
-. ,. .,.-..

,.%E
Sensor,and Simulation Notes

Note 259i

December 1977

. .

Transient Response of a Loaded Horizontal Antenna
Over Lossy Ground with Application to EMP Simulators

Y. Rahmat-Samii,
P. Parhami
l?.Mfttra

FORPUBLiCMl@
University of Illinois
Urbana, Illinois 61801 ~L/ ?04 ~=’fle:”y~

.
.. - ..

Abstract

A novel technique is developed for evaluating the Sommerfeld-

type integrals encountered when analyzing a horizontal current

element over 10SSY ground. The integration results are compared

with their asymptotic,values, making it possible to efficiently

compute the currents-of a horizontal antenna over lossy ground.

The frequency domain results are compared with those available in

the literature, and the Fast Fourier Transform (FFT) technique is

used for obtaining the current transient response due to an input

pulse excitation. The effect of loading is also investigated for

reducing the undesirable ringing behavior present in the late time

antenna current. Extensive numerical results are computed and .

repeated by using an efficient user oriented computer program

developed for this work.
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type integrals encountered when analyzing a horizontal current

9) element over lossy ground. The integration results are compared

with their asymptotic values, making it possible to efficiently
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1. INTRODUCTION

An electromagneticpulse (EMF) generated by a nuclear burst typically

has a fast rise time (%10 nsecs), a slow decay time (%100 nsecs) and a high

peak amplitude (on the order of several kilovolts per meter) [1]. Such a

pulse has deleterious effects on most systems, such as transmission lines,

transmittingand receiving installations,and missiles, causing temporary

or permanent damage. In recent years, several designs have been proposed

and built for EMT testing of vulnerable systems. Simulators may be clas-

sified as open or closed types depending on the nature of propagation

mechanism they support. For example, a parallel-plate structure is con-

sidered as a closed simulator while a horizontal antenna is referred to as

an open simu~ator.

A need for an accurate analysis of these simulators is apparent as

their construction is very expensive. In this report, we investigate the

performance of an open simulator which is composed of a horizontal antenna

over lossy ground. The radiated field of this structure behaves differ-

ently from the driving pulse mainly because of the multiple reflections

occurring at the two ends of the antenna, which, in turn, cause the

undesirable ringing phenomenon in the time domain (transient)response.

This ringing effect may be suppressed by employing an extremely long

antenna in which the source current pulse becomes negligibly small as it

travels to the end points. Such a long simulator has in fact been built

and has a length of approximately 300 meters [1]. However, lengthening

the size of the wire is not the only way to reduce the ringing effect. In

this report we investigate an alternate approach based on appropriately

loading the antenna to suppress the ringing effect. _This approach has the

merit of keepi~g the antenna size to reasonable length.

o.
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The radiation

in free space have

characteristicsof loaded and unloaded linear antennas

been studied in great detail in both the frequency and

time domains. A recent book edited by Felsen [2] covers these topics in

depth, and contains pertinent references. Frequency domain responses of

linear antennas over..lo.ssyground have originally been investigated by

Miller, et al. [3,4] and more recently by others [5,6]. The basic diffi-.

culty observed in incorporating the ground effects is the accurate and effi-

.
cient evaluation of Sommerfeld-type integrals. These integrals appear in

the exact solution of the radiateclfield of a current element over ground,

and their original forms were first obtained by Sommerfeld [7] almo.5t70

years ago. Since that time, these integrals have been studied extensively

and approximations for their evaluation have been developed for them by

many authors [8-13]. Since the integral equation for the antenna current

requires the rep-eatedcomputation of these Sommerfeld integrals, an effi-

cient and accurate numerical method for their evaluation would be extremely

useful. Moreover, one must repeat:the frequency domain calculation for

many frequencies in the process of=constructing the time domain (transient)

response making the computation even more time-consuming. To the best of

our kndwledge a thorough study of the time domain responses of antennas
,

over lossy (imperfect)ground has not yet been reported in the literature.

The present work is an attempt to address the aforementioned problem,

i.e., to investigate the transient response of a loaded horizontal antenna

over lossy ground. Initially, in Section 2, we derive the vector potentials

due to a horizontal current element in terms of Sommerfeld-type integrals.

A novel and efficient procedure is then outlined in Section 3 for numerically

o
evaluating these integrals. Also included in this section is the asymptotic

evaluation of the integrals in terms of Fresnel reflection coefficients..

7



Extensive

developed

numerical

results are presented to justify the accuracy of the technique

along with a comparison between the asymptotic solution and the

evaluation of the integrals. Section 4 develops an integral

equation formula~ion for the antenna current in the frequency domain and

discusses the numerical procedure used to solve this integral equation,

based on the application of the method of moments and the finite difference .

technique. The results obtained are compared with the available data to
.

verify the accuracy of the method. In the final section, the Fast Fourier

Transform (FFT) algorithm is used to convert the frequency domain results

into the time domain responses. Extensive numerical results are presented

for the transient current induced on both the loaded and unloaded antennas

placed over a Iossy ground. Also included is Appendix 111, a self-contained

report which investigates the loading characteristicsof linear antennas

over lossy ground.

,
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2. DERIVATION OF t FOR A HORIZONTAL CURRENT ELEMENT

The geometry of–a current element-Pi over an imperfect ground is

depicted in Figure 1. Regions 1 and 2 are characterizedby

(E1 = &lr&o,Pl= Po) and (E2 = E2r&o,P2 = Uo), respectively,where co
and

P. are free-space parameters. The current element is in the x-direction

(horizontal)and its coordinates are (O,O,h). The geometrical image of PI

with respect to the interface is designated by P2, and the distances of

Pl_and P2 to the observation point O, with coordinates (x,Y,z), are

labelled as PIO = rl and P20 = E2, respectively. Our objective is to

determine‘thefield radiated by Pl”at the ob-servationpoint O in the

presence of the imperfect ground.

Starting with Maxwell’s equation and the suppressed time convention

exp(jut), viz.,

one may define the vector potential ~ as

Introduction of-a scalar potential O from

V’$=t - LAoco+i

and application of–the Lorentz gauge

(2.2)

(2.3)

v“ 7i- @=o, (2.4)

allows one to finally express Maxwell-!sequation as —

9
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(V2 +k2) fi= -(jw&Oer)-l ~ (2.5)

(2.6)

-- ~= ~“v.”+k2)fi (2.7)

o 0 ~. The preceding ;esults are general and valid for bothwhere k2 = ti2ps c

regions 1 and 2. To solve the vector differential equation (2.5), one

determines the proper boundary conditions by simply enforcing the conti-

nuity of the-tangential~ and A fields at the interface resulting in

& i-$x+% =%-I
az IZ ax 2X

+%
az 22

‘lx = ‘n2x

n
lZ = ‘n2.z

(2.8a)

(2.8b)

(2.8c)

(2.8d)

‘here K = ‘2r1zlr”
The unique physical solut-ionis then obtained by

imposing the radiation condition.

For the horizontal current element PI with moment I dx’, the source

current ~ may be set as

3,=;1 dx’ 6(X) 6(Y) 6(Z - h) (2.9)

where h is the height of the currenrelement from the interface. As

originally observed’by Sommerfeld [7 ], two components of the Hertz

p-otentialfiare needed for a complete description of the

current element problem. This, however, is not the case

current element, in which only one component is needed.

horizontal

for the vertical

The two components

o are chosen to be in the & and ; directions, i.e., along the current element.——

11



and along the normal to the interface, and are designated as follows

ii = I-Q + Q (2.10)

2,1 Solution in the Transform Domain

To determine lIxand Hz from (2.5) and (2.8), respectively, the Fourier

transform technique is used. This technique has been employed extensively
.

in the literature for solving infinite-interface-typeproblems. Here, the .

technique is only briefly discussed and the final results are presented.

The two-dimensionalFourier transform pair is defined as

co

fi= H fiexp[-j(ax + 13y)]dx dy {2.lla)
-m

m

if=+ H ifexp[j(ax + fly)]da dd
41T -~

(2.llb)

The transform of (2.5), in terms of its components, takes the following

forms in regions 1 and 2, viz.,

.

{

-10 d(z-h)
.

0

and

(2.12)
4

(2.13)

where yi (i = 1,2) and 10 have been defined as

12
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{

‘fi
= [~2 _a2 _ , ~m(yi) . ()#11/2

i —

= (jucoslr)
-1

10
Idx’

where k2 = U2UosirE0.
i .

