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Impedances and Field Distributions for Symmetrical
Two Wire and Four Wire Transmission Line Simulators

1/Lt Carl E. Baum
 Air Force Weapons Labératory
Abstract
The impedances and field distributions of the symmetrical two wire and four
wire transmission lines are calculated. For a particular ratio of the cross

section dimensions, the four wire case has a very uniform field distribution
near the center.
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I. Introduction.

In the simulation of nuclear EMP fields, it is desirable to produce
comparable fields in the form of a TEM wave on a cylindrical transmission
line. Furthermore, it is often desired that there be a uniform electric
and magnetic field distribution over some part of the cross section of the
transmission line. Thus, part of a uniform free-space plane wave is approxi-

mated.

By convention, the z axis of a Cartesiam or cylindrical coordinate
system is taken as the directiom of propagation of the TEM wave. The
(x, y) or (r, ¢) plamne at constant z (the geometry being independent of z)
is the cross section of the transmission line. In a previous note we have
discussed two types of parallel plate transmission lines.l While these
are useful for producing reasonably uniform fields over a significant
fraction of the cross section enclosed by the conductors, there may be
other types of transmission lines with such a property. Although the
parallel plate structures are convenient to use in some cases, in others
they might be unnecessarily cumbersome, in particular for very large .
structures. In this note we consider some structures which are somewhat

sparser than the parallel plate type.

The transmission lines to be considered are the symmetrical two wire
and four wire structures. The cross sections of these transmission lines
are illustrated in figure 1. In each case there are two planes of symmetry,
given by x = 0 and y = 0, respectively. It is assumed that the structures
are far enough away from perturbing cbjects, such as the ground, to be
insignificantly affected by their presence. The circularly cylindrical
wires, of radius, c, are separated by a distance, 2b, between centers in
the y direction. In the four wire case (figure 1B}, the wires are located
at the corners of a rectangle with sides of length, 2a and 2b. For conven-
ience in the analysis, the positiomns have been normalized by dividing by bg:
The separation of infinitesimal line charges and/or currents, from which
the field distribution for the two wire transmission line is developed,
is 2bge The normalized positions arz denoted by the addition of a prime

over the letter.

Using a conformal transformarion we first investigate some of the
characteristics of a symmetrical two wire transmission line. The symmetrical
four wire transmission line is then developed by superimposing the field
distributions of two, two wire lines. .For a certain ratic of dimensions
(a particular a') the four wire structure can sustain a very uniform fieid
near the center of its cross section. For both types of %ransmission line
the impedance, field efficiencies (or effectireness in converting veoltage
and current to uniform electric and magnetic fields), and field distributioms
are discussed. The solutions for both the two wire and four wire trans-
mission lines also apply (when appropriate factors of two are included)
to transmission lines formed by replacing the wires at-negative y by a
sufficiently large conducting plane at y = 0 (& plane of symmetry).

1. Lt Carl E. Baum, Sensor and Simulation Note XXI, Impedaunces and
Field Distributions for Parallel Plate Transmission Line Simulators,

June 1966.
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A. SYMMETRICAL TWO WIRE TRANSMISSION LINE
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FIGURE I. NORMALIZED TRANSMISSION LINE GEOMETRIES
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1I. Symmetrical Two Wire Transmission Line.

Consider first the symmetrical two wire transmission line as in figure
1A. In normalized form we have the conformal transformation

w = In tﬁ;%- = 2jarccot (z) (1)
where

z = xtjy ' : (2)
and .

w = utjv ’ (3

This corresponds to equal and opposite line charges and/or currents at (x,y)
= (0,#1). The equipotentials and magnetic field lines are given by constant
u and the electric field lines by constant v. These are illustrated for
positive x and y in figure 2. This field plot can be extended to all four

quadrants by symmetry.

