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Abstract

Simple engineering analytical formulas are obtained for the ATLAS I
fields. These formulas are derived by fitting the first TE surface wave
of the ATLAS I wood platform to the field mapping data. An ad hoc term
of the form t e °F is added to the analytical formulas to account for the
"notch" in the ATLAS I field.
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I. INTRODUCTION .,

The results of past studies on bounded-wave simulator field environ-
menfs in the working volume (Refs. Il through 9) are strictly applicable to
ALECS and ARES which do not have a wood stand. The wood stand (Figure 1)
is an integral part of the ATLAS I (Trestle) and its presence will not only
affect the field in the working volume, but also modify the responses of the
test object. The former effect is deemed more significant than the latter.
Numerical studies of the former effect have been accomplished in Reference 10.
However, analytical studies are extremely invaluable to an overall understanding

of the ATLAS I field enviromment in the working volume, and have never been

conducted.

The objective of this report is to develop a simple electromagnetic
model for the ATLAS T wood stand that will yield a simple engineering analytic
form to describe accurately the ATLAS I field.

In Section II, formulas will be developed for the field distributions
and dispersion relations of the TE surface-wave modes supported by dielectric
layers. Section III is devoted to deriving numerical values appropriate for .
the ATLAS I simulator based on the formulas in Section II. In Section IV the
numerical values will be compared with the ATLAS I field mapping data (Ref. 11)
and simple engineering analytical formulas for the ATLAS I gimulator fields '

will be obtained. Finally, in Section V a summary of important results will

be given.
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Figure 1. ATLAS I (Trestle) simulator with coordinate system indicated.



I1. DISPERSION RELATION

Given a three-layered medium (Figure 2), the problem at hand is to find
the propagation constant of the TE surface wave (HX, *Hz, Ey) . The direction
of propagation is along the z axis and there is no variation of the field in

the y direction. The time variation of exp(jwt) is assumed and suppressed.

To find the propagation constant one starts with Maxwell's equations

> o>
VXE = - jouH (1)
> > ,
UxH = juek , (2)

Since only ﬁy’ Ho, fiz are nonzero and 3/8y = 0, then

3E .
32 - o, ®
3E )
ax = Jmuon (%)
BHZ Bfix -
-E}?—--E‘=—JMEEY. (5)
from which one obtains
2
d 2 2\~
(—2+muoe—B)Ey=O (6)
dx
where )
éy = g 1B2 (7)

Equation 6 will be solved for each region shown in Figure 2.

1. Region O (e=e_ s x > a/2)

Assume there is no propagation in the x direction (decaying wave).

(0)

The solution of Equation 6 for E can be written in the following form:
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E = Ae
y
where .
2= 2 2 _ 2(2_ )
Ao g ko = ko g 1
2 2_.2,2
kO = w UOE » £ =8 /kO

The other field components are

S0 _ 8 =(0)
X wu Y
A
z wy_ oy

)
2. Region 1 (Elﬁ=€oslr’ -af2 < x < a/l2)

Equation 6 takes the form

2
d 2 2V =(1)
——+k—B>E =0
(dx2 L y

the solution of which is given by

~(1) _ [ . : -jBz
Ey =|B 51nh(klx) +'C cosh(llx) e
where
_ L2 2 _ .2
Ay = kg YE-eg s ky = koegp
and
ﬁ(l) 8 é(l)
X Wl
ﬁ(l) = - Al [B cosh (A x) + C sinh(A x) e-sz
A Jwu 1 1

16
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(10)

(11}

(12)

(13)

(14)

(15)

(16)
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x < -a/2)

.’ 3. Region 2 (€2= € E0p

. Equation 6‘ is 'of the form

I 2 .
(-‘-1—7+ kg - Bz)E(z) =0 (18)
dx y

the solution of which with no propagation in the -x direction is given by

" A,x ~ 3Bz

‘E‘.}(IZ) =De 2 (19)
where )
_ (2 2 .2
>‘2 = ko £ - EZ‘r s kz = ko€2r (20)
and :
AN ) (21)
p'd we Ty
' o]
_ -(2) Ay ()
" B = 4 =& (22)
z wu Y

ﬁ( ﬁ(l)
S A = = t = a (23
2@ TFA % *T )
A 2
21 22
._L_ = _L_ at X = - % (24)

M " 5@
Z z -

Substituting the field components given in Equations 8, 12, 14, 17, 19 and 22

into Equations 23 and 24 one obtains the dispersion relation

2
)\l + )\012

: 2
tanh“(X,a/2) + 2 ———FF+
1 kl(A2+Ao)

tanh(Ala/Z) +1=0 (25)

11



which can be written in the following form

C=a, (A, A
tanh(kla) = ——%—~2~——£L— (26)
Al+-KOA2
or
/2 ' /éz—-elr <‘/22“521‘ + gz-l )
tanh koa Ve —e, )= - - (27)