The general solution of (2.12) and (2.13) which satisfies the

radiation condition may be expressed as

(2,14)

(2.15)

-.*

{) {
n

lx N}10 exp(-jyl]z-h/)/(2jyl)- A“
lx

. + exp(-jylz),
;17 o

‘lZ

{)n2x

’22

Z>o (2.16)—

—

exp(jy2z)

where’A’s are constant coefficients in terms of u and ~.

transform otthe boundary condition (2.8) is

o -K

1 0

a
-%

o

-K

o

ii
lx

’12

n
2x

i
2Z

. 0

Z<() (2.17)—

The Fourier

(2.18)

13



Substituting (2.16) and (2.17) into (2.18) and solving the resulting equation o_

for A’s, one finally arrives at

A=IO
lx

A=IO
lZ

A =10
2x

A =1
22 0

‘1-Y2
2jy1 (Y1+Y2)

exp(-jylh)

a(K-1)
exp(-jylh)

j(Y1+Y2) (KYl+Y2)

1

jK(Y1+Y2)
exp(-jylh)

Ci (K-l)
exp(-jylh) .

jK(yl-@2) (KY1+Y2)

Having obtained the A’s, one can then determine’the ~’s from (2.16) and

(2.17) and find

.
10

o
J

. exp[-jyl(z+h)]

‘xp(-jylI’2-hl)+ 10 j(y~+y2)

(2.19a)

(2.19b)
.

(2.19c)

(2.19d)

(2.20)

o

and

I

(’‘2X J 1

{)

1

)

1
exp(-jylh) exp(jY2z).

‘\-
= 10 j~(yl+yz)

i. ;2Z “

a(K-1)
KY,+Yq

(2.21)

AL

It is worth mentioning that the counterparts of (2.20) and (2.21) can

easily be obtained for a vertical current element. Using (2.20) and (2.21)

in the transform versions of (2.6) and (2.7), one finds

14
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1

and

Ex”

i
Y

E.
z

Hx

H
Y

Hz

= jwocr

j$ -&

22.
(k2+ — )

as

i’
x

o

.fl
z’

.

c1

a
.az

-j6

a
-z

o

ja

jl

-j (

o

‘ii
x

o

ilz

2.2 Space-Domain Integral Representations

Since in this work the primary interest lies in the evaluation of

(2.23:}

the fields in region 1, attention is therefore focused on the determination

of space-domain integral representations for.II
lx

and R
lZ“

These integral

representations take many different forms and a comprehensive discussion is

given in [ 9]. In this paper an attempt is made to use the form which has

the contributions from the incident and reflected parts in an explicit manner.

To obtain this form, one first splits IIlxfrom (2.20)”into

-.
II
lx

= rr;x+ Ii:x
‘r
n
lx

= ir + ir
m lx o lx

(2.24:1)

(2.24b)



where
~.

1i’?;x=I —
O 2jy1 ~xp(-jyllz-ht)

and then redefines II
12 as

. ‘r
n

’12 = 12 “

(2.25a)

.
(2.25b)

(2.26)

-.
In the preceding equations, II~xmay be interpreted as the source contribution 0“
when no ground is present, ~~~x is the itiagecontributionwhen the ground is

“r ‘ra perfect conductor, and finally
Onlx

and E
12

are the correction terms

for the imperfect ground.

The objective is to determine the inverse Fourier transforms of

~’s by using (2.llb). By substituting ~;~x from (2.25b) into (2.llb) and c

introducing the following spherical-type change of variables:

[

-X=r
2
sine

2
Cos$ = p

2 2 c0s~2

{
Y = r2 sine2 sin$2 = P2 .si@2

.
(2.27)

(z+h = r
2
Cose =Z

22

(

c1= -h Cos< --
(2.28)

● �

16



one arrives at

(2.2.9)

1

with the

equation

requirement–tha&Im
F’””

In deriving the preceding

the fo-llowingidentity was used, viz.,

(2.30)cos(n~)Jn(z) = ~n ~n [-jzcos(~’-~)cos(n~”)d~’
–IT

th
n -order Bessel function. Expression

closed form to yield

-jk1r2

o
where J is the

n

integrated in a

(2.29) can be

(2.25a),

(2.31)lTL =-I e .-
W-lx 0 4Tr2 “

Similarly”,“theinverse Fourier transform of IIL
lx‘

defined in can

be

or

In

constructed to give

(2.32)

. —
-jklrl

~i - e
“lx ‘-10 47fr ‘-”-””

1
(2.33)

(2.33) and (2;31), (rl,til,$l)“and(r2,02~@2)are the spherical coordinates

17



erected “atthe source and its image point , respectively. The geometry of

these coordinates is shown in Figure ~..

Although, as was expected, il~xand lTr could be expressed in a~ lx
r

closed form, this 5s not che case for #~x and IIlz. Substituting ~;~x from

(2.25b) into (2.llb) and incorporating the transformationsgiven in (2.27)

and (2.28) along with (2.30), one finally arrives at

210 ~ -jz2 ~
r

Onlx =—J’4Ttj ~
JO(p21.)e d~

?k~-A2 + _

Similarly, after some manipulations, it is found that

(2.34)

.

(’2.35)

n-~ 0and‘%’W- 0‘“’d” ‘_where in (2.34) and (2.35) relations Im k
,

,Integral,representations(2.34) and (2.35) are the well-known Sommerfeld’s

integrals for a lossy ground [7]. Attempts have been made to employ

these equations in numerical evaluations.,and some degree of success has

been achievecj[3-6], [10]. IrIthis work, however, other forms of these

integrals that appear to be numerically more tractable are used.

Incorporating the well-known identities between Bessel and Hankel

fun-ctions,viz., o

18



[H(l)Ji(x) = ; i (x) + H‘2) (x)]
i ; i = 0,1 (2.36a)

J1)
(x) = -F& (-x)

0..
(2.36b)

(-x) (2.36c)

—
. into (2.34) and (2.35),one arrives at

-jz2 ‘,-

‘2)(p2A)e
‘o

r 10 “m
Onlx =—[’4mj - Jq-7+vq7

L
da (:!.37)

and

Jz)
1 L

.LL
.e d~ . (2.38)

Section 3, andThe behavior of (2.37) and (2.38) at P2 = O is discussed in

it is shown that these integrals are indeed bounded at Pv = O, which can

be observed directly from (2.34) and (2,35).

To recast (2.37) and (2.38) to yet another form which is of

change of variable 1sconsiderable interest in this work, th-e—following
— — .—

introduced.:

A=klsinc (2,39)

19



Substituting (2.39) into (2.37) and (2..38)and simplifying the result, one

finally arrives at

-jk1z2Cosg .

me dc (2.40)

and

-jk1z2cos&
d~ , (2.41)● H~2)(k1p2 sin~)8 o

where the

following

integration path ~ is depicted in Fig. 2,and on this path the

conditions are enforced

Im(cos&) < 0 ; Ire(-) ~ O .— (2.42)
r

Some discussions on the pro_perinterpretationof the location of poles

and branch cuts of the integrands of (2.41) and (2.42) in the proper

Riemann sheet are given in Section 3. Since in constructing the integral

equation for the horizontal antenna problem the knowledge of A IIr is
2Z 12

important, one evaluates this term using (2.41) along with the fact that

z’) = z + h to obtain

20
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–jk1z2 cos.g
d< . (2.43)c H(2~k1p2 sin&) e

1 #

In the following sectioti,asymptotic and numerical evaluations of (2.40-43)

are presented.

.-

●

. “
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o
3. EVALUATION OF THE INTEGRALS

In this section, an analysis is given for asymptotic and numerical

evaluation of–the integrals obtained in the preceding sections. In

‘particular,a novel numerical procedure is presented for the evalution

of–(2.40) - (2.43). A comparison

numerical results to evaluate the

3.1 Asymptotic Evaluation

is then made between asymptotic and

domain of their validities.

The asymptotic expansion of (2.40) is obtained by employing the

results summarized in Appendix 1. Using (2.27) in (2.40),one may express

it as

r _ lokl
I

-jklr2cos(g-62)

Onlx 4rj ~ P(g) e d( (3.1)

where

H(2)(klr2 sin e2P(g) =
sin ~ cos ~

o
sin g)

Cos g + L - sin2.$

jk1r2sin62sinc
● e . (3.2)

Let 62 = Oc designate a critical angle forwhich the steepest descent path

(SDP) of (3.1) isnear the branch points of 4 - sin2 g (see Section 3.2).

For the situation in which k1r2 is large and the domain of 0z belongs to

o < 02 < e one may use the results given in Appendix I to determine the
c’

dominant asymptotic expression of (3.1). In this Appendix the result of

the higher-order asymptotic terms is included along with a discussion

regarding the behavior of the asymptotic solution at—62 = O. The final

result for the dominant term, which is commonly referred to as the

Fresnel reflection result, takes the following form

23



2 cos e2 -jk1r2
r

Onlx % 10

Cos ‘2 ‘ m “*’2 “

(3.3)

Similarly, one can determine the asymptotic expansion of H:z and & H;z

from (2.41) and (2.43), respectively, to arrive at

r. --2---
Cos % - K – sin

II;z% 21 2 02
~ cos $2 sin @

2
COS 8

2 9
K COS 6 +

2 /
K – sin’ 0

2

and

The preceding results are valid when k1r2 is large and 82 <

-jk1r2
e
4m2

(3.4)

(3.5)

ec < Tr/2.

For cases in which klrz is sufficiently large, one nay extend the domain

of (3.2) - (3.4) to 62 < T/2 by noting that the contribution to the

integral from the portion of the path near the branch points is of the

second order [14].

