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ABSTRACT

This report deals with the surface fields or the surface charge and

current densities on a right-angle corner reflector induced by a polarized

uniform plane wave. Equivalent circuit parameters of a short monopole

and a small semi-loop mounted on the wedge are derived and explicit corre-

lations between measurable quantities and local surface fields are established.
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1. INTRODUCTION

The class of problems related to the measurements of electromagnetic

field quantities have attracted the attention of many engineers engaged in

sensor research. The major difficulty encountered In the measuring process

of any energy related physical quantity is the interaction of the measuring

device(s) with the physical field that always produces a perturbation of

the field. Therefore it is essential to have an apriori estimate of the

amount of the energy extracted by the sensor and the extent of the pertur-

bation, In this report we will consider a canonical problem of this class,

namely, the measurement of surface fields on a right-angle corner reflector.

The characteristics of many sensors are discussed in [1], and some related

problems ’aretreated in [2].

@ The geometry of the problem is shown in Figure 1.1. The walls of the
.

wedge are perfectly conducting and the medium of propagation of the waves

is air with parameters (c, p, u = O). We will assume that the illuminating

polarized uniform plane wave is propagating in a plane normal to the axis

of the wedge. Furthermore only linearly polarized waves will be considered

with polarization of the E-field either perpendicular or parallel to the axis
i.

of the wedge.
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Figure 1.1.
u =m

Plane wave illumination of a corner reflector.
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2. SURFACE CURRENT AND CHARGE DENSITIES FOR POLARIMTION PERPENDICULAR

TO THE AXIS OF THE WEDGE

To obta~n expressions for surface current density ~and surface

charge density p5,1et us replace the

problem as shown in Figure 2.?. The

stood throughout the report. Then

above problem with an equivalent

jut will be under-time dependence e

F

.

(2.1)

gure 2.1.

‘3

Equivalent problem obtained using image

,..”

‘4‘d
i74

fields
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sinO X - Cos 0 z
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9in0 x + cose z

. A
-S{ne x + COSB Z

Eoi(-cosi”; +sine ;)
E20 (-COSe; - sinfl ;j :

’30
(COSe i -szhe ;j

~% (Cose 1 +sine;)

For surface current density we have
—.— . .

K = i Xiitota, =;x#~x?”+~2xE2 +k3xE3+k4xE4)

where

n = /(u/c)

is the intrinsic impedance of air. On the surface x > 0, z = O we have

(2.2)

“ jkxsine + e-jkxsine,= -; 2Ho’(e

. .
= -X 4Ho’cos(kxsinO) ;

on the surface x =0, z>Owehave

.
-K(F)= ;x~Ho’(2e

jkzcose * Ze-jkzcm) = ~ 4H ‘cos(kzcose)
o

}

(2.3)

To obtain the surface charge densityps we will make use of a boundary
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condition derived from the continuity equation. When one of the media

is a perfectly conducting surface this boundary ”condition reads:

v“ ii = -jw~

Therefore, on the surface x > 0, z = O, we have

L@) = ;4HoiksM 8in(kXSi71B)

PJii) = “j4cEo’sinB mh(kxsGzO] ;

similarly on the surface x= O, z > 0 we have

2.1.
.,

For

. . Ps (ii) = ‘-j4~Eo’cos6 sin(kzcosg).

(2.5)

Surface current and charqe densities for polar~zations parallel

to the wedge axis

this polarization as it is apparent from Figure 2.2 the following
----

changes should be made i~”the formulation of the previous sect’. —.
r j
‘-9 .2

Figure 2.2.

on: -i
E

(2.6)
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Equivalent problem obta~ned by using image field. .
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.iioi= “H01(cos6 ; - s-h3 Z)

A
Hol(-cose ; - Si?Z6 z)i20 = “

ijo = H01(-cos8 ; + shO ~)

~40 = Hoi(cose i + sine ~)

i(i) = ~j4Ho”

PJF) = O for either x >

3. OPEN CIRCUIT VOLTAGE OF A

ANGLE CORNER REFLECTOR

The geometry of the problem

in Figure 3.1

X>o,z=o

x = (),z >0

O,z= Oorx = o, z > 0.

