGLE §-GAP GENERATOR

2.1.1 Description

Consider an antenna of elliptical geometry, fed at one point with a §-gap generator. By analogy
with the noun “TORUS", this antenna is referred to as “ELLIPTICUS.” Figure 21 illustrates the
geometry of Lhe system and the elliptical coordinate system used to analyze the problem. The
antenna is located at § = § and the §-gap generatorisatv = G°. The transformation between

elliptical and Cartesian coordinates is given by

3 (62)
x =d&cosv y=dV §~1 sinv z2=12

The semi axes of the ELLIPTICUS are thus deduced to be

a=dg a'=d \/&i—l

(63)

where ( d,0) are the locations of the foct.

Please note that in Part Il of this note we indicate with a the major semiaxis of the ellipse, while in

Partla has a different meaning. The reciprocal of §_is also called eccentricity. From Fig. 21 it is

seen that the unit vectors are indicated with a ,, normalto the elliptical cylinders§ = const, ;v, normal

E‘,
to the hyperbolae v = const,and a 2 normal to the planesz = const. The relationshipsbetween

ag ;v anda xand ;ywere found to be the following

-V F,z—l cosv - Esinv
a —m= + a —]—
T _ —&sinv . I VEE-1 cosv
=a — a ——
Y * A\ &2—0052'4 Y AV F,z-coszv

® |
I

and, conversely,
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Figure 21. ELIPTICUS geometry showirng eliiptical coordinate system,

a - major semiaxis, 8’ - minor semiaxis,

£, = 1/V[1-(a"/a)?
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- -V &2—-1 COS V
4 =a, ————
¢ Vﬁz—coszv

X
- - £sinv
a = a

Y s"./“,2--cns2v

-  =¢sinv

a,—F———
/o 2
§—cos™ v

- V£2—l oSV
4 —F—
) Vf,z—oos2v

The length of an arc of ellipse s(v} is given by

(65)

(66}

where the integral is referred to as the elliptic integral of the second kind, and is indicated with

E(v, 1/&0). The total perimeterof the ellipse isgiven by 5, = 4aE(n/2, 1/&0).

2.1.2 Current Calculation

To calculate the current flowing along a thin eiliptical antenna one can apply the same line of

reasoning as for the case of the thin TORUS. However, in this case one must work with the elliptic

coordinates, which introduce some complication in the calculations. To simplify the problem we

assumed that the current of a thin elliptical antenna and that of a thin toroidal antenna of the same

total length, i.e. s =4a E{(r/2, 1/£0)= .‘Znaeq are the same, provided a correspondence isestablished

- between the position along the equivalent TORUS, aeqﬁp, and that along the ellipse, s(v), namely

sv) = a,,9- Therefore, within this approximation, the current is then given by:

Iv(vl= AePV LBl BV

where

PV
0

Arz A , Bl=
¥,
2y(1—-e °}

:/ 2nR
ny=o 14
¥ s, kn_In(kb)

-PV
a
¥s
2y(t—e 9
2 1 2uRo
) X exp[i —arctan [ ———— |
2 suknotn(kb)

Such a current is directed in the v direction, i.e. longitudinal to the antenna wire.
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Equations 67 and 68 are very similar to Eqs. 11 and 12 of Part 1. On the other hand Eq. 69 is more
general than Eq. 13 of Part | because here the loading resistance R = s"Zi is not yet specified. In
fact, in thiscase the choice Zl=r10 In (so/2nb) for the value of the loading resistance might not be

the proper value in order Lo impose E/l1 = n, at the center of the antenna. The discussion on the
selection of the loading resistance as a function of the geometry of the ELLIPTICUS is postponed to
Section 2.1.5. Furthermore, it is noted that in Eq. 69 the quantity s /2n, which is the "equivalent
radius” of a circle whose circumference is equal to the perimeter s_of the ellipse, is used in place of a

of Eq. 13.

Once the current is known, one can go through the same process illustrated in Part I to find the
vector potential and the electromagnetic fields everywhere. In doing so the elliptical coordinate
system must be used and the calculations become more cumbersome. The following sections

illustrate the results obtained for this case.

2.1.3 Electromagnetic Fields Calculation

The vector potential A can be calculated from the knowledge of the current I (v), using the free-

space Green’s function e'*P/(4nD) where

D=\/dz[g2+g§-sin2v-sin2v'-2ggocosv cosv’ -2\/(g2-1)(g§-1) sinv sinv'] + z° (70)

It was found

B, [ elkD d[—sinv'cosvf,i\/i,z—l +cosv'sinv {V f.,i—l]
AL(ﬁ,V,2)= e J I,6v) dv’ (71)

0 D ,/gz_mszv
¢*D dIEg sinv'sinv+VE~1 VE-1 cosv’ cosv |

po 2n
Av(ﬂ, v,z) = ;‘; J ]v(v') dv' (72)

0 D . /gz_wszv

where { and the prime (') coordinates for v indicate the source point.