3.2 Numerical Evaluation

A survey in the literature reveals that numerous attempts have been

concentrated on the numerical evaluation of
r r

Onlx
and Ii

lZ”
Most of the

available techniques are based on the application of Sommerfeld’s integral$,

given in (2.34) and (2.35). It is noted that the integrand of these

integrals is highly oscillatory for large p2 or Z2, and, therefore, special

consideration must be given for an accurate evaluation of the integrals.

In order to avoid the inaccuracy observed in the results when the pole of

the integrand of (2.35) approaches the real axis (integrationpath), some

authors [3,4,6] have deformed this pa~h to one which first travels along the

imaginary axis and then runs parallel to the real axis. Though on this new

path the effect of the pole singularity will be decreased, nevertheless,

.

0
the decay raLe and the oscillatory nature of the integrand would not be
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changed appreciably. It is worth

problem, one has to evaluate #~x

mentioning that for

and R~z repeatedly.

solving the antenna

Therefore, application

of–an accurate and efficient numerical technique is indeed of great

importances

‘In this section a novel numerical technique is presented for

determining ~H~x and H:z. in a“highly accurate and

technique is also advantageous to other available

easily related

In contrast to

their integral

respectively.

At first,

to the asymptotic results given in

r a
other techniques,

Onlx’ ‘;Z
and —

az

representations as given in (2.40),

efficient manner. This

techniques as it can be

the previous section.

r
‘lZ

are evaluated using

(2.41) and (2.43),

Here,
r

computational details are given only for
OHIX”

~ll~xfrom (2.40) is expressed in the form given in.(3.1),

.=
then the integration path 1’“isdeformed to the steepest descent path (SDP)

passing through t = 8L. Since in.thi.s.

against intercepting any of the branch

OE these branch points is derived as

deformation one.has to

/points of K - sin2 t,

guard

the location

(3.6)

where, as before, K = c2r’&lr” Taking region 1 as air and r~gion 2 as a

lossy ground with a relative dielectric constant-c and conductivity o,
$3

one finds .-

(3.7)

where o and f are in rnho/rn_aydMHz, respectivel~~ It is clearly evident tha~:

<b is a function of frequency. For different sets of (gg,o) the location of

the ~b’s are plotted versus frequency in Fig. 3. In evaluating (2.41)

and (2.43) care must also be exercised in locating the poles of their
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o

integrands. These poles are the roots of K cos g + - =0, and

a simple calculation allows one to express-lhem as
,,

The location of C ‘s versus
P

shown in Fig. 4 .

Assuming that no poles

the integrat-ionpath I’into

frequency for different choices of (Eg,U) are

or branch points are intercepted, one deforms

the s~eepest des”centpath (SDP) defined by

Re[cos (g - 6.)] = 1. On this path, the following change of variable is
L

introduced

cos (5 - 02) = 1 - jt2

allowing one to finally express (3.1) as

where
‘“ c - 62

Q(t) = P(t) sec
2

(3.9)

(3.10a)

(3.10b)

in which C is replaced by

[(&=t~+jLn
~

t2+j+lt/[2+2j +e2; t :0 . (3.11)

Expression (3.11) is used to construct a universal plot for steepest

descent path (SDP) In the complex plane & with e2 as a parameter.. This

plot is depicted in Fig. 5 , and can be used in conjunction with Figs. 3$4

to d_etermine_the_criticalangle_ec, beyond which (3.10a) would not-hold

in general. For e
2
= O, P(g) from (3.2) diverges and therefore, (3.10a)

is not~defined. To circumvent the difficulty, one can use the result of
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Appendix ll-to-r~ite .(3.10a)

P(g) as

P(g) =
sin & cos &

Cos & + =

in a more suitable fashion by employing

4Ln(klr2 sin ~} , for62=0. (3.12)
‘n

Clearly for ez = O and ~ = O, one obtains P(g) = O. This fact can be

used when evaluating the integrand of (3.10a) for 62 = O and t = O.

Similarly, one can construct integral representationsin the form

(3.10a) for both ll~zand~II~z. Using (2.41) and (2.43), one finds that

where

jk1r2sin02sin~ <-62
. H$2)(k1r2 sin 92 sin ~) e sec

2’

(3.13b)

and C is replaced with t from (3.11). Though at E12= O, the preceding

expression diverges, nevertheless, the result of the integration is

bounded and as observed from (2.35) would be zero.

For a sufficiently large klrz, integrations (3.10a) and (3.13b) can

be asymptotically evaluated to give the.results obtained in Section 3.1.

For other values of klrz one has to evaluate these integrals numerically.

In order to demonstrate the accuracy achieved in the numerical integration,

—
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the integrands of the aforementioned integrals are plotted as a function

of t for different values of k r and t32in Figs. 6 - 17.
1.2

For this

evaluation, a newly developed routine for the computation of the Hankel

functions with complex argument was used [15]. The plots of the integrands

clearly demonstrate that these integrands decay very rapidly with

relatively smooth behavior. Due to these observations, integrations

(3.lla) and (3.13a) can be evaluated very accurately and efficiently by

employing the Gaussian quadrature integration algorithm. Also in

Figs. 18 - 1.9, the integration results are compared with the corresponding

asymptotic values for a wide_raqge

difference error between the exact

vector potentials vanishes rapidly

_offrequencies. Note that–the

and the symptotic evaluations of the

as the frequency is increased, and for

o the examples in Figs. 18, 19, the error is consistently below 5% for

frequencies above 60 MHZ.

The computation time on a CllC-CYBER-175digital computer is less than

1000 Es for an asymptotic evaluation, for a given point on Figs. 18and 19,

and about 35 ms for the integrat-ionresult using a 50 point Gaussian

quadrature approximation, Even though the integration time is improved

by that of reported in [13], the computation time can be further reduced

by relaxing the number of points needed for the integral evaluation since,

as seen in Figs. 6-17Y the integrands are smooth and well behaved.
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4. LOADED HORIZONTAL ANTENNA OVER AN IMPERFECT GROUND o
In the previous sections, detailed discussion was given for deriving

the vector potentials due to a horizontal current element radiating over

imperfect ground. A numerically accurate and efficient method was devel-

oped for evaluating the Sommerfeld-typeintegrals which were encountered.

Also presented was an asymptotic evaluation of these integrals and their

comparisonswith the exact integration results. At this point, we will

formulate an integral equation for an arbitrarily loaded horizontal antenna

over imperfect (lossy) ground. The method of moments will then be applied

to transform the integral equation into a numerically manageable matrix

form. Finally, our procedure will be tested by comparing some selected

results with those reported in the literature.
.

4.1’ Integral Equation Formulation

The geometry of a thin, linear, horizontal antenna of length 2L,

radius a, and mounted with height

shown in Fig. 20. The antenna is

a functional distribution of A(x)

o

h over imperfect ground (c ,0) is
~

assumed to be resistively loaded with

along the antenna, and is driven by a

finite gap source located at the midpoint “ofthe an~enna. Let Einc and

Esca refer to the tangential electric field components of the incident

field (the gap source) and the scattered field on the antenna, respectively.

The total tangential electric field may then be written as

~tot(x) = Einc(x) + fca(X) . (4.1)

Application of Ohm’s law allows one to relate EtOt and the induced

current I(x) as
.

Etot
(x) = A(X)I(X) (4.2] ● “I
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where A(x) is the loading function. Using (2.7), one can express

component of the electric field of the current element defined in

m32 82
Ex(x) = — +k2 rI1x+—

3X2
axaz ’12 ●

the x

(2.9) as

(4.3)

A simple application of the superposition theorem allows one to finally

determine the integral equation for the induced current I(x)

- ——

L
d

“z J
Gv(x,x’)I(x)dx’+ fi(x)~(x) ;

.-
-L

In the above equation, Gh and Gv are the following

Gh(x,x’) = l;l (I-r:x+-JT;x + Oil;x)
Gv(x,x’) =l;l &I;z

(4*4)

functions

(4.5)
o

(4.6) .

.

‘here‘lx
‘S$ ~ TI;zand I are

o

and (2.15), respectively. The

these expressions have already

defined in (2.31), (2.33), (2.40), (2.43)

numerical and asymptotic evaluatio& of

been discussed in great detail in the previous

section.