SHORT MONOPOLE MOUNTED ON THE RIGHT-

and the significant parameters are shown

We assume that the probe is electrically small. We will

–i
E

Figure 3,1. Short monopqle mounted on a wedge,

(2.7)

(2.8)

(2.9)

,.

. . . . . . . . ,. -
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consider only the non-trivial polarization of the incident field. As

a result of the image theorem, the induced current in the receiving antenna

js related to the open circuit voltage by

vKr
Ir =

Z:n /2 + ZL

where

Ir = current at the base of the receiving antenna

Zt=

in
input impedance of two transmitting parallel dipole antennas

obtained by removing both conducting planes and using

the image probes

,.,

Vr=Oc open circuit voltage of

..

In this section we will deal with

the receiving monopole.

open circuit voltage only. The

input impedance problem will be discussed in a separate section. Using

the vector effective height # of an antenna, we can write

Vr = 7““ if.Oc ,

(3.1)

(3.2)

The vector effective height of a short cylindrical dipole (or equivalently a

monopole on a ground plane) is given by

.
lit(i) = -1 8in0 0, ●
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which corresponds to a linear current distribution

—

—

It(z) = l.(l - IZ /R) z] :L, with k~ << 1.

For the problem at hand we have

Vr= F-1(Fi’)
Oc

● iit(F)
(R’ =d, 8’ = ;, !+’=,0)

= (-Lsine G)● Eoiejkdsine + Ls{nO G2 ● F20e-jk&in6

or

Vr=”
Oc

j2E01&;ne s{n(kdsine)

3.1. Open circuit voltage of a semi-loop probe whose axis is parallel

to the wedge axis _i
E

/

,>

-i
H

/i
/.

> /
/ Ir

/ .—.
,.

.(3.3)

-,

Figure 3.2. Small semi-loop mounted on the wedge.

...,.
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The open circuit voltage for the probe shown in Figure 3.2 is defined

as

For a small loop with constant current distributionlf is given by

3.2. Open circuit voltage of a semi-loop probe whose axis is perpendicular

to the wedge axis.
. ..”*

G

.. ...-,,..=..=—s.,.m

Figure 3.3 Small se,mj-loopprobe with axis “
perpendicular to the wedge axis.

1.,
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The

of probe

previous

pertinant polarization of the incident field for this configuration

is depicted in Figure 3.3. Following the same procedures of the

section and considering the direction of the current density of the probe

we can write:

“r=.~~i~t
Oc

I
R’=d, o’=

~.

i.e. Vr= - ti(vmaz) H: COS6 sinOc

4. INPUT IMPEDANCE OF THE PROBES

‘IT
~> +’ = 0)

kdsin8) (3.5)

Equation (3.1) of Section 3 indicates that for completion of the equi-

valent circuit parameters we need to evaluate Z~n, which will be simply

referred to as Zin from now on, in each Of the probing configurations considered

previously. Let us once more recall that Zin is the input impedance of the

transmitting antenna in the presence of its images. With this in mind we

will begin by deriving analytical formulas for the input.impedance functions

involved in the problems at hand under the assumptions imposed on the electrical

sizes of the probes. The problem of determining the impedance for the cases

considered here has been extensively explored previously; however, most often

in the form of tables and curves. We will include here the complete express-

ions for these functions,

4.1. Impedance ~rameters of two identical,—— —— .— _ parallel, and short transmitting-

“

The problem arising from the application of image theory to two antisymnetric-

ally-driven dntennasis shown in Figure 4.1. Since the probe is assumed to be

thin and short (a << 9.,kl << 1), a linear current distribution is a suitable

11



. .

approximation and the induced EMF method can be applied successfully to

determine the input impedance.

For convenience we will proceed by

assuming a sinusoidal current d“

At the final stages the results

plified by using the conditions

a, fi,and p.

stributon.

will be sire-~ ‘o:
I

imposed on

Based on filamentary current distri-
L

bution we have for the magnetic vector

0

I

I
4

< +

Figure 4.1
---

potential K(R): Two identical,parallel transmitting
antennas.