2r

Equation 27 is the final form for the dispersiom relation of the problem,

and will be solved for £ (= B/kol in the next section.

fslr-— gz in Equation 15 instead of

o] -

- One could have defined Al =k
2
Al = ko E7 -~ €yt Then the hyperbolic functions sinh, cosh and tanh
in Equations 14, 17, 25 and 26 could have become trigonometric functions

sin, cos and tan after making the following replacements

hahy
sinh (Alx) + j sin (Alx)
cosh (klx) - COS (klx)
tanh (Alx) -+ j tan (Alx)

12
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cases will be considefed, namely ¢

IIT. PROPAGATION CONSTANT AND WAVE IMPEDANCE

To find the normalized propagation constant £ for given values of

e, and koa one has to solve the dispersion Equation 27 numerically.

€
1r’ T2r
Before presenting the numerical solution, the ranges of solution for real g

.y s
upder the condition of €1r €op

> 1 are analyzed.
In the range where gz < 1, the left-hand side of Equation 27 is purely
imaginary, but the right-hand 51de of this equation is real. This means

that no roots are possible for g < l.

In the range where Eyp > g > 1, the left-hand side of Equation 27 is
still purely imaginary but the rlght_hand side of this equation is complex.
In order for this equation to have roots the real part of the right-hand
side must be equal to zero. A‘llttle algebra shows that this is not possible.

Thus, no roots exist within this range.

In the range where €1p > gz €9y both the left- and right-hand sides

of Equation 27 are purely imaginary. This means that real roots for  may

exist in this range.

'In the range where g €1p> the right-hand side of Equation 27 is

negative real and left-hand side is positive real. Hence, no roots are

possible in this range.

The above simple analysis shows that the real normalized propagation
constant § is limited to the range Velr >E > VSZr. In the following, two
or = 1.04 and €yp = 1.

1. €y = 1.04

From Referencel2, the dimensions and spacings of the wooden struts,
the effective dielectric constant of the region below the wood platform is

estimated to be about 1.04. Figure 3 shows £ of the first TE surface-wave mode

versus koa for €yp = 1.04 and €1p = 4,6,10.

A closer look of Figure 3 and Equation 27 reveals that no real £, i.e.,
no propagation, is possible until some critical value of'koa is reached. Let

this frequency be called the cutoff frequency of the surface wave.

13
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€ = Brko

Figure 3. The normalized propagation constant { of the first TE surface-

wave mode versus koa for €pp =1.04 and €1y = 4,6,10.
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Obviously, the cutoff frequency can be obtained from Equation 27 with

gz = €50 that is,

tanh (kc(:n)a m) =

which gives:

- A (n) ’=' (n-1)w + arctan </(€2r" l)/(elr‘_ azr) >

f
¢ 2ma¥Ye, - €
1r 2r

X 3><108

Hvere, f((:n) is the cutoff frequency of the nth mode of the surface wave. The

first three cutoff frequencies are given in Table 1.

TABLE 1. FIRST THREE CUTOFF FREQUENCIES

(n) (n)
n €1, Eor a(m) fc (MHz) kc a
1 4 1.04 1 3.2 ' 0.0673
" 2 A 1.04 1 90.4 1.8933
3 4 1 1.04 1 177.6 3.7193
Figuxfe 4rshowys the normalizéd cutoff frequency (kél)a) versus Eér for €1, = 4-10.
. 2. €op = 1

- When €y = 1, Equation 27 becomes, for modes with ﬁx(—x) = Ijlx(x),

tanh ( koay/g—z

/2>=-——52—‘/—'—1———
e,

1r

- €y (28)

and becomes, for modes with ﬁx(—x) = = IN{x(x)

' /2
coth (koa v 5;2 - elr/2> = - e =1

o o z
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The normalized propagation constant £ has real values under the cendition
€1r > 1 at any frequency. Figure 5 shows £ of the first TE surface-wave mode ‘l

versus koa for various €1 It clearly shows that there is no cutoff frequency

for €9y = 1.

In Figure 5, the £-value versus koa for €or ™ 1.04 is also given. It
is observed that the difference in g-values for 82r=l and €or = 1.04 is
generally negligible except at very small koa. Thus, only the simpler
results with €™ 1 will be used in the following discussion and for the

*
comparison with the field mapping data.

After obtaining £, the impedances EL;O) /ﬁ;o) and ﬁ;o) /I:I;O) can be

calculated from the following two equations:
ﬁ(o) W Z
_Y_N(O) - = - ] 2 (29
Hz koﬂ;z—l VEZ—l
E;O) muo ZO Z0
— = - = = : = e — (30)
i© B Blc, ~ Tt o

which are plotted in Figures 6 and 7 for ezr=l and various €1pt

In the next section, the above results will be used to compare with

the ATLAS I field mapping data.