4.2 Matrix Equation Formulation

As in many similar problems, the method of moments is employed to”

recast (4.4) into a numerically manageable matrix form [16].Bas&d on our

previous successful results with the half-patch finite difference scheme

d2
[13, this technique is here applied to the~and — operators. Further-

dx2
more pulse and delta functions are used as the basis and weighting functions,

respectively. The resultant matrix equation can then be written as

‘Vine] ‘[zant] + ‘A]} [l] “-’-- ‘(4”7)

.
*
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where [V~nc] and [1] are column

induced current on the antenna,

vectors containing the gap voltage and the

respectively. Furthermore, [A] is a

“diagonalmatrix representing the loa~ing function, and finally [Zant] is

the impedance matrix in which element Zant
ij

is defined as

(4.8)

Note that”the
d d

- and — operators are approximates such that
dx~ dxi

-+ [f(x)] = ‘(X+ Ax”) ;xf(~- ‘xl’)
i x.x

i
(4.9)

d’~[f(x)] = ‘(x+ Ax/’) - ‘f(x)2+ f(x- Ax/2)

i
(Ax/2)

x=x
(4.10)

i

Expressions (4.9) and (4.10) are the results of the direct application of

the hall%patch finite difference scheme where

used in the.rnethodof rno.mentsapproximation.

we use the thin wire approximation to express

-1 Hi
e-jkr

22
10 lx=—”4nr ‘r= ‘x-x’) ‘a

—.

where a is the antenna radius and h

approximations allow one to compute

ant,
components of Z s, which are the

ij

Ax is the full patch size

In evaluating

-1
10_ along

‘lx

Gh from (4.5),

the antenna as

(4*ua)

(4.llb;)

is its height from the

the direct and perfect

results of integrating

(4.llb) over a patch, in a closed form as described by

ground. These

reflection

(4.lla) and

Barrington [18].
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Performing a simple matrix inversion, one can finally solve (4.7) for

[1] to arrive at ●
[1] = [Yant][Vine] (4.12)

where

,[Yant] = @ant]+[A])-l . (4.13)

4.3 Numerical Results and Discussion

Based on the analytical developments i.nthe previous sections, a ‘

Fortran digital computer program has been developed for calculating the

current along a loaded horizontal wire antenna mounted over lossy ground.

To conserve computing time, only one row of the impedancematrix has been

computed, since [Zant] takes the following general form (Toeplitsmatrix)

t-

al a2 a3 “ “ “ an

,a2 al a2” “ “an-l

izant] = a3 a2 al “ “ “ an-2

. . . .

. . . .

1

. . .

a a a
n

.a
n-l n-~ “ 1

and thus expresses the inherent symmetry

o
(4.14)

of the problem. Also note that

when (4.14) is modified by the diagonal loading matrix, it still remains

symmetric, so a more efficient inversion routine has been employed in

obtaining [Yant].

In order to test our integral equation formulation, the case of a

linear antenna in free space (E = 1, a = 0) is considered. Figures 21 and
g

22 show the input impedance values as a function of frequency. These

results agree well with available reported data [19], therefore, indicating

that the finite difference approximation does indeed provide an accurate

result. The perfect ground case (a =.W) is investigatednext; Fig. 23
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clearly demonstrates excellent agreement between our result and that

reported by Miller et al., [4], in which a three-term sinusoidal current

expansion with delta matching was used to generate the matrix equation.

This result is quite compatible

it.was shown that the procedure

expansion is closely related to

approximation.

with the conclusion drawn in [20] where

based on finite difference and pulse

the three-term sinusoidal expansion

There are not many experimental and/or numerical data available
,..

for th~ linear horizontal antenna over an imperfect ground. Miller et al.

[4] have reported,some numerical results using three-term’sinusoidal

expansio~ functions and a different approach in evaluating the So&ner-feld

integral. Here, we compare the results of our method with those of

Miller’s in Figs. 23, 24. The agreement is excellent and provides a good
o

check for both of the numerical methods.

. .

● ✝I
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5. TRANSIENT BEHAVIOR OF THE ANTENNA CURRENT

In this section the frequency domain results of the previous sections

are used to investigate the transient behavior of the antenna current

mounted over lossy ground and driven

transfer function (impulse response)

by a pulser. As a first step, the

of the antenna current is computed

using the results of Section 4. This transfer function is then multiplied

by the spectrum of the input pulse, and finally the Fourier inversion is

performed numerically via a Fast Fourier Transform (FFT) routine to obtain

the transient response.

The pulser is assumed to drive the antenna at the mid-point wfth the

following Gaussian Form

v(t) = exp[-(t - T)2/~p] . (5.1)

Using the transform pairs defined below
o

m

v(f) = f v(t)e
-j27rfcdt

(5.2a)
-m

m

v(t) = ~ V(f)e
j2Tft ~t

(5.2b)
-m

one readily finds that

V(f) = fi ap exp[-u2a~/2]exp[-j2mf~] (5.3)

where f = uO/2’ridesignates the frequency. Figure 25 displays v(t) and ‘-
–:1 =

V(f) for T = O and two different values of o .
“P

At a point x on the antenna the current transfer

defined by H(x,f), which is the delta-responseof the

function may be

antenna at point x.

The transfer function can be constructed discretely using the developments

of the previous sections. Using the superposition theorem,
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Figure 25. The Gaussian pulse used for excitation.

57



the

can

transform of the current at point x due to the input pulse V(t)
..

0

be written as

I(x,f) = V(f) H(x,f) .

Using the transform convention in

antenna current at point x can be

i(x,t) = f I(x,f)e
j2Trft~f

.—

(5.4)..’”
.,.’

(5.22), the transient response of the-

expressed as

. (5.5)
-co

Since i(x,t) is a real function, one concludes that

I(x,-f) = I*(x,f) (5.6)

where * denotes conjugation. Furthermore, because v(t) is itself a real

function the following is true

V(-f) = v*(f) ‘(5.7)

which finally results in
o

H(x,-f) = H*(x,f) . (5.8)

In other words the knowledge of I(x,f) for positive frequencies is enough

to enable one to determine i(t) from (5.5). This final step is done

numerically using che Fl?Troutine. Note that nowhere in our development “

have we,enf’orcedthe causality condition which, for example, states that

for an input pulse starting at t = O, there cannot be any current exdited

at a distance x before”time x/c, where c is the velocity of light. This

fact can be used as a valuable check point for the final result, t(x,t),

and as seen later on, is indeed satisfied by our results.

As previously discussed, by loading antennas one can shape their

time domain responses. It has been found that a resist2ve loading with the

,followingfunctional distribution
-.

‘(x)=& o
(5.9)
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providesthe most desirablecontrolfor reducingthe end point reflections

at a given f.r.equency.References[21]and [2-2]discuss the suitability

of (5.9) for loadingant-e~nisin free space. Appendix111 is a self-

containedrecent__r~por_t-fe.rdet~rrn.in~l=ng.th.e..iparameterfor a hori-. .0 .-.

zontalantennaover imperfectground. This appendixprimarilyconsiders

the Fresnelreflectioncoefficient—approximat-ionfor determiningthe

antenna

for Ao.

In

current_s,and

the following

f-ora 10m antennaof

characterizedby E =
~

is used in this work for obtainingan optimalvalue

subsections,we provideextensivenumericalresults

radius 0,05m mounted 5m above an imperfectground

10, and o = .01mhos/m.

5.1 CurrentTransf@rFunction_H(x,f)

The currenttransferfun-ctionis simply the antennacurrentvalues,

at:a-given observationpoint, due to-onevolt excitationat several

frequencies, For each frequency,the impedancematrix [Zant] of

Equation (4.7)iscomputed regardlessof loading. S~i~pleintegrands

—— . —————s——..
encounteredin evaluatingthe impedancematrix elemer[~sare shown in

Figs. 6-17.

is used only

to be within

In order t-o—conservetime, the exact n(lrr,crira~integration}

Up to 60 MHZ, where the asymptoticapproximationis shown
—.

5% error (seeFigs. 18 and 19). As explainedin Section

4.3, only one row of the impedancematrix is comput-e-dbecauseof tile
—

symmetriesinvolved,

Fortunately,for the consideredparameters,no polgs encounterthe—

steepestdescentpath deformation(see Fig. 26) f~~r~ :_fi2~ 45°. However,

as seen in Fig, 26, at higher frequencies(f :’7.5 M!z) a brililcl~point does

enter the path deformationfor higl]er82 values, !io~ethat FiSs. 12, 13, 1(>

and 17 demonstratethat–theintegrandshave decayed to ne~ligibleV.,IL!L:,

aroundwhere.the branck~cut is intercepted. It is (:onciudedt-hat-LhI_l>r.lncl~

point contributionis of second order and can be neglected. This appr(,xi-

mation is also verfif-iedand shown by [14].
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Steepest Descent Path
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—.—. — Branch Point Location For O < f < @
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t
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t

Figure 26. A..completediagram for the pole and branch cut locationsas a
funct?onof frequencyand the steepestdescentpath for
minimum and maximum 62 values.
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o The antenna transfer function H(x,f) is computed at the total.of

127 frequencies in the range of 1 ~ f ~ 400 MHz with more samples

concentrated at the resonance frequencies.

transfer functions of the unloaded antenna

Using the loading function given in (5.1),

of A
o
= 40 ohms/m, based on the results of

transfer response is computed and shown in

5.2 Computation of i(x,t)

The input pulse of Fig. 25 is shifted

applied voltage would start at t = O and reach

The transform of the”input pulse is multiplied

functions shown in Figures 27-32 to obtain the

Figures 27-29 show the

at three observation points.

and choosing a proper loading

Appendix III, the loaded

Figs. 30-32.

by T = 30 nsec so that the

its peak at t = 30 nsec.

by the antenna transfer

corresponding I(x,f)’s which

are showm in Figs. 33-38. Note that at f = 400 MHz, the resultant

o frequency domain currents have decayed sufficiently so that zeros can be

added for f >-400 Wz.” Also using (5.6 - 5.8), the negative frequency

domain currents can be directly constructed as the conjugate of the

positive frequency values.