-jkR1 -jkR2
= +-$E I(z’){eR - e } dz’.

-% 1 ‘2

Illand R2 are the distances from the observation point to the source points

on the axes of the dipoles. For Ron the surface of one of the antennas we

have

‘? =4[{2 - 2’)2 + az], RZ = J[(z - Z’)2 + pz] for p >> a. (4.1)

The electric field on the surface of the right hand side antenna is given by

_E=-jw(l+ ~WOj~= - ;jJl +@-# Az(z)
kz k az

A

._ z V. (3(Z) (4.2)

where as usual a slice generator has been assumed. Multiplying (4.2] by I(z)

12
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@
and integrating over the source region we obtain

2
V. I(O) ‘&fLg~LLI(Z)I(Z’ )(l +&&)(G1 - G2) dzdz’

..

-jkR1 . -jkR2

where G,(z,z’) = e , G2(Z,Z’) = ~
‘1 ‘2

G(z,z’) = Gl(z,z’) - 52(Z,Z’).

The first integration with respect to z amounts to the evaluation of the Z-

component of the near zone electric field due to a current distjributicnof the form

I(Z) = Imstnk(L - IZI) Izl s k

o
Therefore it is given by [3]

j%z)(l + ++)G(Z,Z’) dz = \ {G(2,z’) +
-!2 k ilZ

+ G( - R,Z’) - 2coskR G(O,Z’ )}.

We then have

—

z.
jlxl~

In 12(0) = ~ f {G(!t,z’) +G( -L,Z’)
-!3

2 cosk~ G(O,Z’)} I(z’)dz’,

z. = jnIn ~g{G(%z) + G( - I,z) -2 coskt G(O,Z)IX
2nsin2kt o

x sin k(L - Z) dz* (4.3) ‘

13



Let us note that from the circuit relations for these antennas

v, ‘w ‘Z1212

V2
= ‘2111 + ‘2212 “

It follows that for antisymnetrically driven antennas we have

z. =Z,, -Z,* .
In

Let us define

(4.4)

combining (4.3) - (4.5) we obtain

Therefore the problem of finding the input impedance reduces to the evaluation

of g(a) and ~(p).

<(a) has been previously evaluated by expressing it in terms of sine and

cosine-integrals [ 4] We wjll choose another approach which enables us to

obtain a series expansion for ~(a) and rj(p),and in particular to reduce

results to simplified forms under certain assumptions on the parameters.

have

the

we

14
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Therefore we are led to define

s2 e-jk4(x2 + a2)
s(~,a) = sinkxdx

o 4(x2 + a2)

~-jK/(x2 + a2)
C(~,a) = JL coskxdx

o /(x* + a2)

(4.7)

(4.8)

o Then in terms of s(~,a) and c(!,aj we can write

(.

C(a) = s(~,a) + sin2k2(c(2L,a) -c(!t,a)) +

cos2kL(s(21,a) - s(~,a)) - 2.s;nk!&oskti(2Ya) + 2 cos2kL s(2,a)

g(a) = 2 s($,a) + (2 s(~,a) - s(2t,a))eos 2kL - (2c(L,a) -c(21,a))sin2kl

(4.9)

In order to evaluate s(~,a,)and c(L,a) let us introduce the following dimension-

less parameters:

Then
-jEJ(x2 +a2)

s(!.,a)= ~1 e sincxdx z
/(x* + a2)

s(~,cx)
o

—

e-j/#(x2 +a2)
c(l,a) = j“ coscxdx : c(tta)

o @ + ~*)

15
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with

f

1 xe-jEAx2+Cfz) 1 ~-jZj~x2 +az) I1eos~xdx = - ~
(xz +az) JC

Cos<x -
0 0

1]-=
s

~-j&(x2 + a2) sin~xdx
Jo

Hence

as= 1

‘1

1
-j~<xz + az) ~o~cx . -* (e-j~~coag-e-jag)

ag -Ze o

Similarly

ac
1 ~e-jg~x2 +az)

- -j {1 e
-jgflxz +U2)

%-g--
C?i?s<xdx- J 8i?2~xdx

o /(xz + az)

(4.11)

(4.12)

We will proceed by finding a series expansion for ~and %-. For the sake of

numerical compution we will develop two different series expansions depending

on the relative values ofac = ka.