%Since Table 1 shows that the first cutoff frequency is about 3.2 MHz for
E1p™ 4 and Eop = 1.04, one may question the validity of neglecting the
lower medium with €yp = 1.04. However, at this frequency, the effect of
the ground is mno longer negligible. When the ground is properly taken into

account, there will be no cutoff phenomenon.

18
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'IV. ANALYTICAL REPRESENTATION OF ATLAS 1 FIELDS

In this section, the first TE surface-wave mode described in the

.previous sections will be used to represent the field distributions within

the ATLAS I simulator.

In Section III, curves for the ratio of the electric to magnetic field

(i.e., the wave impedances) of the first TE surface wave versus frequency

= 4
1r ’
10, and a = 0.5, 1, 1.5m are plotted in Figures 8 and 9 in the log-log

were obtained. The impedance curves (without normalization) for ¢

scale. In the figures, the imﬁedances deduced from the ATLAS I field
mapping data (Ref. 171 are also given. Good agreements are observed
between the field mapping data and the-analytical results based on the
first TE surface-wave mode when €, 4 and a= 1. (Also, see the final
remark on pages 29 and 30).

In Figures 8 and 9, all the available field mapping data have been
used to obtain the impedances except for test points 17 and 21 whose
impedances are expected to be approximately equal to those of test points
13 and 22 (Figure 10). TFigure 10 shows all the test points that are in

Reference 11.

The good agreement shown in Figures 8 and 9 gives one the confidence
in using the first TE surface~wave mode for describing the ATLAS I fields.
The next step is the determination of the constant A in Equation 8. To
'Ehié;éndi the fiéi&vméépingzé;ta of tes? goint 2(a§e used. One typical
(0 (0

set of the frequency-domain curves of E and H at this test point

is'given in Figure 11, The fiequency dependences of E;O) and ﬁ§0> are
almost the same, as they should be according to Equation 11, for the
frequency range where koa < 0.2 (frequency < 10 MHz). The asymptotes
are drawn in Figure 11 in broken lines leading to the fecllowing form for

the constant A:

Z H
A = 00
(1+ stl)(l + stz) (31)

where

21



ZZ

103
B : A— TP |
B . o—= TP 2
. toward 4+ —= TP I3
> ! °2 ==> jerminator O —- TR 22
wedgele 22
8 | ATLAS T wood
-~ platform
> — ¥
“ L]
= -
© >
R[] |
[+ 2]
(&)
[ om
|e]
B
Q.
=
- — a=im
—— ——=— gz 0.5m
— — .—a=1.5m
102 |
o™ |

frequency (MHz)

~(0)|

. ~(0) i
Figure 8. Wave impedance IEy /Hx of the first TE surface-wave mode and those deduced from
the ATLAS I field mapping data (Ref. 11).




P

£e

toward )
terminator S~

irmpedance IE,°)/'§£°)I ()
o
[

ATLAS I wood
platform
102 1 ! SN R N T W

0.5m

¢ m— ——

frequency (MHz)

Figure 9. Wave impedance IE}EO) /Hio)l of the first TE surface-wave mode and those deduced from

the ATLAS I field mapping data (Ref. 11).




~ X-up

y-east -

z-northy
ij all

*1E.
(-8,-3,1l) Hy only
*9A (12,0,38)

E, only
i7{no H; 24 2 lall 23 Hy only 13 !no Hy
(5,30,38) (5,10,38) {5,0,38) (5,-10,38)

*oFe
(-8,0,38)

E 3
3E, ¥ z-toward terminator
(-8,0,68)

% Test points. where only time-domain peak values were given.

Figure 10. Test points for which ATLAS I field mapping data are given

in Reference 11l.

24



|O"4 T ¥ L IIrIUl 1 LI l#Tlll L3 L)

t lllllll

LI | llTllll

S
o0

LR | lllllll

O ECYZ |

T Vv

[ | lluLl 1 llnnl

07 QT
s (0) 3
: e [ ()] \S
08— — 1zl ,
4 % — — — agsymptotes 3
=\ 7
q’ 10 ! A S 1 b0y eaal TR S B B |
0. : | [0) 100

frequency (MH2)

Figure 11. TFrequency-domain curves of measured ﬁ;o) and ﬁ(o) at

x
test point 2 and their asymptotes (Ref. 11).

@



T = 6x10 Anp/ (m-liz) "
o : L
2‘
t, = 3><10_7sec
1

t, = 8 X10-9sec

In obtaining Equation 31, one has assumed kox==0 at test point 2, and

ignored the 'motch" effect.