Now that the entire frequency domain is constructed numerically, a

Fast Fourier Transform routine is e-mployedto obtain the time response

i(x,tj. Since many points are needed to assure prop-ersampling, a linear

interpolation is made through the available I(x,f) data points, and from

that,

39-41

while

2048 equi-distance samples are fed into the FFT routine. Figures

contain the unloaded time response at.three observation points,

Figs. 42-47 demonstrate the corresponding current transient responses

when A
o

= 20 ohm/m and A. = 40 ohm/m loading parameters are employed.

It is interesting to point out that the causality is satisfied very

convincingly in Figs. 39-47. Also note that the sharp peaks in Figs. 39-41
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can be justified

antenna as a TEM

if we assume that the feed excitation travels along the

mode while being multiply reflected from the antenna end-

points. For example, at the center of the antenna (Fig. 39), the

reflections from both ends return simultaneously and only one peak is

detect-edper reflection. However, in Fig. 40, the observation point is

midway between the feed and the end so that–the reflect-ionsfrom the two

ends are clearly distinct.

The ringing effect present in the unloaded current transient responses

of Figs. 39-41 is partially overcome by the AO = 20 ohm/m loading

(Figs. 42-44) and has p.ract-icallydisappeared for the A. = 40 ohm/m case

(Figs. 45-47). This result agrees well with those reported in Appendix

III iriwhich the latter loading seemed to be a good-approximation to

the optimal loading parameters computed for a wide range of -frequencies.

@
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6. CONCLUSIONS

A novel procedure has been developed for accurately evaluating the

Sommerfeld-typeintegrals and the integration results are compared with

that of the asymptotic approximations. linefficient and fast user-

oriented computer program is then developed f& computing”the current -

transient response of

over a lossy ground.

those reported in the

an arbitrarily loaded, horizontal, ~inear antenna

Selective results have compared convincinglywith

literature. This program is currently accurate as

long as no poles are intercepted during the path deformations, and the.

possible branch cut contribution is negligible. Note that for larger

82 (see Fig. 5) and as u+ O

or a branch point increases,

numerical analysis is needed

●

.

(see Fig. 4), chances of capturing a pole and/

therefore, additional analytical and

to take their contributions into account.

This work can then be extended to compute the near field of the antenna

qnd will be reported in the near future.

●
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-jkr-jn/4 @

I

2e
u= Q(t) e-krt dt

,2&17 -m

APPENDIX I

ASYMPTOTIC EVALUATION

In this appendix a general formulation is developed for higher-order

asymptotic evaluation of an integral with the following format

1

~

-“k~cos(~-e) dg ,

-—

‘-4nj ~

P(g) e J (1.1)

where it is assumed that kr is a large parameter”,-Tr/2< 0 < T/2 and P(g)

is a slowly varying function, For large values of kr one is usually

interested in determining the asymptotic expression of (1.1). This is

done by employing the method of the steepest descent path integration.

At.the saddle point < = 6, one can deform the integration path r to the

steepest descent path–(SDP) defined by Re[cos (& - e)] = 1. Assuming that

in this deformation no poles or branch points are encountered, one may

express (1.1) as

1-:u=—

~

P(c) e
-jkrcos(L-0) dg

4nj s~p
. (1.2)

,Sinceon SDP the relation Re[cos(& - 8)] = 1 holds, one introduces

the change of variable

in which t is a real variable taking the domain [-m,~]. Substituting (1.3)

into (1;2), one arrives at

(r4)
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where

Q(t)= P(E) sec~

in which c is replaced “with

(1’.5a)

[

~=+ 1+jLn(t2+j + ltl~) +e , t~o (1.5b),

and Ln is interpreted as being its principal

expansion procedure [23] is now used for the

In this procedure, one first expands Q(t) in

o

value. The corrtpleteasymptotic
=–.

asymptotic evaluation of (1.4).

a Taylor series

(1.6)

where Q (n)(o).,: Q(t) and ~ is the Gamma function. Then (1.6) is
t=o

substituted into (1.4) to finally result in

e-jkr-j~/4 m ~–2n
u = -—-=

I ~ (kr)-n-1’2Q(2n)(0) .
2G n=o “

(1.7)

●

In constructing the preceding equation, the following identity was used,

viz.,
... ..=

[

~kr)-(wlm :
–.. .—.- ., .=-

17[(1 + n)72] for n even
.-

J
a! 2

n -krt
te dt=~ .

--(1.8) -

-m

(
o for n odd

The task is now to determine Q
(2n),

s in terms of P. This is achieved by

differentiating (1.5a) and arriving at
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(Q(0) =P(0)

o

The higher-order terms can also be determined in the same fashion. It is

worth emphasizing here ,that--inderiving the preceding equations, the

following assumption has been made: neither

points of P(E) are near the path SDP.

To present an example, the higher-order

fo-llowingHankel function of the second kind

v

Comparing (1.10) with

where it is

simplifying
.

the poles nor the branch

asymptotic expansion of-the

and order v is derived.

“ Jr

(1.1),

P(C)

one obtains

=4je
-jV&+jvn/2

Y

assumed that $2>> v. Substituting (1.11) into

the result, one finally arrives at

f Q(o)= 4j ~jv~/2

1
(,Q(2)(0)= [1-8-V2+~ ejvT12

[

Q(4)

[ 1(0) = -16j V4 -~V2 ++ ejvm’2 .

(2)
The -asymptot-icexpansion of HV is then determined using

(1.9) and

(1.10)

(1.7) to be

(1.11)

(1.12)
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+o(Q-7/2) . (1.13)

The purpose of this appendix has been to formulate the necessary steps

for determining the asymptotic expansion of (3.i).‘ Comparing (3.1) and

(3.2) with (1.1) and using (1.13) in (3.2), one can then find the asymptotic

expansion of (3.1) from (1.7). Since the final results take a complicated

form, the following notations are introduced for-the ease of representation,

namely,

c = Cos e2 (1.14a)

s = sin 02 (1.14b)

q=d==5 .“- (1.14c) ● =

Using (1.9) and performing a rather tedious differentiation,one finally

arrives at

(1.15)

and

r
{ C3 + 2c2-3c~Q(2)(0) = Iokl-& ejn/4 (Zj) , -

12 ( 4s2(c+q)
4q(c+q)

2
4qs2+3c’q -1-2CS

2)

+(1-K)

)

. (1.16)
2q3(c+q)2

——
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Clearly, the terms for Q4(0) get very involved and therefore are not-

included here. It is interesting to note that both the second term in (1,15)

and the first term in (1,16) are singular at s = O, i.e., 8 = O.
2

Substitut-ing(1.15) and (1.16) back-into (“1.7)and simplifying the result,

one’clearlyobserves that these singularities together produce a bounded
..

result at 6 = O,
2

In other words, though the asympt-oticconstruction was

not originally valid for 02 = O, the final.solutioncan be used for this

angle. This solution takes the following form

-jk,ro , .
J-L-o~:x=10c2:qe ()+ ~ k-2r-2

4~r2 12’

and

r
-jk1r2 .

2C e
OHlx=L. —

0 c+q 4nro [‘;10 :
L

— ‘-+

4qs2+3cq
2 2

L-A+ (l_K) + 2CS
C+q) 2

C13(C+CI) 1

(1.17)

-jk1r2
e

-( )

+ o k-3r-3. (1.18)
4nklr-;

1. 2 .

It must–be r“e-al-izedthat the preceding asymptotic results are valid only

for observation angles .02< B where 8c’ is the critical angle for which
c

the saddle path of (3.1) intercepts the branch point of the integrand. For

the cases where the interception happens, one has to determine the

asymptot-iccontribution of the branch point near the saddle point. The
-. —

procedure is discussed in [14] and it–can be shown that the final result-

-2 -2would be of_the order–k~ r2 , i.e., the same order as the second term in

(1.18).-‘Therefore,as far as klr2 is large and the branch points and
.

pole-sare sufficiently away from the saddle point, one can use (1.17) with

confidence for almost all angles of observation.



In this

studied. In

APPENDIX 11.

‘AT02=0EVALUATION OF ~lfilx

appendix the behavior of (2.37) and (2.40) at P2 = O is

their present forms, these integrals are not defined at

p2 = 0, although it is clear that their equivalent form in (2.34) is ‘-

bounded. Equation (2.37) may be expressed here for convenience as

where p2 = r2 sin 0
2“

From Fig. 1 it is observed that r2 ~ h and

< x/2, and therefare the difficulty arises at f12= O.
0502-

(~)
To circumvent this difficulty, one replaces Ho with its expansion

where y is the Euler’s constant and ~(m) represents Lhe harmonic series>

i.e.,

$(m)=l+l/2+1/3+...+ l/m . (11.3)

Using the fact that P2 = r2 sin 67, one may express the “En” term asL

..
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-—.—- .=. .———

It is noted that both the JO and the summation terms in (11.2) are even

functions of A, hence, their contributions to the integral (11.1) will

zero.