;; E@!.::{(~-l)n+ (pl)n -*ffn}=-
n=l n!

S(E,CX)= - + ; J+n~{(f3-l)wm)n - 2an} (4.13)
n=l

16
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~l-n
s=n {(@-l)n + (s+l)n}-UB(;)-l)n + (B(;)+l)n} - Z’-nan .

(4.14)

Similarly we have

= /4(x;:a2) I1c(O, a) =Ln(x + J(xz + az)) =ln~
o

a

,.O

8+1 1
2 j, f=# {(MY’ -c(~,a) = in ~ - – (~+1)”}

.=
(4.15)

~l-n
[(B-l)n - (6+l)n] - [(B(;)-l)n - (6(;)+1)”1 b (4.16)

Cn =

The previous expressions are so far exact. Let us introduce

approximations under the assumptions

a = ~<< 1 < = kfi << 1

Then

B(a) = 1 + *a2 + 0(a4)

2[6(;)+11 2 2 2
in =kn4(l +%+ ...) -,2gn2(l +&+ ...) =O(a )

(6(a)+l)2

= 2’-n ~ (;) ‘Em[l+(-w -ml - ! (;) f3m(~)x
‘n m=O m=O

X[l + (-1) ‘-m]-2’-nan

17



‘n
~ ~ ~2~-n

- 1)(~)[1 + (-l In-ml - a~nl + O(uz)
m=O

= (21-n - 1) 2n - ~dn~ + O(a2) = (2 - Zn)-cdnl + O(az)

where ~nl is the Kronecker delta.

Cn = -2
l-n ~ (n) f3m[l

- (-l)n-m ] + mfo (;) ~m(;)[l - (-l)n-m]
m=O m =

= (2n - 2) + O(az) .

Thus we have the following approximations:

., s(~,a) = ; ‘nil *+ j2a&} + O(a2g)

m
2s(E,ct) ~ {ny+g (2n -- S(zg, ;) = =

i-

2c(5,a) - c(2E, f)= -Lna - ;;*
n=l -

-i-

Finally for G(a) we obtain

(4.13’)

2) - j2a?l
* /

O(U2C) (4.14’)

*n - 2)

O(a2g) . (4.16’)

18
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11) ag >> 1

For this case we have C=kLs ag~” Following the above formulations

we set:

s(c, a) = s(O, CI) + e-jEa : S-nEn
n.o

C(c, ci) = c(O, a) + e -j~ay Cncn.
n=O .

Then

as _—-
a~

e-jga ~ n.n&n-l - jae-jga nnio s c“
n=l =

= e-jga w~ [-jasn + (n+l)sn+ll En
n=O

X {(f3 - a - l)n + (f3 - a+ I)n}

where we have defined

a=
n

;{(6 -a- l)n+ (f3 -ail)”}; n=O,l ,2,...

Therefore we have

-jasn + (n+l)sn+l . (-j)n ,~~+; n=O,l ,2,3,...

(4.18)

(4.19)

(4.20)

(4.21)

Recursion relation (4.21) starts off with 8.’ = O which is an immediate

consequence of (4.18):

‘o =0

=0
‘1 1

.(s au

‘2=-
2;(+ - +)

19
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s3=L#@.a3
32

+ aZU1)
.

.. *** ● ✎ ✎ ✎ ✎ ✎☛ ✎✎☛ ✎

s
(.j)n-l- ~fi - a~n-l ~ CZ2Un-2=

n n! n n-1 n-2 --- - + (-l)n-lan-lol)

n=l ,2,3,...

Similarly for ~ we have

{f3 -a+ l)n]

with

Finally

.n
-jci Cn + (n+l) cn+l = * n+l ! Yn+l ; n=O,l ,2,...

co =0

c1
= ~,

.
“2 ayl

c2=-d(7-T)

. . . . . . . . ....