From Maxwell’s equations the electromagnetic fields in the elliptic coordinate system are written as

= - - - - (13)
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2 (74)

¢ 73
v (75)
1 dA EY .
B=— g-1 (o= + 3 . A - == T Al (76)
dV £ - cos?v & g _costy av £ cos‘v

and

— an

2

v><v><X=[E'£+E a +E a
3 3 v v Tz

§

v
& av £2— cos’v £ _costv

1 —cosvsinv_( /7 A, A, 3VE-18A,  3sinveosv A,
Et-= 2 2 .3/ &-l +
dVv F,z—cos?v d(§” —cos'v)
azAv 62A£ N \/gzj £ ﬂA_\, (coszv—sinzv)AE

vt Pl W 2 cos?v

ginv cosv ¢ g)]_aﬁ}icz

- F,z—coszv -;- azz -‘: (78)
{ Ve_i [ g ( A, 3VE-1tA, 3sinveosvA,
E =1~ - -+ - )
v dV & _cos?v d(6% - cos?v)¥? av .. cos?y £ _ cos?v
1 g oA, FA, FA, VE-14,
+— ( — Ve - +
d(E —cos?v) \ L & a2 W& 2oy
2
+ §A, sinv cosv f_A_t,)l & i2 (79)
VE2-1 (= cosv) Eco®v & ot ) oe
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E,z— 1 ic?

dVv (5,2-—0052v) @

3 aAL azAg sinv cosv A, VE_cosy 32Av
oz

D

b§ =

x| —— + + —+
£2_ cos?v a3, \/2,2-1 \/gz_wszv & . /5‘2_1 v
(80)
The derivatives of'Ag and A appearing in Egs. 83 through 86 were calculated to be
aA [GAV} B, Iz"l( ) e Xsinv + Y cosv Gdv’ (81)
—_—— = — v v
av av n 0 v D § ’£,2~m52\7
with
X cosv - Ysinv  cosv sinv (82)

1
G = d%(—8¢ sinv + BV €—1 cosv) (ik— E) +

Xsinv + Yoosv £ cos?v
8=Ecosv — gomsv' = V —1 sinv — V ~1 sinv’ (83)
X=d \/Ez—l foosv'  {dEE sinv') (34)

Y=-d \/5, f,smv {dV -1V lsmv} (85)

Again one can switch from one derivative of Ag to the correspondent derivative of A by substituting

the proper expressions appearing within braces.

A {aA ]_ B, rnl wn XD X'+ YV E-1 .

|3
_ Y - dv’
& | o 4n D s (86)
with
_ d%Beosv + BV £~ 1)sinv) . £ x +YYyVE-
D D &2—cos2v X'E+ Y \/_ 1 @7
X'=d VE-1 cosv'sinv  {d § ginv’sinv } (88)
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Y'=~d F,O sinv’ cosv {dV F,f‘:—l cosv' cosv }

Itisnoted that X sinv + Ycosv = X'E + Y'VE-1.

#A [fﬁ]_ilml(,)e‘”’ (X sinv + Y cosv)
v laz | 4n Y

o ¥ D ‘/62-‘3052"

[E +FG]dv'
av

with

&F [d2[-—ﬁsinv + BV E~1 ) cosv]
D

d¥48 cosv +BE/V €2 =1 ) sinv)[-8 Esinv + BV 21 cosv}] (
— X
3

D

26 cosvsinv  [X cosv/E— Y (€ —1)sinv)}
(§2_cos2v)2 X sinv+ Y cosv

. l)
ik - —
D

L go @ + BEVE-1)sinv)] (—8Esinv + BV E—1 cosv)]
D‘

[X sinv/E + Y(E/(EZ~1))cosv][X cosv — Y sinv]

[X sinv+ chsvl2

I(v)y

FA 'lo.rﬂ e X g+ YVE-1
4n g D ‘/gz_msz\r

aF
Fi+ —) dv'
;3
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with

1= VE-1 sinv'sinv [-€(€-1) + 11/ V-1

&F 4 i 1
— =d ik = —
& D k=3
. d98 cosv + BEV E~1 )sinv] ( 2
+ D3 “\p~ lk)
€405 XYYVE-D 2821 XA )-Y A+ DV (E-1) (92)

+ -
(67— cosv? X'e+ Y'VE-1 )2

a2A p 2n ikD . 4
e Xsinv+Y /- d

_25 =2 [ Itv) : ESV lG2 + (8¢sinv + B £2-1 cosv)? =

av 4n 0 D 5‘2—“)5 v D

L2 (—8Eeosv + BV E81 sinv + E— cos™) ]
x ik + =)+ dik — =)
D D D
{(Xcosv = Y s'mv)2 . cosv — sin®v 2 cos’v sin’v 4’
- -1 = - v
(X sinv + Y cosv)? £2 - cos?v (2 cos?v)? (93)
6A£ aAv PO 2n X'£+ Y7 /£2_1 eikD
— === Lx == H dv' (94)
oz | & 4n J, \/Zzwszv D
with
i z . 1
H= =(k - =) (95)
D D N S ,
2 .
A ‘TA»-] K, F"] ) e*P X'g+ Y Vii-1 w2 Mg (96)
by vl_ e v a4y
812 2 4“ 0 v D ‘/£2-ws2v
with
" ar_ik 2 Do
&L_D( —D2)— D (87
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FA, [azAV] u, ,2.‘ kD x4 Yo aH)d , 98)
= v

= = 1G9 x FH+ —
4n M ¥

Kz | o= o D ,/gz_wszv
with
2

sH d'z fo . . . 2

Z—Ea-({imsv+[3(£/ £ —1)sinv)(—ik + D) (99)

azAz [azAv B, Jml( ’)eikD X sinv + Y cosv {FH-’:-

—_sy Yy _ 0 v
d% 2 . . 2 ,
D—3(8wsv+ﬁ(£/\/£—l)smv(—1k+ B)Idv (100)