Expanding equation (1) gives for the potential functions

[ 2 2
R vt | ®
x +(1-y)
and
v = arctan —E—g§—-— (5)
X +y -1 ‘
Rewriting equation (1} as
z = cct{—iﬂ) = jcoth (Eq {6)
2 2
it can also be expanded as
_ __sin(v)
¥ = Cosn(u)-cos (v) (7)
and
inh
y = sinh(u) (8)

i cosh(u}-cos(v)

The contours of constant u and v ﬂfigure 2) are made from these last two
equations. SR

Considering curves of constant u, equation (4) gives

el [xl4y2oyil] = e % [xlyir2yHl] (9)

2. W. R. Smythe, Static and Dynamic‘Electricity, 2nd ed., 195G, p. 76.
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which can be rearranged as

x2+y2+l - 2y coth(u) =0 (10

or
x2+ (y - coth(u))2 = cschz(u) (11)

This last equation shows that the lines of constant u, equipotentials,

are circles. As such, conducting circular cylinders can be placed with
their surfaces at constant u without disturbing the field pattern.

These conductors are extended in the z direction. Consider two such

wires, each of normalized radius, c¢', and centered at the symmetrical posi-
tions given by (x,y) = (0,+l). These two conductors are at potentials,

T u The upper conducztor intersects the y axis (from equation (11)) at

y = coth(uo)_i.csch(uo) (12)
Thus, the normalized center of the conductor is

b' = coth{uy) (13)
and the normalized radius is given by

¢t = csch(uo) (14)

The ratio of dimensions is then

b b' _ . '
'; = -E' = cosn(uo) (15)

We can now relate b and ¢ to the position of an equivalent line charge
and/or current, b,. From equation (13)

b
- N cosh(ug) - P
’ By [coshz(uc)-l]l/2 {(%92_111/2 (16)
or
b = b, o (17)
In normalized form
p'% = 14ct? 18

Given b and ¢ we can calculate b_ to relate the symmetrical two wire
transmission line to the normalized coordinates. .

The pulse impedance, ZL, of the transmission-line is related to
the wave impedance, Z, by

Z. =f Z ' (19)



where f is a dimensionless geometric factor. This is given by

2uo
f = — 0
g 27 (20)
where 2u, is the difference in the potential function, u, between
the two wiresand 27 is the change in v for a path circling one wire.

Thus, using equation (15)
b
c

This and other parameters for the two wire case are plotted later along
with the corresponding parameters for the four wire case.

2 1/2
. .1 2 [2) - L [g C
£, = T arccosh |7 S -1 (21)

'
[

Next, let us relate the electric and magnetic fields to the voltages
and currents on the transmission line. Specifically, consider the electric
and magnetic fields at the origin of the coordinate system ((x,y) = (V,0))
around which the field distribution is symmetric. Considering first the
electric field, define an effective half-spacing, b,, relating tne potential
of the wires to the clectric field between the two wires. Then in normalized

form

1 1 du |

T =T 3. (22)

bl u, 9y {

i x=0
| 5=0

Since, for |y |« 1,

u | - 1%%—?} (23)

[x=0 M

and

dul 1 1

By Ity T 1-y (24)

x=0
then
u TE
1. o _ 1 b

bl ) 2 arccosh ot (25)

Or, R
b T V.22 Iy =
= -9 - b . b= /bl , .
bl = 3 arccosh icﬁ 5 ’ﬁrccosh Ec} (26)

oo

For the two wires at potentials, 4V, the electric field, E;, is in
the y direction and is just given by V/b;. This is just the result: for
the electric field near the center of a two conductor, parallel plate
transmission line of spacing, 2b,, with a width much greater than this
spacing. If the two wire case With a closest spacing of 2(b-c) and the

3. See reference 1.



same potentials is considered, however, the electric field in the center is
less. Thus, an electric field efficiency may be defined as

1/2
-1
f = b-c - 2

E bl arccosh (%J 27)

+1

o oo o

Then the electric field in the center of the two wire transmission line
is calculated from

AY AV

E ", T 26 e (28)
x=0
y=0

where AV is the potential between the wires.

Considering the magnetic field, define an effective half-width, a,,
for the transmission line relating the current in the wires to the magnetic
field between the two wires. Then, in normalized form

1Ly _l o
Zal’ C T 2w 3x 2w 3y j (29)
x= | x=0
y=0 fy=0
or
a' =7 (30)
or
ag=gb, = 7 b%c? (31)

We can calculate the magnetic field in the center of the two wire trans-
mission line from

= =
Hx o Zal (32)
x=(Q
y=Q
Where I is the current out of the upper wire and into the lower wire.