Cn = I+.&(L-?*.+ ‘+ (-1)
n-lan-l

n ..... Y, )

(4.22)

(4.23)

(4.24)

(4.25)

In general (4.18) - (4.20) together with (4.22), (4.23), and

(4..25) are compact enough to permit numerical computation of s(~, a)

and c(~,a). However we wobld like to discuss the approxlmatjon and

further simplification under the conditions: ‘

20
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.

a= f>>l

We have

B-cf = 4(

with

“w
+(-/) - (y,= ~ (-l)M+l ~2m-3)1 1 ~-(2M-1)..

m=l z%!

(2m-3 )!! = (2m-3)(2m-5) - - - 3.1 m=2,3,. ..

(-l)!! = 1

1
z {(B-a+l)ncs=–

n
i- (&@l)n} = ; & (:)( B-a)m[l+(-l)n-m]=

1
~ {(~-a+l)n - (fl-a-l)nl = &

n
Yn = 1 (~) (B-a)m[l-(-l)n-m]

m=O

(@-a)m = (~a-l)m(l + ~ (-l)r+l
(2r+l )!! a-(2r+2)

r=O 2‘+l”(r+~)! )m

= (~a-l)m(l +m r~O(-l)r+l
(2r+l )!! a-(2r+2) +

Zr+l= (r+2)!

+ m(m-1) a-4
~ (1 + ~ (-l)r+l <2r+3)’~

.. -(2r+2))2 + - - -)
2

a
r=O 2r(r+3)!

1 ‘4 - $U-6) + ()(a-g)S-~.~a-1(1-~a-2+E u

(13~a)2 ‘$a-z (1 - ~a-z +-&a-4) + 0(a-8)

(6-a)3 =~a-3 (1 -~a-z) + 0(cz-7)

(B-~)4 = ~a-4 + 0(a-6)

‘1
= (B-a) = ~a-l - ~a-3 +~a-5 -AU-7 + ()(a-g)

a2
= 1 + (~-a)z =l+~a-2-~ a-4+&a-6 +O(a-8)

1

(4.26)
-7

‘3 = 3(f3-a) + (6-a)3 = #a-l - ~a-3 +’~cl-5 + O(a )

‘4
‘ 1 + 6(f3-a)2 + (@-a)4 = 1 + ~a-z - ~cl-4 + ()(a-6)

. . . . . ..*., . ..*O ● **

21



y3= }[1 + 3(B-Q)2] = ~(1 + ~ et-z - ~ U-4) + O(a-6)
I

(4.2;)

Y4 = +[4(@-a) + 4(#3-a)3] = +(2a-1) + 0(a-5)
I

. ..*. . ..** . . . . . . J

From (4.22), (4.25) and (4.26) it follows that

-1
sl(a) = (2a) - (2U)-3 + o(a-5)

<

.
-2s2(a) = - ~ [(2a) - 2(2a)-4] + O(a-5).

-1
s3(a) = - ~ I~(2a) + $2a) ‘3} + ()(a-5)

+- [$(2a) -2s4(a) = - 2(2a)-4] + O(a-5).
. . . . . . . . . . . . . . . . .

c,(a) = -j

,..
L(-u + (2a)-1c2(a) = - z! - (2a)-3) + O(a-5)

C3(a) = L_(uz - + + ;(2U)-2 - 3(2u)-4 + O(a-5) “.

1c4(a) = ~(-a3 + ~ + ~(2a)-’ + #2a)-3 -5+ O(a ). &-
. . . . . . . . . . . . . . . . .

Also, let us note that

‘ (4.27)

-1c(O,a) = gn(a + 4(1+ a-2))= Ln(l + U-l + j (_])m+~ ~
m=]

~ I@aJAa’q
Zmnl!

C(O,a) = a -I+m
I (-l)m+l @!@L!-! -2i11a-

m= 1 2mm !

22
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.1 m* {a-’ + ~ (-l)m+z (2m-3)”
.. -Zm}z+ ...a

m=l 2mm !

-1=a - ~ a-3 + ()(~-5)

2c(o, a) - C(O$ ;)
-3 -5

‘a + O(a )

Now we can proceed to evaluate c(P).