2.1.4 Determination Of The Loading Resistance

When designing an EMP illuminator one is interested in obtaining incident fields with certain
specified characteristics in some region of space. Typically it is desired to have the ratic E/H at the
center of the antenna equal to the [ree space intrinsic impedance, i.e. 377 Q, so that the incident field
has locally the characteristics of a plane wave, in the broadest possible frequency range of interest.
This is to simulate the realistic condition of threat for a test object located on the ground. In the case
of the thin circular geometry such property was established at low frequency by choosing a proper
uniform loading resistance, as derived in Ref. 1. Unlike for the circular geometry, in the case of the
thin elliptical geometry, the value of the uniform loading resistance which makes E/H =377 at the
center is dependent upon the location of the §-gap generator, because the location of the source on
the ellipse is not symmetric with respect to its center. In the following we discuss how we
determined the loading resistance for the case of (a) a §-gap generator at v=0°% such that Ey/Hz =377
at the center and (b) a 8-gap generator at v=90° such that E_/H_=377 at the center, at low
frequency. It is stressed that any choice of the loading resistance will approximately give such field
ratio at high frequency because of the local plane wave behavior of the radiated (far-zone) fields of

any source.
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Using the above equations the electromagnetic fields were determined at the center of the
ELLIPTICUS (§=1, v=n/2) in the low frequency limit. From Eq. 6, when y—0, by performing a

Taylor series expansion and retaining terms up to the y2 power, it was obtained

PV 52

o}

9 ,
s(v)—s(v)so+ 5 (101)

Itv) = ~

In this limit the magnetic field at the center was calculated to be

1
H=—=
¢ nd R

where the yet unknown loading resistance R appears in the denominator. This value is
independent of the location of the source. The low frequency electric field component was obtained

as

2n gz—l cosv’ 3§§ 2 ; 0
Ey: ’I‘0 ><lm1 = 'I‘O J ( )(s (v') = slv )so)dv (103)

.2 2 .2,
) §3—sin2v' ({f-smzv) &z—smzv

corresponding to the source located at v=0° and

52 sinv' 3E-1) 2 ) \
E =T XInt,=T J ( - )[s(v') —3/2s(v')s + 5/16s°}dv’
I o 2 o R m (&E—Sin2v')2 gﬁ—s.lnz\" o o
(104)
for the case when the source is located at v=90°. In both cases
VO
rr‘o = 2 (105)
4 In(s /2nb)d”s
4] [+]
By imposing Ey/Hz = n,or E /H =n_onecan solve for R obtaining
4 n In(s /2nb)ds E(/2,1/¢) :
R = (106)

1 0
or
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4 q“ln(s“/2nb) dsdE(n/2, 1/ Lﬂ)
R =

! Int, u V ﬁz—l

2

(107)

Equations 106, 107 give the loading resistunce required for Ey/! I,=n,,E/H_=n atthe centerof the
antenna, when the source is one 8-gap generator located at v=10° v=90° as a function of the
geometry of the ELLIPTICUS (§,). Furthermore the ratio of the equivalent radius to the thickness
of the wire, b, also appears. The quantities GO, Ggo equal to Ra normalized with respect to

n, Ints /(2ab)) are plotted in Fig. 22 as a function of £, Forease of interpretation the scale a/a’ is
also provided on the top of the plot frame. An expanded portion of Gy, Gy, is shown in Fig. 23
corresponding to a/a’ ranging between 1.1 and 3. G, Gy, represent the amount of resistance, as a
fraction of n, ln(sof(an)), that one should load the antenna with, to obtain E/H = 377 Q at the
center, in the low frequency limit. It can be seen from either curve that, for high values of the
eccentricity, i.e. § —1, the optimum resistance can be even 80% (or lower) of n,In(s /2nb). By
comparing G, with Gy, one can notice that the differences in loading resistances depending on the
source location appear mainly for values of § smaller than 3 and, in any case, are contained within
15%. These differences account for the effect of the curvature of the ellipse relative to the location of
the source. Such effect is manifested in the low frequency value of the electric field only, as shown in
Egs. 103 and 104. In fact Int, is higher than Int, because the separation between the wires, where
the potential difference is established, is smaller when the source is at v=0°% Because of this the
value of R must increase when the electric field decreases, so that the magnetic field can decrease
also, to establish E/H =377, Figures 24 through 27 illustrate the fields at the center corresponding
to the choice GO, Gy, for two particular values of § ,i.e. 1.09 and 1.34, chosen as examples. One
should notice that in one case (Gj) the incident E-field is vertically polarized whereas in the other
(Gg,) the incident E-field is horizontally polarized. The calculations are made for thin antennas, i.e.
a/b=4.7x104 (€,=1.09)and a/b= 2x104(§0= 1.34). In both cases we have taken the ratioc E/(H 377)
and plotted it as a function of frequency in Figs. 28 and 29.

It appears that when the source is located at v =0° the electric field is more dependent on the
geometry (§ ) than when the source is at v=90°. This is to say that Ey of Figs. 24 (§ =1.09) and 25
€,=1.34) look quite different from each other whereas E_ of Figs. 26 (Eo =1.08) and 27 (§ = 1.34)
look quite similar. Perhaps when the source is at v=0° the illuminator looks more like a guided
wave system since the wires are closer together in the neighborhood of the source, exhibiting a
standing wave pattern particularly apparent in the case when § =1.09. On the contrary when the
source is placed at v=90° the wires are further apart and the change of geometry does not affect this

separation quite as much as it does for the other source location. As a result, by looking at Figs. 28
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function of the geometry  (a/a’), to ac?]ieve Ev/H!(Ey/l lz) =377 Q at the center (low frequency limil).
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and 29 the field ratios are, as an overall, closer to the plane wave situation when the source is at
v=90° In any case these considerations were made Lo assess how the choice of the loading
resistance affects the “plane wave behavior” of the incident field at the center of the antenna. In
practice, however, the selection according to either Gyor Gy, is going o make only a very small
difference in the event that the source is located at v=90° with an image at v=270°. This point will

be clarified with illustrations of calculated fields in Sec. 2.2.1.