From equations (20), (22), and (29) we can relate these effective
distances by

b b, !
S ' : S (33)

t

1 1 &

The normalized field distribution is given by (using equations (4)
and (24)) ,

E 2%%=% T+ (34)
Yrel x“+(1+y) x“+(1-y)



and
-

E =rxu_1 X - X | (35)

Xoop 20%x 2 szﬂlﬂ)z x4+ (1~y)? ]

The normalized magnetic field is equal to the normalized electric field but

perpendicular to it. This normalized field is defimed so that E ‘is
rel

unity at the origin of the coordinates. We have the interesting special
cases along the coordinate axes :

{27 ‘
sl = {l-y; (36)
rel <=0 |
for lyi <1l and
[ ~ 2 -1 .
E, = ‘.l-i-x] (37)
rel =0
while E is zero along these axes. Equations (36) and (37) show the
rel :
symmetry of the field distribution in the center of the transmission
line. By symmetry the odd derivatives (first, third, etc.) of E with

rel
respect to x or y are zero at (x,y) = (0,0). This gives a somewhat uniform
field distribution there.

ITI. Symmetrical Four Wire Transmission Line.

Second, consider the four wire transmission line as in figure 1B.
In normalized form, construct a conformal transformation by taking the
field distribution for two identical two wire transmission lines which
are shifted + a' in the x direction. Thus, using equation (1), let

w'(z) = w(z+a') + w(z-a') (38)
where . ¢
w' = u'+jv’ 7 (39)

This is valid only for c¢' << a' and c¢' << 1. The finite size of, for
example, the wires at x = +a' distort the field distribution from the
wires at x = -a' in their immediate viecinity. For line charges and/or
currents, this type of superposition is exact. The equipotentials and
magnetic field lines are given by constant u' and the electric field -
lines by constant v'. These are illustrated for positive X and y in
figure 3 but can be extended to the remaining quadrants by symmetry.
In the figure a' is taken as /1. The reasons for this particular choice

3 ’ :
are discussed later. . -

Using equations (4), (5), and (38) gives for the potential functions
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in[;x+a )2+(l+y)2 + %_ 1n (x—a')2+(l+y)2 (40)
l}x+a') +(1-y) (x=a')"+(1~y)

and

1 (x=a')
! 2(xta ) + arctan 2(x-a (41)

v' = arctan
(x+a')2+y2-l (x-a')2+y2-l

These are used for the contours of constant u' and v' in figure 3.

To calculate the geometric factor, fg, in the transmission line

impedance we use
2u_ '
)

£ = (42)

g 4m
Here 2u_ ' is the difference in u between the wires for positive and negative
y as iliustrated in figure 1B and 47 is the change in v for a path circling
the two wires for either positive or negative y. Define
u' = upHug' (43)

where

2 2
o' = Lo, |Lxral) +(1+y) 44)
2 2 2 2
(x+af) +(1-y)

is the contribution from the left pair of wires. The contribution from
the right pair of wires is

2 .
(a2 )2 { ' (45)

u ' o= % in > ;
R | (xma) 5 a=y* |
Also define
' '
! = ' +

u uLo uRo (46)
where utb' and uRL' are evaluated for the wire centered at (x,y) = (a',b')

y . o’(:

from equations (44) and (45), respectively. Then equation (45) represents
the potential due to the charge on the right pair of wires which contributes
a potential on this wire. Evaluating the potential at (x,y) = (a',b'-c')
gives

1+ '-c'
Y, 7 -ln [ﬁb——;ﬂ 47

o
Note that uﬁl' could have been evaluated at any position of the wire
ou - . .

circumference with an equivalent result. Another form for this potential,
which comes from the two wire line (equation (15)), is )

]
up ' = arccosh (%q] = arccosh (%J (48)
o

1l



There is no single value of up
o

' on the surface of the upper right wire,

nowever; so we take an average by evaluating it at the center of the wire.