C(P) = 2s(5,a) + ccJs2&(2s(&x)”- S(2E, ~))

(4.28)

= e-jga
I= (2G)n{21-nsn(a) + cos2g x

n=o

l-n
x (2 sn(a) - sn(~)) - ~~~z&(Z1-ncnia) -

- C@} - sin2E(2C(0,a) - cm;))

= e-jca ~m(2~)n{22-n8n(a) - Sri(f) +
n=O

(-* +@#”4-- - -)(2’-nsn(a) - sn(~))

- (2E - (?#3 +--- -)(2’-n en(a) - Cn(f))}

!. ---
@in2C (2C(0,a) - C(o,;))

g(p) = e-j~a {~a-3 (2:) +j~ a-2(2E) 2 - (2g)3(+a -’) +

+ O {maz(~a ‘5, E3a-3)}}-

- a-3(2~)+ o(~~~(a-3&3,a-5~)).
Noting that

(4.29)

—

—

a’ ;= k?.
c ‘

we can write

23



L(p)=be -jkp(2:)4{-(k~) ‘1 + j3(kp )-2 + 3(kP)~3}

~ 2&)4(k P)
-3 -~, &3)}.- & + O{maz(&a (4.30)

Using (4.6) together with (4.17) and (4.30) We finally obtain expres-

sions‘or ’11and’12:

<2
%= j“2 ~(a)=*~-2(1-r+i+”””)-22rsin <

x C(a)

c =kk;

jn
~(p) = * (.fz + + + o(c4))LfP)

2Trsh2c

%’- ‘jkp(2~)2{-(kp)1“nTe ‘1 + j3(kp)‘2 + 3(kp)-3}

&2E)2(kp) ‘3 + 0{.~4m@”(kp)-3, (kp)-5]}. .

Then the input impedance for the problem at hand is given by

z =
in ’11 - $2 “

Let us note th?itin (4,32), as in previous sections, we have p=2d.

(4.32)

(4.4)

4.2 Input impedance of two coaxial small circular loops in transmitting

mode.

For an electrically small loop we assume that its current distri-

bution is uniform when driven by a localized voltage. The conventional
o
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● induced EtlF method will be applied to determine its impedance. How-

ever, the formation is much more complicated than the case for linear

antennas. Therefore assumptions imposed on the geometry of the probing

antennas justify adoption of simpler approximate methods in ad hoc

bases for evaluation of self and mutual impedances.

As can be seen from the application of the EMF method to the anten-
.,.

nas of the previous section the self impedance
. . . . .

.-
can be obtained

. ..
..

Y’

Y

Figure 4.2 Coaxial transmitting loop antennas

by removing the image of one antenna and evaluating the input impe-

dance of the isolated loop.

The input resistance of a constant current loop may be simply

evaluated by an application of Poynting’s theoram [ 5 ]. The result

is

—

(4.33)
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A rather simple way of obtaining a compact formula for the input o

reactance of the loop is to make use of the reactance of the loop based

on the circuit theory. According to [6] the reactance of the loop is

given by:

(4.34)

where L! is the internal inductance of the wire, LO is the so-called

selected mutual inductance, and b is the radius of the wire of the

loop antenna. This result compares very well with the leading term

of the formula obtained for Xin by application of the wave theory as

djscussed in [71. Combining (4.33) and (4.34) we obtain the self

impedance of the loop:

(4.35)

4.3 Mutual impedance of the two coaxial loop antennas

As for the case of monopole on’ a corner reflector, we will pre-

sent a simple and compact formulation for 212 of two small coaxial

loop antennas. We will use the EMF method again and’ therefore the

Fresnel field of a constant current loop is needed.

The Fresnel field of a constant current loop antenna has been pre-

viously obtained in the form of a rapidly converging power series in

[u],. [9],:[10]~ and [111. We will obtain another series expansion

which closely follows the ones given in [9] and will prove more suita-
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o ble in application of the EMF method.

Using the addition theorem for Legendre and spherical Bessel

z

Y

x

Figure 4.3 Geometry of a constant

e
current circular loop antenna

functions the potential integral for A(R) is evaluated.
——

For R > a

we have [9]

‘+’(4n+3)(2n)!i ‘-~)n(n+,)(nl)zx
n=O .