Using (11.4) in and substituting the result into(11.2) (II-1), one

finally arrives at

A)

7 .0

(11.5)

which is obviously bounded at 8 = O.
2

the change of=~=riableIntroducing

= O, one f-indsA = kl sin ~ into (11.5) and setting 82

-jk1r2cose2cosc
dc , a, =0 . (11.6)“e

..

The above result.

f-ashion,one can

L
.—. .—.——. —

wa.s.ysed.i_n(3.12) for defining P(L). In a similar

show that the following re-suitsalso hold at@=O
2

(11.7)
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I. INTRODUCTION

Loaded wire antennas, which have attracte~ attention in,designing EMP

●
✎✎

simulators, often are regarded as open simulators. The basic design

requirement is to generate a temporal signal which matches the waveform
.

of an exoatmospheric burst [ 1 ] which is typically characterized by rise and

fall times of approximately tens and hundreds ofnsecs, respectively. The

basic obstacle in using any pulse radiating finite antenna is the undesirable

effect due to the reflection from the antenna ends. The effec~ of these

reflections is predominantly seen in the early ~ilne’behaviofof the radiat<-d--

pulse, Usually the antenna dimension (length) is s“everalA/2(wavelength)

for the upper part of the frequency spectrum of-the pulse. One possible way

to overcome these difficulties is to load the antenna”with a non-uniform

resistive loading (frequency independent) which

reflections to a great extent.

Many different loading functions have been

eliminates the end

proposed and rested for

an~ennas in free space. Liu, Sangupta and Tai [ 2] have analyzed and compared

the effect of different loadings and have concluded that the following

continuous loading is the most suitable one:

‘(x) = *
(1)

where x is measured along the antenna from its center and 2L is the antenna,,

length. They used the method of moments with quadratic basis function and

determined the critical value of AO by trial and error algorithm, i.e., by

looking at the current distribution and searching for a traveling wave-

type behavior. Tesche [3 ] has arrived at almost the same conclusion by

—.

● ✍

.

applying the singularity expansion method.

96

● ✎



In this paper, we analyze the effect of loading with charact-e-r-istic

function (1) for antennas over an imperfect graund, and specif-icallydevise

a novel

Fresnel

for the

term in

approach for the determination of the critical loading. We use the

reflection coefficient approach and derive an E-integral equation

ant-ennacurrent. The effect of loading then appears as a diagonal

the

the current

matrix equation f-ormulation.

phase distribution is almost

use this fact–to develop our procedure.

Since for the critical loadings,

linear along the antenna [.2], we

For a given value of AO, the current

phase distribution is determined. On one side of the feed, the phases are

interpolated numerically by a best fit–straight line and the resultant

least square error is then associated_with the J!Oparameter. The procedure

then is simply a search for an optimized value of AO (criticalloading) by

minimizing the least square error. The phase obtained in this manner is

almost linear except at the feed and end points where radiation occurs,

which guarantees an almost reflectionless current distribution on the

antenna. Results are given for the critical loading p-arameters,antenna

currents, input impedances and radiation patterns, versus’various different-

ant-ennadimensions and ground

--

paramters.
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11. BASIC FORMULATION

In deriving an integral equation for the antenna current, knowledge

of the radiated field from a current element is needed. The major steps

in constructing this field will be briefly discussed in this section.

The geometry of a current element Pl over an imperfect ground Ls depicted

in Figure 1. Regions 1 and 2 are characterized by (El = CO, PI = UO,

al= O) and (C2 = c= ●CO, P2 = PO, a2 = a), respec~ively, where co and NO

are free–space parameters. The current.element is in the x–direction

(horizontal)and its coordinates are (x’, y’, z’). Furthermore, the

geometrical image of P~ is designated by P2 and their distances from the

observation point O (x, y, z) are labelled as PIO”= Rl”amd P2CI= R2,

respectively. Our objective is to find the radiated field of PI at the

observation point O in the presence of the imperfect ground.

As originally observed by Sommerfeld [ 4], two components of the

Hertz potential are needed for a complete description of the horizontal

current element problem. However, for the vertical case only one component

would be sufficient. The two components are chosen to be in the x and z

directions, i.e., along the current element and along the normal to the

interface, and are designated as follows

.

0.

A

ii=i-qi+nzz .

Later in this paper, quantities like TIlx,112x,etc., will be used which

specifically define these quantities in regions 1 and 2, respectively.

Employing Max-welltsequation and using the Lorencz ,guage,one arrives at
. —-—=

“i!=” JOCv’X~

:=vv”fi+~%

(3a)

(3b) 9=
(3C)

98



“z

o_,I

‘0’PO

rlll 1111Illlllllr

pl
Y

1,
I
I

Itltlfillllll Ill 1111+111111 1 “x

o2
7’‘02

I R2
I

‘2

Fig. 1. Horizontal current element PI over an
imperfect ground.



+
where 1, H and ~ are the electric field, magnetic field and current source,

respectively. Furthermore, throughout this work, the time convention

exp(jut) is used and suppressed in the formulations. For the problem at

hand, the only source term is

tl= ;~ dx- 6(x- x“) 6(y - y’) 6(Z - Z’) , (4)

where I dx’ is the current element moment.

The continuity of the tangential ~and fifields at the interface.— .-—>
results in the following boundary conditions

(5a)

‘lx = K ‘2X (5b)

..
Jr
12 = K ’22

+?lx= aK-z‘2X

O

.
——.—

—
(5C) “- :

(5d)

-1where K = c /c
2 l=cr - jo(ucO) . Our goal at this point is to determine

=——-
11
lx

and rl
12”

The boundary value problem (3) - (5) has an exact solution
-. g

in terms of the well–known Sommerfeld integr-als. These integrals talizmany

differen~ forms [5,6,7], and the following versions will be used for

simplicity

ni+n~x
lx = ‘lx

where

Z’nd

-jkR1

——
‘;x = 10 ‘4nR,

.

(6]

5) exp(-jkR2 cos e2 cos ~) dE

(7)

●
(8)



where k = u%, I = (jwcO)‘1 I dX’, (2)
02 is shown in Figure 1, and HOo

is the Hankel function of zero-order and second kind. The integration ,

path I’is shown in Figure 2. We have split ITlxinto ll~xand JTr in,order to
lx

emphasize the contributions obtained from the source at point 1, i.e., inci-

dent, and from its image at point 2, i.e., reflect-ed,respectively. Further-

more, II
lZ

takes the f-ollowingform

;H(2)
1

(kR2 sin 02 sin g) exp(-jkR2 cos 62 ,COS~) dg (9)

where kl[z)is the Hankel function of first order and second kind, and ~
2

shown in Figure 1. In (8) and (9), one must retain Im[~K - sinz & 1 < 0.

0 Expressions (8) and (9) cannot–be evaluated in a closed f-orm,and

recently there have been s.pmeatt=empt-sto evaluate an equivalent version

of them in the numerical sense [5,6,7]. The present authors have also

developed an efficient method for numerical evaluation of (8) and (9), The

results of—this inve-stigat-ionwill be reported in their future work .

In this paper, only the asymptotic det-erminationof (8) and (9) would be of

interest, because”it is assumed”that the current element height z = h > A/2

and the observation point—are away f-remthe interface. It is’known that

under these conditions asymptotic values of (8) and (9) would be an accurate

approximation [5,6,8].To thisend, one-replaces the Hankel functions in (8)

and (9) by their asymptot-icexpressions and employs the standard saddle-

point integration technique to finally arrive at

..”[ 2 Cos ez

1

-jkR2
~r
““lx‘“10 -1. e—

2 4TR2
Cos e z +,/lK - sin

‘2

(lOa]
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..

and

)

cos 0. - /K - sin2 0.
-jkR2

II m 21
.zV L

cos 42 sin 82 cos 6
e

lZ .0 ,2 r 41TR0 (10b)
.

/’Kc,ose+K-sin’e
L

2 2

.. $ lllz Q -jk cos 62 lllz . (1OC.)

Since for

is small,

angles 02 w O the argument of the Hankel functions in (8) and (9)

it might appear that these Hagkel functions cannot be replaced by

.
their asymptotic expressions. “However,if one proceeds to use,the

asymptotic expressions and then finds the limit as e2 m O, the results of

(10) will be recovered. Therefore, (10) is valid f-orall 62 as long as the

aforementioned conditions for asymptotic approximations are satisfied.