This gives

ha'2h(n'+1)2

1
w '=% 1n 1 (49)
L 2 sateptn)’ |
or
1 =l in La +("' bz 22 (50)
L, 2 42 +(r-W!b2—~2>
This approximation is vilid for c¢' << a' and ¢' << 1. Thus,
-~ b}
1 (B, 1 4a2+(b+ Vb2-c2)?
£ == arccosh (=] + = 1n (31)
g 2n el 2 2, . Vo2 2.2
4a"+(b~ ¥ b"=c™) J

This is plotted in figure 4 with a' as a parameter and compared with the
results for the two wire line (equation (21)).

Again relate the electric and magnetic fields at the center of the

transmission line to the voltages and currents.
tive half-spacing for the relationship between the wire potential
Then, in ncormalized form,

electric field.

as the effec-
and the

Define bl

i _ 1 3u
b.'"  u ' dy (52)
1 (o]
x=0
y=0
Since, from equations (44) through (46},
i 12, 2 :
u' = In [é_f;iliZlE_J (53)
bx=0 " (l-y)
and thus
v' N -
7 Tk (1Y) a'“+(1-y)
x=0
and
3u'| 4
sy = (55)
3y _ a’2+l
#»=0
fy=0
Then
1241 ( | b 1 ba'*+ (b +1) 2
b. ! 2 arccosh | —j] + = 1n 2 (56)
1 4 Z c 2 sarp'-)?
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V22 |_a? Bl . 1. |4a2e(ot Vb2-c?)?
bl = % 3 2 +llgrecosh |[— +-§ 1n 2 N (57)
b"-c 4a +(b—j/b -c“)

As with the symmetrical two wire transmission line, let us define an
electric field efficiency as

-1
- b \1/2 -1
4( -1 2 L, [aaPr e VpiectH?

b-c c a .

= = + 1 arccosh + =1
E b b 2 2 } 2"

.4az+(b— Vbz—cz)2

(58)

b
c

1

1

=+ 1 b -¢c
c

This is plotted in figure 5 with a' as a parameter and compared with the
results for the two wire line (equatiom (27)). Using equations (28) and
(58) the electric field may be related to the potential between the wires

(for positive and negative y).

Relating the current in the wires to the magnetic field at the center
of the coordinate system, again define an effective half-width, ;. In

normalized form

f
1 =1 W' = 1 au
2a," T 7 4 ax = %4n 3y (39)
x=0 x=0
y=0 b y=0
or
.
a;’ ='§ [af2+lj (60)
or

) .
a, = g Vpe-c2 2. 43 (61)

b -c

Note the similarity in form to equation (31) for the two wire line. Using
equations (32) and (61) we can relate the current and magnetic field. These
effective distances, bl and a,, for the four wire transmission line have

the same relationship &as the %wo wire case (equation (33)).

The normalized field distribution is given by (using equatioms (44),
-(45), and (55))

12 '
E - & 1 du

yrel 4 oy
_ a'%+l 14y l-y ity l-y
i 2 7t 2 7 2 2 * 2 2
(x+a') "+ (1+y) (xta') +(1-y) (x=a') +(1+y) (x=a")"+(1-y)
(62)

14
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and

\ a'2+l du'’
Y
rel
|2 t 1 1 t
a'"+1 x+a x+a X~a X-a
= 2 7" 2 2t 2 7" 2 7 (63
(xt+a") +(1+y) (x+a') "+(1-y) (x=a')} "+ (l+y) (x-a'") " +(1l-y)
Again E is equal to unity at the origin of the coordinates. Along the
rel
coordinate axes the normalized field distribution reduces to
LN B -y ]
Ey =73 2 2 T T2 2 (64)
rel <=0 a' R (1l+y) a +(lfy) )
and ) N
t
Ey - a 2+l 1 - + 1 5 ; (65)
rel y=0 1+{(xta') 1+(x-a')"/ :
Again E is zero along these axes. These normalized field distributions
rel

along the coordinate axes are plotted in figures 6 and 7 with a' as a
parameter and are compared with the results for the two wire transmission

line (equations (36) and (37)).

As with the two wire transmission line the field distribution for the
four wire case is symmetric about the x and y axes. The odd derivatives
of E with respect to x or y are zero at {(x,y} = (0,0) giving a somewhat
rel
uniform field distribution near the center of the coordinates. Conveniently,
however, the parameter, a', can be chosen to optimize the field distribu-
tion. Varying a' changes the geometry of the structure since for c¢' << 1,
a' is very nearly the ratio of the width to the height of the structure
(in the orientation of figure 1B). Figures 6 and 7 show the effect of
varying a' on the uniformity of the field distribution near the coordimate

origin.