J2n+l(ka)h\~jq(kR)p\n+l(c~s6).
Let us set

with

V2 2+~’= R2 + a2

(4.36)

(4.37)

‘v v’ = aRs{nO ,

comparing with:
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IF - R’] = /(R2 + a2 - Zal? Cosy)

where Cosy = sin O Cosbt,

We conclude that @’is the angle between two position vectors ; and ;’

with angular coordinates:

a .;, $ =O; e’=;, ($= +’ ●

From (4.38) we have

v
= {;(R2 + a2 */((Rz + az)z - 4(a F!s-im0)2 )}%

v’

(4.39)

Now we can use the addition theorem for the spherical Hankel function

and the addition theorem for Legendre polynomials:

Pn(cosY) = Pn(cos6)Pn(cose’) + 2 f * P:(COS6) x
m=l

x p~(cose ’)cosm($-$’) ,

where Cosy = Cosecose’ + Si?zes;nel cos($_ $’) = C06$’. Following ,

analogous steps which led to (4.36) we obtain

-jukaIo
ii(~) = [ ~ ) ;

4n+3
(n-i-l)(2n+l)[pln+l (0)]2 x.

n=O

x j2n+1(kv’ )h~~~l(kv) , V’ < v,

Furthermore we have [12]

I
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r(+ + ~V +
P:(o)= 2!TT-“*cos[ @l+ ~)]

;P )
;

r(l + & - ;V )

Therefore:

Pjn+l(o) = (-l)n+’.&&. ..
Finally we have

jukaIo
I(R)= $(- ~ ) y

(4n+3) (2n+l )
n+l

[J&L] 2 ~
n=O 22n(n!)2

x j2n+1(kv’ )h2n+l(kV), V’ < V. (4.40)

Thus electric field intensity can be obtained as:
.

——
E(R) = -jw(l +~vv”) ~= -joii =

jzn+l(kv’)hzn+l(kv)t~’ < v (4.41)

Note that in obtaining the expression (4.41) we have used the follow-

ing relation:

Now we are in a position to obtain the mutual impedance of the

antennas shown in Figure 4.2. Application of the reciprocity theorem

to one of the two antennas, say antenna 2, yields [13].

where

Vr = open circuit voltage of antenna 2 in receiving mode
—

It
= current of antenna 2 in transmitting mode

–i
E s incident electric field when antenna 2 is removed
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-Jt ~ current density of antenna 2 in transmitting mode.

Noting that

Y2 ’20C
321 = y ~=11’

2= o

we can equivalently write:

$

~ f ~i.~2(~’)dv’
’21 = - 1112 ~, (4.42)

where

72(1’) = & 126(cos8 @.K.#.

Using (4.41) in (4.42) we have

x j2n+1(k~’ )h\~~l(kv) .//(cosO’) 6(R;;a) R’2h3’dR’dB’d$’ ,

so that

= &ka)2 :
4ni-3

’21 In+l )(2n-f-1) ‘p~n+l (0)]2 x
n=o

(2)
j2n+l(k~’ )h~n+~(kv)0

For lkal <<1 and a << P we have

x= 2aRsin0 = 2a2 << 1
R2 + a2 p2 + 2a2
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(4.39’)

o



●

—

v’
v

= (R2+ az)%{+[1 i 4(1 - ~z

v’ = (R2 + a2)% ~[1 + 0(x2) I = (P2 ~22a2)% [1 + 0(x2)I,

1

(4.44)

v= (R2 + a2)% [1 - +X2 + 0(x4)] = (p2 + 2a2)% [1 + O(xz)].

Therefore:

kv’ = ka
4

[1 + 0(X2) I = ka
(p212a2)% (p2~2a)2

1

2 > [1 + o(~)l,
P (4.44’)

4
kv = k(pz + 2a2)$ [1 + 0(x2)] = k(oz + 2a2)% [1 + O(~)l.

P
J

Let us note that [14]:

.
al

-1 m ~2m
jn(z) = (~)% Jn+~(z) = Znzn ;~o ~-’ .