Substituting (lOa) through (IOC) into (3c) and employing the far-f-ield

approximation, one arrives at the following expression for-the E

4)

‘r (reflected)

f-ield:

..=[

/
K COS 6 - K - Sin2 %2

---1

-jkR2

“E:62= -k2 10 COS 8 COS $2
2 e

4nR2
62

(11)

K Cos ‘2-+’J’K
- sin-.— -~ —— 2 82

and

[.’Cos 8
~; ~2 = -k2 10 sin 42

.1

2-~K-sin2’2_ e-jm2 ~
4nR2 2 “

(12)—
Cos e

2+#-sin292

In (11) and (12j-~2 and ~2 are the unit vectors of the spherical coordinates

centered at the image point 2, shown in Figure 1, and the expressions in the

brackets are the well-known Fresnel reflection coefficients [ 9]. It is, of

course, an easy exercise to find the Cartesian components of ~r from (11)

and (12). Furthermore, substituting (7) into (3c), one can readily arril~e

at–the f~llowing f-ar-fieldapproximation for the current element
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E = k2 10

-L

where (R , 6 , $ ) are the spherical coordinates centered at the source
111.

point 1, shown in Figure 1.
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III. INTEGRAL EQUATION FORMULATION

The geometry of a thin linear antenna of length 2L and radius a mounted

horizontally with height h over an imperfect ground is shown in Figure 3.

It is assumed that the antenna is loaded with a resistive loading function

A(x), given in (l), and is fed from a finite source gap located at the mid-

point of the structure. In this section, our ob-jectiveis to establish an

E-integral equation for the antenna current..

Let us denote the incident tangential electric field produced by the

source gap as E‘nc and the tangential scattered field by Esca. The total

tangential E-field may then be expressed as

o Application of-Ohm’s law allows one to relate t~e EtOt”and the induced

current I(x) as

E
tot

= A(x) I(x)

where A(x) is defined in (l).

To find Esca, we first define some new functional, Since both the

observation and source points are on the antenna, from (6), (7) and

Gh(x, X“) = 1~1 ~lx = g(x, x’)

e-j kR
g:(x, x’) = —;~=
.1. 4iTR

- gi(x, x’) + gh(x, x’)

,

A - x+ + az

F(x-x )2+4h2

(9),

(16)

(17a)

(17b)
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Fig. 3. Nonuniform resistively loaded horizontal antenna over an

imperfect ground.
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2 Cos 02
x’) =

Cos e, += “(X’ ‘“)

+%

and 0 =
2

Arctan (lx ‘1- X /2h). In (16) subscripts h and i are used to denote

“horizontal” and “image” terms, respectively. Furthermore, it should be

mentioned that in defining (17a), we

approximation: Finally, from (lOb)-,

have incorporated the usual thin-wire

the-following functional (vertical)

is defined

Gv(x, X’) = ljl ~ IIlz

“ ‘i(x, x’)-

= -2jkw COSL e Lsin 0 L
2 2

K COS ‘d +K -sin 2 “--
2 02 ‘-

(18)

where (x - x“)/jx - x“l accounts for the change of the sign 05 cos +2 in

i.e., K + ~, both gll(lOb). It--isapparent

and G’ vanish.
v

for the perfect ground,

The tangential scattered field Esca can be determined by substituting

desired integral equation for the

as foll”ows

(16) and (18) into (3c). Finally the

antenna current is obtained from (14)

L

E

“( )

d2 + ~2
‘nC(x) = -(ju&O)-l —

dx2

-(jucO)
-1 d

x

~ Gh(x, X’) 1(x”) dx”
.

- L
I

L

(
j Gv(x,
-L

x’) 1(x’) dx’ + A(x) I(x),

(19)-L<x<L— —
—
In the next section, we describe the numerical steps employed to—solve (19)

f-orthe determination of I(x) and the cri-cicalloadingA~, def-inedin (I).
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Iv, NUMERICAL CONSIDERATIONS 0=
Standard numerical techniques based on the application of the method

of moments [10] are used to transfer the integral equation (19) into a

matrix equation. Two different schemes are used to generate the matrix

equation. First, Barrington’s triangular basis function [1o] and point

matching are employed. In this case the differential operators are trans–

ferred inside the integral sign and calculated in the manner described by

Barrington [II]. The details of this”procedure with a working computer
-=

program is also given in [12]. Second, the pulse bakis function and point

matching are used. In this case, the differential operators are evaluated

outside ~1-ieintegral sign by applying a finite difference algorithm in Lhe

manner used in [13,14]. In all the cases, attempts are made to exploit

the synmecries involved in filling the matrix elements in order t-oreduce ●
computation time, Furthermore, the gap generator, i.e., E‘nC(x), is

modeled as a column matrix with zero elements except at the center element
—.

where it takes the value one divided by the gap size.

AS A. approaches the critical loadingvalue, the current matrix I(xn)

will take a linear phzse shift among its elcxre~.ts,x’s being coordinates
n

.
of the patch cencers, since one expects no ref~ection from the z~tenna ends

due to the traveling wave nature of the current distribution. Based on

this simple concept, we introduce the error

ER(AO). For a given value of A~, first the

then the current phases are interpolated by

Eunction, hereafter denoted as

current matrix is computed,

a straight line such that the
-.

least square error is achieved (see Figure 4). This value of the least

square error is the defined value of ER(AO) which is associated with the

giv~~ A
o“ It.is apparent that as AO approaches the critical loading, ●

ER(A ) ~:j11 approac-hzero.o Since perfect reflectionlessbehavior cannot
.
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Fig. 4. Determination of least square error for current phases,
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—

be achipved, we define the critical loading as Ac~ which minimized }lR(AO),

that is

SER(AO)
=0

3A0
. (20)

‘:

There is now suffic~ent information to numerically compute t}leoptimal As.

Initiqlly three consecutive values of A i.e., A
o’ 01 < ‘(I2 < ‘0’3’ are ‘ausht

such that ER(AO1), and ER(A02) > ER(A02). This rendition staLes ~hat A; is

the interval [AOl, A03]. Note-that we areinterested in tilefirst local

minimum as the smallest value of fi.c,which is most desirable.
o

Sll(ccs>ive

parabolic interpolation ~llrou:hthe cl]reepaints and the finding of a new

minimum will finally converge LO the optimal A
;’

It has been found tha~

bett=erconvergence is obtained by ignoring the fe~d and Lllernd patches in

coxp~ltinsER(fi.O).This observation is n_ottoo surprisi~igas the radiation

OCCUI-Smainly at these poi~.~saildwe expect the current bella\~iorto deviate

from its characteristic ~rsveling wave,

110 ‘-
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v. NUMERICAL R_ESULTSAND DISCUSSION

The first example will consider a two-meter dipole antenna radiating

in free space at frequency f = 50 MHz (A = 2/3 m). Figure 5 shows the

magnitu~e and the phase of the induced current for three different loading

>
parameters A

o“
The critical loading A; = 247.2 $2was det-erminedin the

manner described earlier. As the loading parameters take the no-loading

value A
o

= O, the intermediate.value A. = 120, and finally the critical

loading A. = 247.2, the phase behavior becomes more linear. On the other
.——

hand, the amplitude curve assumes a non-oscillatory behavior and varies

similar to the current of a nonref.lettingstructure, We have chosen the

example in order to compare our results with those given in [2 ]. In this

reference the value of the critical loading was reported as Ac = 318 0,
0

though no specific procedure for the”determination of Ac
o
was described.

We believe that the main difference between our result and the one in

reference [ 2 ] lies in the application of—diff-erentnumerical schemes f-or

reducing the integral equation into a matrix equation.

In order to fully investigate the effect of ground and loading on the
.

antenna performances, we consider a center-fed dipole antenna of length

2L = 10 m located at a height of h = 5 m above an imperfect ground

(Er = 10, u = .01 mho~m). Table l_contains the values of critical loading

A; as a function of 5requency for two different radii of the antenna in frcze

space. In this’table, the minimum error, i.e., ER(A~), is also tabulated.

It is interesting to note that for the entire frequency range, a smaller
.—.

A: is needed as the radius changes from .025 m to .05 m. Table 2 shows the

var.iatibnof—At
o a> a function of E and o for a fixed antenna radius a = .05 m.r

To illustrate th”efunctional dependence of–ER(Ao) on A
o’ two plots are
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TABLE1

CRITICALLOADINGPARAMETERA; AND THE MINIMIZEDERRORER(A;)

,,1 VERSUSFREQUENCYFOR TWO ANTENNARADII..2L = 10 m.