For the two chosen geometries and a/b ratios, using Eqs. 69 through 100, the principal components of
the electromagnetic fields Ey and B, were calculated also at the observation points (x/a = 0,

y/a' = 0.1,0.2,0.25, z/a=0) (x/a = 0.46,y/a’ =0, 0.1, 0.2, 0.25, z/a=0) for the case when f,o =1.03
and (x/a=0,y/a’=0.1,0.2,0.25,z/a=0) (x/a = 0.37,y/a’ = 0.1,0.2,0.25, z/a=0) for the case when

§,=1.34. The geometries and the observation points are visualized in Fig. 30.

The results of the calculations are presented in Figs. 31 through 34. In these calculations the §-gap
source was assumed to be at v=0°and R was chosen according to Eq. 106. One can notice, by
comparison with Figs. 8 and 9, that the field values at low frequency and the general trend are very
similar for both the toroidal and the elliptical geometries but some details, particularly in the
intermediate and high frequency region where the different modes of the antennas contribute their

peculiar features, are quite different in the two configurations.
It is pointed out that when § —, i.e. the ellipse becomes a circle, both Eqs. 106, and 107 give the
value no In (a/b), as expected. This result was obtained by carrying out the limit of each factor of’

Egs. 106 and 107 for § —,

2.1.5 2-Norm Error Calculations

2-Norm errors have been calculated according to the following definitions

1 - o 12
l If |P8(ka’ é, v, z)_}?:\eI 2dl

2 _N= L2 (108)

PE™

L2
pave= -l—[ P_(ka, ¢t v, zxdl
> e 8T (109)
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(a)§,=1.09 (b)§ =1.34.

62



£9

co 10 v LB hJ 100 L L § L
' =
" o
Jal — —
= il
.':ic..> o
= | ) :

o] (@]
2 )
C\IN C\L
@ J]

a/a' = 25 a'a' = 2.5 I
0.100.01 i.i i 10 100 ’0.01 0.1 | 10 100
ka ka

Figure 31. Principal field components of ELLIPTICUS calculated at x/a =0, 2/a =0 and

y/a' = 0.1
y/a' = 0.2
- y/a' = 0.25

Sourceisalv=0",{ =1.09,a/b=4.7x1 04, R, =0.78 n Inls /(20b)). Magnetic field has units of Siemens,
electric field has umts of Farad/meter.




¥9

10 Y v Y 100 v Y v

(B,25,/(V, 1,))x103
(Ey2s,8,/V,)x1012

a/a' = 2.5 ala' = 2.5 _ '

0.14 51 0.1 1 10 100 haot 0.1 1 10
ka ka

Figure 32. Principal field components of ELLIPTICUS calculated at x/a=0.46, 2/a =0 and

yla' = 0.1
y/a' = 0.2
—— yla' = 0.25

Sourceisat v=0",f =1.09, a/b=4.7x10%, R,=0.78 n,Inls/(2nb)]. Magnetic field has units of Siemens,
electric field has units of Farad/meter.

. L
N [

100




99

10 T Y Y 100 . T T T
o
— A
o o
)—i { —
~ B 7] pd
=1 <IN
>° Zo 10 [ N
> (V]
}0.10 i | mO Nﬁ/_\
™~ ' “
N m"” ‘

e ala'=15 ~ Va/a'=1.5

0'010.01 0.1 1 10 100 i0.01 0.4 i 10

ka | ka

Figure 33. Principal field components of ELLIPTICUS calculated at x/a =0, z/a=0 and

y/a' = 0.1
via' = 0.2
L yia' = 0.25

Source is at v=0°, ELLIPTICUS geometry: {0= 1.34, a/b=2x1 0‘, Roz 0.91 qoln[so/(2nb)]. Magnetic field
has units of Siemens, electric field has units of Farad/meter.



99

10 | § |  { 1% | ] )
(]
— S
i
» S
’;? L

Q
Q
> Zo Y
- (]
Q e o =] v
w2 /)]
N N:n
& gl
ala'=15 ala'=15
h.o1 0.1 h.o1 0.1 1 10
kKa ka

Figure 34. Principal field components of ELLIPTICUS calculated at x/a=0.37, zZa=0and

yla' = 0.1
yla' = 0.2
— y/a’ = 0.25

Source is at v=0", ELLIPTICUS geometry: § =1.34,a/b= 2x104, R,=0.91 n In[s /(2nb)]. Magnetic field

has units of Siemens, electric field has units of Farad/meter.

y -
. 1 .

100




®

The integrations were carried out along a straight line of length L located at a height y/a’. Such
length, for a given height y/a’, is determined by imposing that (see Eq. 62)

: (110)
y/a'=d/a’( t,z-] sinv)

L=2d¢{cosv (111
solved for v=60°. Equation 110 determines the value of { which, once substituted in Eq. 111, gives
L. Itis stressed that the length of the domain of integration depends on the value of the height y/a’
since v is always taken equal to 60°in Eqs. 110and 111. Consistently with what was done for the
TORUS, three different heights were considered, namely y/a’=0.1, 0.2 and 0.25. The 2-Norm errors
calculated for the two elliptical geometries of interest, i.e. £o= 1.09 and £o= 1.34, are illustrated in
Figs. 35 and 36, respectively. They are very similar to those calculated for the TORUS and reported
in Fig.11.