‘2)(z) for large argument z reads:The asymptotic expansion for hn

h(2)(2) = (~) % H~~~(z) = ~ e-j(z-(n+l)~) ~n

p-l (-n)m(n+l)m
X{l + O(z-p)} .

m=O m!(-2jz)m

We conclude from the above that under the conditions imposed on a and p

the first term of the series (4.43) will be sufficient for computation

‘f ’21:

’21 = n#(ka)2( p~(0))2j1(~’)h~ ‘)(h) +

+ O {(ka)2(kv ’)3(W )-1}

(4.45)
(2)(~) + O{LKAJ}

= n~(ka)2 j,(h’)h,
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. .

+ O{U2J$
(kp)

(4.46)

Let us once more recall that the impedance which should be used

in (3.1) can be obtained from (4.35) and (4.46) by means of

z
in = ’11 - ’12 = ’11 -Z21’

and changing p to 2d.

4.4 Input impedance of two anti symmetri cally” driven identical coplanar

circular loop antennas.

The self impedance for this configuration’s of loops under assumptions o

imposed on the geometry of the antennas in Section 3.1 is identical to

the input impedance of a single loop antenna and can be obtained from

(4.35). The mutual impedance can be obtained in exactly the same man-

ner as followed in Section 4.3, however the integrals appearing in this

case are a little involved and for the purpose of the problem at hand

it suffices to use an asymptotic formula for Z which is developed in
12

[ 15 ] based on effective heights of the transmitting antennas:

“Figuie 4.4 Coplanar loop antennas
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Z12 = jn - (~1-~,) = jn --x

x [~(ka)2sin0116, =~ x [~(ka)2Stn62102=~(~2”~Z) ,,

4 e-jkp
’12 = -j ~n(ka) ~p— . (4.47)

5. Correlation of the unperturbed surface fields to the equivalent

circuit parameters of the probes.

In previous sections an attempt was made to completely describe

the equivalent circuit parameters of the different probes mounted on

a corner reflector. Since any physical measurement performed by the

probes can be described completely in terms of the open circuit voltage

and the input impedance of the sensors, we will attempt to relate the

surface field quantities in the absence of the sensors to the equivalent

circuit parameters of the sensors, or in other words,to the measur- ~

able quantities.

In Section 2 it was shown that for a plane wave illumination of the

wedge with electric field polarized perpendicular to the wedge axis

surface current and charge densities are respectively given by

——
K(R) = -~ 4H~ COS(kxSi71e) x > 0 2=() (2.3)

PS’(E)= j 4= Eio si~es;~(kxs;ne) x > c1 2=0 (2.5)

On the other hand the open circuit voltage of a short monopole mounted

on the wedge was found to be

‘i;c = j2flE~si~f3sin(kxsi~e). (3.3)

—
Comparing (2.5) with (3.3) we establish that

—
.2Er

Ps ~ Voc (5.1)
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The unperturbed surface charge density IS therefore related to
*

the open circuit voltage of the probe by an equivalent capacitance per

unit area

farad/m2 . (5.2)

Equation (5,1) is the manifestation of the electric coupling of the

monopole probes and further justifies the name of ‘charge probes’ given

to this kind of sensor.

Similarly the V;c for a semiloop whose axis is parallel to the

wedge axis was found to be

.
V:c = -j2ti(una2 )H~cos(kxstn9) .

Comparing (3.4) with (2.3) we have

2
V~c=jw~kx.

(3+4)

(5.3)

Thus, the equivalent inductance relating V~c to unperturbed current

density is given by

henry-m. (5.4)

It is obvious that the coupling of the probe to the electromagnetic

field in this case is of magnetic type. Let us finally note that for

the plane wave whose electric field is polarized parallel to the wedge

axis the surface currents and the corresponding surface magnetic field

can be detected by a semiloop sensor whose plane is parallel to the

current lines. From (2.7) and (3.5) we obtain for this case

(5.5)

That is to say the equivalent inductance for this case is also given
@

by (5.4),
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Let us conclude from the above results that as long as our sen-

sors are electrically small, low frequency elements relating the open

circuit voltage of the probes to the surface fields only depend on

the geometrical characteristics of the probes and are independent of

the characteristics of the source.

\
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