From Equations 8, 11 and 31, the time-domain Eéo)(t) and Hio)(t) at

. test point 2 are

| ‘ 7 i . -t/t -t/t
H}({O)(t) - Eéo)(t)/zo - - q—f—’g <e I_ e 2) (32)

which is plotted in Figure 12. The agreement with field mapping data at late
times is very excellent. But there is considerable difference at early

times. The difference is attributable to the notch existing in the pulser
voltages. To account for the notch effect, one may subtract a term from '
Equation 32. From Figure 11 one can see that in the frequency domain the

term to be subtracted should behave as [l/szl when |s| is large, and should

have a double pole at = 3 MHz. Such a term has a time variation of the

form t exp(—t/to) with t, = 6><10_85ec. Thus, one has

"H [ ~t/t -t/t -t/t
H}({O)(t) - - E;O)(t)lzo= —-t—;_"—tz— <e S 0) (33)

where the coefficient 1. 8/t is chosen in such a way that the best agreement
between Equation 33 and the field mapplng curve can be obtained (except for

the pre-pulse region, see Figure 12).

From Equations 12 and 33 the z-component of the ATLAS I magnetic field
éan also be estimated. Generally, it will involve solving Equations 28 and 9
to obtain Ao as a function of w and subsequently inverting complicated
Fourier (or Laplace) integral. However, if one is only interested in the
late-time behavior of H(O)(t) where the high-frequency part of the spectrum
is not important, a simple expression for H( )(t) can be obtained in the .

following manner: From Equation 12, one has

26
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- A A .
Hio)(m) =~ 3 “*25E§O)(m) = j —9-H§O)(w)

W g

m(elr— Da .(0)

= 4 ———?ﬂ;—————'HX (w) (k0a<< 1 {34)
Thus,
(e 1)a
@ ot 3 (O
Hz () 2c st B ()
(e,_-Da H ~-t/t -t/t -t/t
= i —— L. 1.1, 2+l‘——(l—’—c-—)e °l (35)
2; (1:l -t2) ty ty t, t,

(for t> tl)

Equation 35 is plotted in Figure 13 where a typical field mapping curve
is superimposed. The estimated Hio)(t) resembles the field mapping curve,
although relatively low in magnitude. The under-estimate of the late—time

Hio)(t)—value is probably due to the following reasons:

1. The sensor used in the field mapping test did not have an accurate
response at low frequencies, or, more specifically, gave an over-

estimate at the low-frequency region (see Figure 9).

2. The fact that the wood platform is of finite extent is not taken

into account in the theory.

A final remark should be made about Equations 32, 33 and 35. They
are derived for a field point not too high above the wooden platform. Thus,
they are valid only at field.points where on< 1 for the important spectrum
range. From Figure 7, it is observed that koa = 0,06 for koa = 0.2 and
€1p = 4. This means that for a = lm and frequency = 10 MHz, the decaying

distance D, defined by AOD = 1 is approximately given by
D = 16.5 meters . (36)

‘Also, D is prqportional to (fre,qxlericy)_2 at lower frequencies. It is
therefore reasonable to conclude that Equations 32, 33 and 35 are satis-

factory representations for the ATLAS I fields up to as high as 15 meters

above the wooden platform.
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Although €10 7 4 and a = Im have been selected for the above analysis,

other values that show good agreements in Figures 8 and 9 can be used as

1r = 6, a = 0.5m). The reason for selecting €1 = 4 and a = 1m

is that they are closer to the actual situation. However, no matter what

well (e.g., €

values are used, Equations 32, 33 and 35 still hold true while the D-values

(i.e., Equation 36) will vary somewhat.
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V. SUMMARY

, In this report, the following simple analytical expressions have been

obtained for the fields above the wood piatfofm of the ATLAS I simulator:

_ ' 6 8 7
E}EO)(C) =7.5x104(e-3.3x10 t_~1.2x10°t 4 007 ~1.6x10 t> v/m

6 8 | 7
(~3-30% | ~1.2x10% 07, -1.6x107¢

B(O) (£) =2.5% 1074 ( ) webers/m2
x .

‘ 6 8 7
Béo) (t) =4,2% 10_6 ( e--3'3>(lo t_ 36e-l'2xlo t +9(1 - 1.6Xl07t)e-l'6xlo t>webers/m2

where Béo) (t) is valid only for t > 3x 10—7sec. These fields can be compared

with the 'criteria" EMP fields given by (Ref. 13)

' 6 8
E(t) 5.24><104(em4x10 £ e—5><lO t> V/m

i

' 6 , 8
e ' B(t) 3—4 x 10 t' _ e—s x 10t

1.75x% 10i4,< >webers/m2

The term that corresponds to the "notch'" has a double peak on .the negative

‘real axis of the s-plane. This double pole lies between the two single poles

that correspond to the double exponentials.
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