2.2 MULTIPLE §-GAP GENERATORS

2.2.1 Electromagnetic Fields (one source at v=90° and its image at v=270°%)

The case of a half ELLIPTICUS above a perfectly conducting ground with a 8-gap generator located
at v=90° can be treated analogously to what was done for the half TORUS. That is to say that Eqs.
49 through 54 can be used to calculate the current provided the substitution ap =s(v) is made. The
expressions for the vector potential, its derivatives and the fields everywhere in space are still given
by Eqgs. 70 through 100, the only difference being that the integrations between 0 and 2n must here

be carried out like shown in the following

IZH n2 n 3n/2 n (112)
I'(v')...=4[ 1 (v’)...+J 1 (v’)...+J 1(v)... + I 1.(v")... '
v ! n/2 2 n 4 3n/2 3

withl,, 1,15, and 1, given by Eq. 49 with a¢ substituted by s(v) given by Eq. 66. The principal field
components E_ and H, were calculated at the points y/a’'=0.1, 0.2, 0.25; x/a=0, zZa=0 and
y/a'=0.1,0.2,0.25, 2/a=0, x/a= 0.46(£,=1.09) or 0.37 (§,=1.34) and the results are presented in
Figs. 37 through 40. These results can be compared with those obtained for the TORUS and reported
inFigs. 13 and 14. One can notice that the trends are very similar for the two geometries,

particularly at the low frequency values, while at high frequencies the higher order modes introduce
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Figure 36. ELLIPTICUS: Two-norm error calculated according to Eq. 108 (a) B ; (b) E_. Source is located at v=0".

-0.37 < x/a < 0.37,z/a=0and

v/a' = 0.1
y/a' = 0.2
R y/a' = 0.25

ELLIPTICUS geometry: { =1.34, a/b=2x10% R =0.91n In|s /(2nb)].
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Figure 37. Principal field components of ELLIPTICUS calculated at x/a=0, za=0 and
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Source is at v=90" with image at v=270°. ELLIPTICUS geometry: £,=1.09, ab=4.7x1 04, R, =0.78 In|s /(2ab].

Magnetic field has units of Siemens, electric field has units of Farad/meter.
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Figure 38. Principal ficld components of ELLIPTICUS calculated at x/a=0.46, z/a=0 and

y/a' = 0.1
yv/a' = 0.2
- . y/a' = 0.25

Source is at v=90" with image at v=270". ELLIPTICUS geometry: { =1.09, a/b=4.7x1 04, R,=0.78 In[s /(2nb)].
Magnetic field has units of Siemens, electric field has units of Farad/meter.
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Figure 40. Principal field components of ELLIPTICUS calculated at x/a=0.37, 2/a=0 and

y/a' = 0.1
y/a' = 0.2
- y/a' = 0.25

Source is at v=90" with image at v=270°. ELLIPTICUS geometry: { =1.34, a/b=2x10%,
R,=0.91 n Inls /(2nb)]. Magnetic field has units of Siemens, electric field has units of Farad/meter.



more marked differences between them. Furthermore, in the low frequency range, i.e. ka < 1, there
is more variation of E_ along the x axis the higher the eccentricity. This point is clearly illustrated
in Fig. 41 which shows the behavior of the principal field components for the TORUS as well as the
two elliptical configurations of interest here. In this case y/a’ (y/a) was equal to 0.1 and ka=0.01.
Furthermore Fig. 42 plots the fields at x/a=0, y/a’ (y/a)}=0.1 for a TORUS and an ELLIPTICUS of
very small eccentricity (1/§ =0.1) to show that indeed, in the limit, our calculations for the

ELLIPTICUS are consistent with those derived for the TORUS.

In the above calculations the loading resistance was that given by Eq. 106. Figures 43 through 46
illustrate the resuits for the case when Ro is given by Eq. 107 instead. One can notice that the
results are very similar. In the remaining calculations the choice of R given by Eq. 106 was

retained throughout,

Time domain responses to a step function were carried out also in this case, Figures 47 through 50
illustrate the results for the case of § =1.09, 1.34, at the point x¥/a=0, y/a’=0.1 and z/a=0. They are
consistent with those obtained for the TORUS and the same limitations already pointed out in Sec.
1.1.4 and 1.2 hold. However, it is noted that the fields exhibit an oscillating behavior even for
relatively late times, particularly the E-field. Such ascillations arise from the truncation of the
integrand in the frequency domain, which introduces an artificial “resonance”. Therefore the
oscillations are somewhat dependent on the truncation point and should not necessarily be
interpreted as proper resonances of the system. An attempt to correct for this unwanted effect is to
account for the truncation by adding a term evaluated analytically which represents the remaining
contribution to the integral (see, for instance, second line of Eq. 15, 34 and 35). Such correction
however is not perfect since the integrals are evaluated analytically but approximately. Such
correction process is more effective for the TORUS fields than it is for the ELLIPTICUS ones.

Realistic physical pulsed sources have a switch which when closed allows the voltage built-up at
capacitors to be applied to the actual load presented by the antenna. We have modeled this capacitor
inserted in series with the antenna load. Such a capacitor acts as a high-pass filter. In this case, the

time domain response to a step function can be calculated by

- I“’_ z C (113)
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Comparison between the principal field components of 8 TORUS and of two ELLIPTICUS of different
geometries. Calculations are along x-axis at the height v/a (y/a’)=0.1, ka=10"2.

n, log(a/b) TORUS
R, = | 0.78n_logls /2nb)] ELLIPTICUS{ =1.09

0.91 ,_ logls /(2nb)] ELLIPTICUS §0=1.34

Source is at ¢ =90° (or v=90") with image at $-270° (v=270°). Magnetic field has units of Siemens,

electric field has units of Farad/meter.
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Figure 42. Comparison between the principal field components of a TORUS and of an ELLIPTICUS of low

eccentricity (§ =10) at x/a=0, y/a'=0.1, z/a =0 (single source).
{no log(a/b) for TORUS
R =

n, logls /(2nb)] for ELLIPTICUS £,=10 a/a’=1.005
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Magnetic field has units of Siemens, electric field has units of Farad/meter.
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Figure 43. Principal field components of ELLIPTICUS calculated at x/a=0, 227a=0and
y/a' = 0.1
y/a' = 0.2
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Source is at v=90° with image at v=270". ELLIPTICUS geometry: LO =1.09, a/h=4.7x10%, RO =0.93 Infs /(2ub)].
Magnetic field has units of Siemens, electric field has units of Farad/meter.