To optimize the field distribution we can choose the value of a'.
There are various criteria by which an optimum field distribution can be
defined. The one to be discussed here involves the field distribution at
(x,y) = (0,0). Let us choose a' to make the second derivatives of E

‘ rel

with respect to x and y zero at the coordinace center.- “The odd derivatives
(first, third, etc.} are already zero by symmetry. Using equation (64)
for derivatives with respect to y gives ’

3E Y
Trel - a4 jl a'z-(lelE_ - 3’2—(1:Y)2 (66)
E I I PRSI
\
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and

3°E
y I SR T 22
ayrgl - - (a4l QﬂZ'LLSa 2<§+y) L. ui)[sa 2(; {67y
<=0 [a'"+(1+y)7] fa'"+(1-y)"]
Using equation (65) for derivatives with respect to x gives
3E, ' g‘
- ! _a!
.a_x:_e_l_ = - [a'241] xta sy, (68)
" ly=0 /[l+(x+a') 17 [1+(x-a") ]j
N
and ‘
32Ey ‘ [ 2 2 )
! . ' - _a! /
2rel - [a'2+1] jl 3(x+a )2 L+ 1-3(x-a )2 ; { (69)
Ix y=0 [ [1+(xta')”] [1+{x~a')"]
N
Then from equations (67) and (69)
BZEY ; aZEy )
- 1
rel | - - rel =2 1-3a (70)
3 2 8x2 [l+a'2]2
y x=0 x=0
y=0 y=0
These second derivatives are zero for ﬁhe sﬁecial case of
a' =0\ /1 ‘ (71)

For this special case the first three derivatives of the field distribution
with respect to x and y are zero at the origin of the coordinates. This
choice of dimensions for a uniform field distribution is similar to that
for Helmholtz coils which approximate a uniform magnetic field. The
normalized field distribution (equations (62) and (63)) for this special
case of the symmetrical four wire transmission line is plotted in figures

8 through 11. These figures show the extent in x and y of a given degree
of field uniformity.

V. Summary.

The symmetrical two wire and four wire transmission lines then have
a somewhat uniform field distribution in the center of the respective
structures. For the four wire case there is a particular ratio of the
structural dimensions which gives a particularly uniform field distribu-
tion in that the first three derivatives of the field with respect to x
and y, at the coordinate origin, are zero. .

These transmission lines have less of a structure of conducting
surfaces than do paragllel plate type of transmission lines cf similar
size. Thus, they may bave application for simulators cf the nuclear EMP
where such mechanical preblems may be important.

We would like to thank A2C Anthony Regal and Mr. John Vogel for the

plots contained in this note.
' i9



O : ! 1 ! : | 1 I \ } : | 3 1 1 i 1 |

0 A 2 3 4 . : 8 9 | 1.0
FIGURE 8. NORMALIZED E, FOR CONSTANT x FOR SYMMETRICAL FOUR WIRE TRANSMISSION

LINE: a'= 1/ y3 20

-
o
o
N



1.6

N

A

1

1

i

[ 2 . 4
FIGURE 9. NORMALIZED E, FOR CON
LINE : s

X

5

21

6

T 8
STANT y FOR SYMMETRICAL FOUR WIRE TRANSMISSION




-4 1 | 1 | ! | 1 | ! | ) ] ] | 1 | L } 1
0 1 2 3 4 y 5 6 7 8 9 1.0
. FIGURE 10. NORMALIZED E, FOR CONSTANT x FOR SYMMETRICAL FOUR WIRE TRANSMISSION
LINE: a'= ~/V3
2

2

!



y s | .

y = 2 -

-4} -]

- y= *\/1/3 —

=3 y =.6 -

- i

-6 vy 1 3 ] 1 | 1 | 1 i 1 i [ | 1 | 1 | 1

0 A .2 3 4 x 5 6 N .8 9 1.0

FIGURE .II. NORMALIZED Ey FOR CONSTANT y FOR SYMMETRICAL FOUR WIRE TRANSMISSION

LINE: d = +/4
23