,,

II~~

Radius= .025(m) Radius= .05 (m) Radius= .025 (m) Radius= .05 (m)
f

Freq. c ER(A:) c ER(A:) Freq. c ER(A;) c ER(A;)
(MHz) (~ym) (lpm) (NHz) (lYm) (~7m)

18 35.3 3.2 ~ 28.4 4. 54 89.0 2.94 72.3 2.40

21 47.6 6.4 39.2 7.9 57 88.2 1.94 69.7 1.75
24 55.E 9.6 45.0 11.6 60 88+2 1.81 70.6 1.19

27 61.7 12.3 52.7 14.5 63 85.2 1.50 70.7 1.38

30 67.0 14.3 59.8 16.2 66 82.8 1.63 67.4 1.43
P
P 33 75.1 16.7 63.4 16.5 69 82.5 1.63 64.6 2.06
w

36 82.3 16.4 - 70.0 15.3 72 82.8 1.94 64.0 ‘2.31

39 81.6 11.9 71.9 11.0 75 80.6 2.2 63.1 2.88

42 86.3 9.98 73.1 9.75 78 80.3 2.38 63,2 3.06

45 88.9 7.81 74.4 1.67 81 80.1 2.63 62.0 3.56

48 89.6 5.56 74.4 5.5 84 78.2 3.31 60.6 4.56

51 89.8 4.5 73.1 3.9 87 79.5 3.38 59.6 5.06

90 76.3 4.18 59.6 5.56

95 74.8 4.94 60.1 7.0

100 73.6 6.56 40.3 10.1



Freq.
(MUz)

30

33

36

39

52

45
——

48

51

54

57

60

CRITICAL

TABLE 2

LOAl)l_NCPARAllll’L’LRA; AND TIIE}[INI}IIZEDLRROR lIR(A:)VERSUS FREQUENCY

FOR DIIWIEiJ’1’GROUN])PARIWIETERS. 2L = 10 m, AIWIh = 5 m.

E =1, (J=O
r mllos/m

-1
59.8 ~ 16.2

I

63.4 I 16.5
[

71.9
i

11.0

73.1. 9.75
—

74.4 7,67
—

74.4 5.5
—

73.1 3.9
. —.. .-—

72.3 2.4
.— —.. .—-— — —

69.7 1.75

70.0 1.2

,, 11

.——
I

c LR(I’$) c

-------

IVZ(A;)
(19m) (J7m)

—

59.4 I .I.6.9I 53.5 I 15.9

60.6 \ 16.4 I i54,5 I :18.9

u5.9 :1.8.0 72.6 18.6
-

76.2

L

1.3.2 79.2 ! 14.7

I /
79.6

L
11.6

83 “O—l:fl-
82.1 ~ 8.2 85.9 ‘; 8.5

++-*1 ~:::———.————c — . ——

Pll,.1 2.6 79.b 1.Y
—-—— .. _ .—, . —..”

70.1 1.6 69.9 2.3

66.6 I 2.4 ‘ 61.3 3.4

..

II 1,

c ER(A~)
(:?nl)

+-----J60”’a
68.1 20.0

77.2 16.2

~~-+. ,, .
——

160.2 2.9
——

:139.6 i 1.1
——. .— L

87.L ! 1.6
~. . —,+

69.2 1 4.0

E =I,u=.,
-r

+a--++-
67.8 19.9

80.9 17.9

89.,7 14.4

97.4 10.1

151.1 3.4
--——

[

x 1“’ -
~o(}.’(JI 1.9
— \
7~.8 ~ 4.1

60.9 I 8.8 I 59.7 I 9.0

.



.

constr-uct-edin Figure 6. These p-lotsshow the effect of the imperfect

g,r~~ndon ER(AO). Since the antenna height is h = A and the ground has

low conductivity, the two results do not differ markedly.

The effect of AO on the input resistance of the aforementioned antenna

is depicted in Figure 7, where the two cases of no ground and imperfect

ground are considered. This figure suggests that as AO becomes larger, in

this case for instance A
o
> 30 Qlm, the input resistance levels off and

does not–vary significantly. For yet-

the variation of the inp-utr.eslstance

!,
o

= O, i.e., no loading, and A
o

= 40

-anotherexample, Figure 8 displays

versus frequency for loading parameters

Q/m, though this figure is for the no-

gro~n-dcas_e.(cr_= 1, CI= O mho), it is clearly seen that when the antenna is

not loaded, the input resistance varies with the resonant frequencies of the

antenna, whereas when it is sufficiently loaded, the input resistance does

not vary markedly as the antenna ends are not seen from the feed point.

To invest-igatethe radiat-ionp.atterncharacter.isticof a loaded

:~nte~,naover an imperfect ground, a center-fe~’tli~oleantenna of length
\

2L = 10 m and radius a = .05 m located at the heigh;’h = 5 m over ,an

imperfect groiiiid(Ew = 10, u = ‘;O1.-mhos/m)is cc)nsidered. Furthermore, it–-is
L

assumed that the antenna is radiating

From Tables 1 and 2, it is found that

in the ab-se-nc-e-of the ground and A: =

at frequency f = 60 MHz (A = 5 m).

the critical loading is A; = 70.6 (fl/m)

61.3 (0/m) in its presence,

resp.eccively. Figure 9 shows the amplitude and phase distributions of the.,._._ ——...... —... __ .-:.
. ..,

z?;~.:>nzcurrent I fur the c,lsesof–both no loading and critical loading.

Agsin the Iiilearphase behavior is obtained f-orthe critical loading case.

The ladiation pat:erns of the aforementioned antenna are plotted in

a -’-.p~[!r,?s10, ]1, .?~l(j ~-. All p:itternsare no-rmalizedto the maximum value

<.,;:~lt..~J—(j–t2L~ ‘s}Iohm in F-igure‘lo. In each figure radiation patLerns of–

115



ER

20C

I 5C

I 00

50

0

0

NO GROUND

-—.—. IMPERFECT GROUND

‘Y = 10,a= 0.1(mhos/m)

20 40 60 80 I 00

Ao(~/rm)

6. Effects of imperfect ground on ER(AO). -
2L=10m, h=5mand X= 5m.

—

.

NG A:

.

0
116



.

.

0
!--
m
—
m
w

lx

t-
3
Q
z

A

270

260

250

240

230

220

210

.,

—— NO GROUND

\

\

-- —..- ---

—.—- —- IMPERFECT GROUND

‘Y=10, ~= 0,01 (mhos/m)

CAL LOAD NG A;

o

Fig 7.

20

Effect of A.
cases. 2L =

40 60

f10 ( Q/m)

80 I00

on inpu-tresistance, no ground and imp-e-tiec-t
10 m, h = 5 m and A = 5 m.



1

1000

-

cj 800
-

u
(J
z

K 400

t-
3

“n
>Z

– 200

100

l\
l\

II
I I

/ I
I \
/ \
/ \

‘\/’ ,

I I f I I I I I
b

10 20 30 40 50 60 70 80 90 “

FREQUENCY (MHz)

Fig. 8. ~npu~ resistance versus frequency for loaded and unloaded antenna in free sp’ace. 2L = 10 m. I I

● ● ● .
0 ,,

,,,,



III
(mA),

3

2
,

●

I

o
0

●

A,
18d

135°

90°

45°

0°

-45°

-90°

-135°

-180°

Fig. 9.

—

A; = 70.6(~/m)

.——. Ao=o (0/m)

~-
/ -\

/ \
/

\
I

\
-11

\
\
\
\

d/’\

1

x (meter) 5

\
\

\
\

\ \

! I 1 I I I # ,
I I

t
t

x (meter) ‘5

Magnitudeand phaseof currentfor no loadingand crit-icalloading.
2L=10m, and A=5m.

119



o
Az

E

LOADINGCRITICAL

NO

NO

LOADING

GROUND

——— —

.

/

IMPERFECT GROUND /

/

O,c=O.Ol(rnhos/m)=
%

(
--\\\\\\\ &.

1.0
q= 90°

-J \
\ \

\
/ (+’
/

/

+=180 ”’4/=[80”

in plane X-2 for no ~round,Fig. 10. Radiation pattern imperfecL ground,
no loadingand critical and A = 5 m.loading. 2L = 10 m, h= 5 m,

●

1.20



*

,

●

IMPERFEC

/

6r=10, c=0.01(mhos/m)

w

*

II

-1--+

Fig.

\l

‘--‘y-@
__.4..____= 180’

CRITICAL LOADING

--—- NO LOADING

NO GROUND

11. Radiation pattern in plane Y-Z for no ground, imperf-ectground,
no loading and critical loading, 2L= 10 m, h = 5 m and A = 5 m.

121



MPERFECT GROUND /

/ Yf~
E

I

f

er=lO, a’O.Ol(mhos/m) [ ‘~,
\

1, \

/

\ ‘\
1 —’.

1

\“
/

Y += 180°

-—-. .

CRIT!CAL LOADING

NO LOADING
o

NO GROUND

/
/ \

+---

\
\

/

It
///

0.73f 1
‘+

= 90°

\
\

\

i

\
\,

\ /

Fig. 12. Radiation pattern in X–Y plane for no ground, imperfect gmmd,

no loading and critical loading. 2L= 10 m, h = 5 mand A = 5 m.

122



the antenna in both the presence and absence of the ground for no loading

and critical loading are plotted. This allows the reader to compare the

results simultaneously. Except for the antenna pattern in the plane

perpendicular to the antenna (Figure 11),.the shape of the pattern is

changed due to the loading effect. Except for the antenna pattern in the

plane parallel to the ground interf-ace(Figure 12), the pattern is

effectively influenced by the presence of the imperfect ground. These

results can intuitively be verified for most cases.
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