8L

LY 0.1 { 10 w b 0.1 § 10 100
Ka Ka

Figure 44. Principal fieid components of ELLIPTICUE caiculated at x/a=0.46, zZa=0 and

y/a' = 0.1
y/a' = 0.2
— y/a' = 0.25

Source is at v=90° with image at v=270", ELLIPTICUS geometry: £,=1.09, ahb= 4.7x104, R, =0.93 In[s /(2nb)].
Magnetic field has units of Siemens, electric field has units of Farad/meter.
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Figure 45. Principal field components of ELLIPTICUS calculated at x/a =0, za=0 and

y/a' = 0.1
yla' = 0.2
o y/a' = 0.25

Source is at v=90° with image at v=270°. ELLIPTICUS geometry:

=1.34, a/b=2x104,

R =1.02n In|s /2nb)]. Magnetic field has units of Siemens, electric field has units of Farad/meter.
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Figure 47. ELLIPTICUS: B, time domain response to step function excitation at v=90° plus image at v=270".
Calculation at x’a=0, y/a’' =0.1, z/a =0. ELLIPTICUS geometry: Lo =1.09, a/b=4.7x10%, R0 =0.78n, ]og(sO/an).

Magnetic field has units of Siemens.

Note: Peak values might not be calculated correctly due to high frequency truncation when performing inverse

Fourier transform.
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Calculation at x/a 0,y/a’=0.1,2/a=0. ELLIPTICUS geometry: § =1.09, a/b= 4.7x10%, R,=0.78 n, log(s /2nb).

Electric field has units of Farad/meter,

Note: Peak valuer might not be calculated correctly due to high frequency truncation when performing inverse

Fourier transform.
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Figure 49. ELLIPTICUS: B, time domain response to step function excitation at v=90° plus image at v=270".
Calculation al x/a=0, y/a’' =0.1, z/a=0. ELLIPTICUS geometry: £,0= 1.34, a/b=2x107, Roz 091n, log{a/b).
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Fourier transform.
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where E(ka)and E(ka)are the fieldscaleulated at some points via Egs. 70 through 100, with the current

specified by Eq. 112, Calculations of Eqs. 113 and 114 were carried out at x/a=0,y/a’=0.1, 2/a=0
for the case §,=1.09, 1.34, with two different values of C: 107 and 10'8 F. Theresults are presented
in Figs. 51 and 52. It is noticed that both fields compared to those of Figs. 47 through 50, are
strongly reduced because of the filtering effect, which is more pronounced the smaller the
capacitance (i.e. the higher the impedance). For completeness a calculation of the above field
response for a TORUS was also performed and the results are illustrated in Fig. 53. Similar features
to those of Figs. 51 and 52 are observed.

2.2.2 Two-norm Errors

Two-norm errors for the principal field components were also calculated according to Egs. 108 and
109 and the results are reported in Figs. 54 and 55. Comparing these curves with those of Fig. 17
obtained for the TORUS one should notice that at very low frequency the 2-normerror for E_ is
much larger for the ELLIPTICUS than for the TORUS. In particular, for the case £0= 1.09 the low
frequency value is about one order of magnitude higher than that of the TORUS. This is explained
by the higher variation of the electric field along x shown by the elliptical geometry over the toroidal

one, as illustrated in Fig. 43.

2.3 PARAMETRIC STUDIES FOR ELLIPTICUS DESIGN

In most of the calculations presented so far it was assumed that the uniform loading resistance is

R =G noln[s /2nb)} with G ,plotted in Fig. 22, determined in order to achieve Ey/Hz= 377Q at the
center, at low frequency, for the case of a single §-gap generator placed at v=0°. To analyze the ficld
behavior as a function of the loading resistance, various values of Go, other than those of Fig. 22,
were considered, and the results are presented in Figs. 56, 57 for the case { | =1.09,a/b= 4.7x10% and
in Figs. 58, 59 for the case when EO =1.09, a/b=102%. In both cases the value GO= 0.78 is that
obtained when Eq. 106 holds. One can notice that, by increasing the loading resistance, the first
resonance in both the E and B fields is slightly attenuated, while the first anti-resonance becomes
sharper. The higher order resonances tend to decrease also. One question arises regarding the
correctness of the asymptotic antenna theory model, since the radiation loss has not been accounted
for in our calculations. Such effect, which manifests itself as a frequency-dependent resistance is

likely to affect the antenna performance in the neighborhood of the first resonance and anti-
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Figure 51. ELLIPTICUS: Time domain response to step function for the case of a source capacitance (a), (b) C=10-8F; (¢), (d) C=10-TF.

Calculation at x/a=0, y/a’=0.1,2/a=0,§{ =1.09,a/b=4.7x104, R =0.78n In(a/b). Source at v=90"with image at v=270".
Magnetic field has units of Siemens, electric field has units of Farad/meter.

Note: Peak values might not be calculated correctly due to high frequency truncation when performing inverse
Fourier transform.
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Figure 52. ELLIPTICUS: Time domain response to step function for the case of a source capacitance (a), (b) C=10-8F; (c), (d)C=10-TF.
Calculation at x/a=0, y/a'=0.1,z/a=0, E,oz 1.34, a/b=2x104, Roz 0.91 n, In(a/b). Source at v=90" with image at v=270".
Magnetic field has units of Siemens, electric field has units of Farad/meter.

Note: Peak values might not be calculated correctly due to high frequency truncation when performing inverse
Fourier transform,
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Figure 53. TORUS: Time domain response to step function for the case of a source capacitance (a), (b)) C=10-8F; (¢), (d) C=10-TF.
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Figure 54. ELLIPTICUS: 2-norm error calculated according to Eq. 108 (a) B,; (b) E,. Source is located at v =90°

with image at v=270°. ELLIPTICUS geometry: £,=1.09, a/b=4.Tx10%,
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yla = 0.2
y/a = 0.25

.= 0.78r1o ln[so/(2nb)].



06

(a) (b)

1m L J ] L] 1m |  § ]
. ala'=15 . ala'=15
o 0
C cC
C C
Q o
€ £
cC C
0 (8]
C C
o a
o 0'010.01 0.1 | 10 100 0'010.01 0.1 | 10 100

Figure 55. ELLIPTICUS: 2-norm error calculated according to Eq. 108 (a) B,; (b) E_. Source is located at v=90’
with image at v=270". ELLIPTICUS geometry: § =1.34,a/b= 2x104, R =0.91n, In[s /(2nb)].

-0.37 < x/a < 0.37,2/a=0and

yia' = 0.1
y/a' = 0.2
— y/a' = 0.25

F <
., 1

_w—-




16

100 1 1 1
ala' = 2.5
P
10
= B
)
o 3
o - -
Z
= I -
n
C\IN 1 - —
S
0.10 . 1 1
0.01 0.4 | 10 100
ka

Figure 56. B, of ELLIPTICUS (¢ = 1.09) at x/a=0.46, y/a' = 0.1, 2/a =0 as a function of the antenna loading resistance.
R, =nIn(s /(2nb)). Sourceatv= 90° with image at v=270°, a/b=4.7x10*. Magnetic field has units of Siemens.
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Figure 57. E of ELLIPTICUS (§ =1.09) at x/a=0.46, y/a'=0.1, z/a=0 as a function of the antenna loading resistance.
R, =n,In(s /(2nb)). Sourceat v= 90° with image at v=2170", a/b=4.7x10%. Electric field has units of Farad/meter.
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Figure 58. B, of ELLIPTICUS (§ =1.09) at x/a=0.46, y/a' = 0.1, z/a = 0 as a function of the antenna loading resistance. R,=n,In(s /(2ub)).
Source at v = 90" with } image at v=270°, a/b=102. Magnetic field has units of Siemens.

Note: Because a/b=10? asymptotic antenna theory breaks down when ka approaches 10
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resonance. [owever, accounting for this effect analytically is very difficult and this effort goes

beyond the scope of the present analysis.

Another limitation of the mode! rests in the assumption of a perfectly conducting ground. In reality
the ground has a finite conductivity, typically 6=103S/m and is also characterized by an electric
relative permittivity, ,=15. Toaccount for this effect approximately, at points directly below the
source, for instance at x/a=0, y/a’'=0.1,0.2, 0.25, zZa=0, one can find the total field as given by an
incident field, calculated assuming the antenna in free space with a §-gap source at v=90°, plus a
reflected term. Such term is found by assuming that the incident field at the ground is reflected as

though it were a plane wave. Considering the polarization of the fields it is obtained
EX0, y/a’,0)=E!™(0, y/a",0) + REI"(0, 0, 0)e'*Y (115)
HY@'(0, y/a',0)=HI"(0, y/a',0) - RH™(0,0, 0’ (118)

where Einc, Hiznc are calculated using Egs. 70 through 100 with a 6-gap source located at v=90°. The
Fresnel reflection coefficient R is given by

R= = (117)
[0}
1+Ve(l——)
r iwe

. Equations 115 and 116 with 117 were calculated for the cases €,=1.09and 1.34 and the results are

presented in Figs. 60 and 61. R_was that of Eq. 107. Therefore one can compare Figs. 60 and 61 to
Figs. 37 and 39. It is noted that the effect of the finite ground conductivity results in a smoother field
behavior. On the other hand at low frequency this model does not give, at these points, the same
results as those obtained for the perfectly conducting ground. The discrepancies might be attributed
to the approximation involved in the model described by Egs. 115, 116 and 117. Nevertheless, itis
stressed that the smoother field behavior, particularly at high frequency, is a true indication of the

performances of a system on a realistic ground.
To further analyze the effect of the antenna thickness on its performance, Figs. 62 and 63 present

the fields calculated at the point x/a=0. y/a’ = 0.1, zZa=0 for different values of the ratio a/b, for the

two elliptical geometries of concern here. It is noted that the field values are higher the lower the
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Source is at v=90" and finite conductivity of the goil is accounted for with 0=10"3 S/m, e =15.
ELLIPTICUS geometry: § =1.09, a/b=4.7x104 R =0.78 In[s /(2nb)]. Magnetic field has
units of Siemens, electric field has units of Farad/meter.
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Figure 61. Principal field components of ELLIPTICUS calculated at x/a=0, 2/a =0 and

y/la' = 0.1
y/a' = 0.2
—— yla' = 0.25

Source is at v=90" and finite conductivity of the soil is accounted for witho= 10° S/m, e, =15
ELLIPTICUS geometry: {_=1.34, a/b= 2x10%, R =0.91n_In(s /(2nb)). Magnetic field has
units of Siemens, electrie field has units of Fa rad/meter.
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Figure 62. ELLIPTICUS: Field calculations at x/a=0, y/a' =0.1, z/a = 0 for different values of
a/b. In above curves{ =1.09, R =0.781_In(a/b). Source is al v=90° with image at
v=270° Magnetic field has units of Siemens, electric field has units of Farad/meter.
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Figure 63. ELLIPTICUS: Field calculations at x/a=0, y/a' =0.1, 2/a = 0 for different values of
&/b. In abovecurves§ =1.34,R_=0.911 logls /(2ub). Source isat v=90° with imajge
at v=270° Magnetic field has units of Siemens, electric field has units of
Farad/meter.
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a/b ratio. This is due to the decreasing amplitude of y and of R which result in a current increase,
for a fixed voltage source. Apart from this, the trend of the fields is the same regardless of the a/b
ratio. A further investigation was performed on the dependence of the {ields on the antenna
eccentricity (1/8 ). Figures 64 and 65 illustrate our findings for seven different values of § . In both
figures the uppermost curve corresponds to a very high eccentricity, whereas the lowermost ocne
corresponds to the case of a nearly circular antenna. The plots clearly show that the flelds become
smoother the lower the eccentricity, except at high frequency. However, depending on the antenna
size, ka =100 might correspond to frequencies already beyond the range of interest for this antenna’s

applications.

2.4 DISTRIBUTED SQURCE

Within the approximation of a thin elliptical antenna whose dimensions are much bigger than that
of the source region, the issue of the distributed source can be handled in a totally analogous manner
to that already discussed for the TORUS. In particular the same results apply to this case also. The
reader can thus refer to Fig. 20 which illustrates the variation of the ratio E/H at the center asa
function of the source region. Although the effect of the curvature was not taken into account, in
any case the resulting variation is contained within a few percent of the value correspondent to the

5-gap generator case. Therefore, we shall not be furtherly concerned with this issue.

2.5 HIGH FREQUENCY CAPABILITIES

Recently people have become concerned with performing tests at increasingly higher frequencies.
Therefore, the ability to predict the performances of simulators at frequencies as high as possible is
useful both as alternative or in support of testing activities, such as test plan and data
interpretation. The following question has been addressed in this note: what is the maximum
frequency f_ at which the calculations presented here are still valid? The answer is: f, less than
c/(2mb). For thin antennas this limit could be in the hundreds of MHz. Beyond this point the
asymptotic antenna theory cannot be applied to this illuminator. Within this limit the theory
provides results which are in good agreement with those of Ref. 1 for the TORUS, and also check
satisfactorily with available measured data for the ELLIPTICUS. However one should bear in mind

that this model rests on the further following assumptions and approximations
- a perfectly conducting ground is used
- radiation loss is not accounted for

- specific source features (i.e. shape, balun} are not considered
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Figure64. B, of ELLIPTICUS of different eccentricities at x/a=0, y/a’=0.1, z/a=0. Source at v=90" with image at v=270".
R, given by curve G, in Fig. 22. Magnetic field has units of Siemens.
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Needless to say, it is difficult to quantify how much error these approximations give rise to, with
respect to the real situation. The impact of the finite ground conductivity on the fields was addressed
in Section 2.3 for a specific case. Once the limitations of applicability of the results obtained in this
note are understood, one could still ask the question: can this illuminator work at higher
frequencies? Because of the inability of our model to assess its performances at very high frequencies,
this is a difficult question to answer within the scope of the present analysis, and could be the subject

of further investigations.
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3.0 SUMMARY

The asymptotic antenna theory has been applied to the problem of determining the current and the
electromagnetic fields produced by thin loop antennas, of circular and elliptical geometries. Part 1 of )
this Note is concerned with the circular loop antenna. Section 1.1.1 discusses the limits of
applicability of the theory and the approximations involved. The current time-domain response to a
unit step function is evaluated in Sec. 1.1.2 at three different locations. Section 1.1.3 presents the
input impedance and the results are discussed and compared to the theoretical ones associated with a
slice generator. Section 1.1.4 discusses the fields at the center of the thin circular ioop, for the case
when the source is a §-gap generator. These are compared with the results contained in Ref. 1,
assuming the same loading resistance. Both frequency domain calculations as well as time domain
field responses to a unit step function excitation are presented. Section 1.1.5 addresses the
calculation of the fields anywhere in space. The expressions of all the field components are reported
explicitly. In Sec. 1.1.6 the 2-Norm error is defined and illustrated for two particular domains of
integration chosen as examples. Section 1.2 deals with the calculation of current and fields in the
case when the antenna is a half-TORUS located above a perfectly conducting ground, with a §-gap
source located at $=90°% Current, fields and 2-Norm error calculations are found in Secs. 1.2.1,1.2.2
and 1.2.3 respectively. Throughout Sec. 1.2 it was assumed that the loading resistance R was halfof
that used for the case of a complete loop in free space. For this last case a value was determined in
Ref. 1 such that the ratio E/I1 in the low frequency limit, at the cel;lterrdt; the anténna, was equal to the
free space intrinsic impedance, i.e. 377 Q. Section 1.3 evaluates the effect of the finite extent of the
source region on the ratio E/H at the center of a loop in free space. Since it was found that this effect
results in a change of only a couple of percent in the value of such ratio, no further field calculations
were carried out for other source locations and/or observation points. Part Il deals with the loop of
elliptical geometry. Using the same current calculated for the circular loop and adapted to the
elliptical geometry (Sections 2.1.1 and 2.1.2) the fields were calculated everywhere in space and the
explicit expressions are reported in Sec. 2.1.3. The question of what is the proper loading resistance to
achieve a ratio E/H =377 at some specified point and frequency range, depending on the source
location and configuration (single or double 8-gap generator) is addressed in Sec. 2.1.4. Assuminga
loading resistance obtained for the case of a single &-gap lacated at v= 0° which makes Eymzor

E /H_ =377 at the center, the fields at a few points and the 2-Norm errors were calculated for two
different elliptical geometries. Comparisons with the corresponding results far the circular loop are
discussed also. (Sections 2.1.4, 2.1.5 for single source, Sections 2.2.1, 2.2.2 for double source). Section
2.3 analyzes the dependence of the field behavior on parameters such as the loading resistance, the
thickness of the antenna, the eccentricity and the characteristics of the soil. In particular it was

found that ellipses of high eccentricity tend to produce smoother fields as a function of frequency.
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