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Abstract

The fields excited by a vertical current sheet source inside a

parallel-plate waveguide are.studied in this work. The analytical

expressions for the fields have been derived, and the results of the

numerical evaluation are presented. The field distributions have been

obtained as functions of the longitudinal propagation constant and the

transverse coordinates of the guide.

in graphical forms, and the computer

contained in the Appendix.

The numerical results

program used to obtain

are presented

the results is
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I. INTRODUCTION

The finite-width parallel-plate waveguide is used as an El@ simulator

for guiding electromagnetic waves. There have been

devoted to the analysis of the guide,

decompose the field Ln the guide into

time convention):

Rushdi et al.

two components

a number of studies

[1] and Marin [2],[3]

(for the exp(jwt)

The first term~, describes the contribution from the discrete spectrum,
J.

i.e., the so-called “leaky-wave” contribution.

superposition of plane waves, the contribution

In references [1] - [3], Only;l is studied in

The second term;2 is a

from the continuous spectrum.

detail. This information is

useful, of course, only if $ is negligible (for certain guide geometries

and source configurations). To test this assumption, we can either evaluate

+
E2 directly or calculate the total field ~ instead. We take the second

approach. In references [4], [5], Krichevsky and Mittra determine ‘~due

to a current sheet in the guide by the !Jiener-~opftechnique. Their results,

however, are valid only if the cross-section of the guide is large in terms

of wavelength. In the present report, we again calculate ; by a different

technique moment method which is suitable for a guide with small-to-moderate

cross-section.
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To calculate the field, we can first write the current source in the

form of

We can then calculate the field due to

for different 9 values, and obtain the

the integrand in the above equation

total field by superposition. In

this report, we investigate the electromagnetic

‘jBz for differentsource in the form of ~(x,y)e

propagation constant B. The step iuvolving the

fields due to the current

values of the longitudinal

integration over the spectral

variable @ is not carried out in that work.
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11. STATEMENT OF THE PROBLEM

The geometry of the problem is shown in Fig. 1, the open parallel

waveguide of width 2L, height 2H is infinitely long in the z-direction,

i
and is excited by a y-direccion oriented current source J defined as:

ti = jJi(x,y)e-~Bz

where

~m_ ;

‘P Zho
p=l, 2, 3, ““”

(1)

and ~ is the Dirac delta function. Rect is the rectangular function defined as:

{

Itl <1/2l;_
rect (t) = . (3)

o; elsewhere

In Equation (1) and all the following equations in this report, we have @

adopted a convention in which all equations are given in both cases of odd

and even node current excitation with the upper equation for the odd case,

the lover, the even case.

The total electromagnetic field can be decomposed into two parts:

+t “
E X1+39 , it=ii+r .

+i= E and 31 are the incident fields produced

by the current source in free space with the waveguide removed. Es and 8s

are the scattered fields generated by the induced current on the waveguide

+i.when illuminated by 11 and H . The incident field is first examined in the

next section.
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111. INCIDENT FIELD

The incident fields ;Z and~i can be computed via the ~-oriented

-i
magnetic vector potemtial A produced by the impressed current source.

xi=~Ai(x,y)e-j6z .

jflz
The z-direction variation for all fields is e . Therefore, it is suppressed

in the subsequent equations. Also, the subscript p in a will be omitted in

the following equations for convenience of notation.

The vector potential & satisfies the Helmholtz equation:

where k: = k2 - i32~ O ,

in which k = u& is the wavenumber. The solution to (5) is

ho sin ay’
Ai(x,y) = $

~{}

~(X,y ; xo,y’)dy’ ,
-h. cos ay’

(5)

(6)

(7)

where G is the Green’s function defined as

[

H&2)(k:) ; k2.> fi~

G(x,y ; X’,y’) = Y (8)

j2~ KO(k;) ; kz < $2

and s = J(x - x’) (9)2+(y-yf)2 .

H(2) and K. are zero-order Hankel.’sfunction of the second kind and modffied
o

Bessel’s function of the second kind,

~i
E and ~i can be derived from A%

respectively.

by using the following equations

(lOa)



E~(x,y) =
* [*+k21Ai(x)y’ y

H;(x,y) = k& Ai(x,y) ,

H~(x,y) = O ,

~i(x,y) =& aAi(x,y)
z P ax -

How, we define B1(x,y) Z
aAi$:,y)

.

From Equation (7), we have
/

-+(1sin ah
Bi(x,y) = - 2.

4J
0 [G(x,y ; xo,ho) fG(x,y ; xo,-ho)]

cog ah

\

ho cos ayf
~a

J{}
)

G(X,Y ; xo,y’)dy’ .
-h. sin ay’

The partial derivatives of Ai
i

and B are obtained from

(lOb)

(1OC)

(lOd)

(lOe)

(lOf)

(11)

aA1(x,Y)
h sin ay’

ax
~{)

=fi(x-xo) 0 G’(x,y ; xo,y’)dy’ , (12)
-h. cos ay’

[

k
t ‘d~z)(kts); k2 > 62_—
s

where G’(x,y ; x’,y’) = . (13)
k
tti-— Kl(kts) ; k2 < 92
Sll

H~2) and K1 are, respectively, the first-order Hankel’s function of the

second kind and modified Bessel’s function of the second kind.
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Also, we have

[}

*=. &x. xo)‘i”ah” +G’(x, y ; Xo, -ho)][G’(x,y ; xo,ha) -
cos aha

h Cos q’

~{}

o
~a

)

G’(x,y ; xo,y’)dy’ . (14)
-h. sin qf

[}

+=-$ ‘in aho [(y- ho)G’(x,y ; xo,ho)

cos ah
a

{1cos ah
*a 0 [G(x,y ; Xo,ho) ;G(x,y ; X@o)]

sin ah

h sin ay’

f{}

+a2 “

}

G(x,Y ; Xo,y’)dy’ .

-h. Cos Sy’

Substituting Equations (7), (11), (12), (14), (15) together with

(15)

Equations (8) and (13) into Equation (10), we can obtain@ and~i.

10



IV. SCATTERED FIELD

In this section we examine the scattered fields $~ and fi~. Since

the induced current ~s on the wavegui,dehas two components,

+s
J = iJ:(x) + h;(x) ; (S6)

the magnetic-vector potential ~ due to the induced current ~ also has

two components,

r = ir(x,y) + 2A:(X,Y) @

Both A: and A; satisfy the Helmholtz equation:

\

(17)

where u = x or z, and the solutions are

I
L

f(x’)[G(x,y ; x’,h) t G(x,y ; x’,-h)]dx’ ,
@’y) ‘* -L x (19)

/

L
$x,y) = -% .f(x’)[G(x,y ; x’,h) f~(X,y ; x’,-h)]dx’ ,

4J _L Z
(20)

~s and ~s can be derived from is by using the equations given below

-sLx(x,y) =

z;(w) =

E:(x,y) =

H;(x,y) =

Ii;(x,y)=

H;(x,y) =

[

~2
-jfdii~(x,y) +* - As(x,y)

1
~ As(x,y)-j6 ax z _ ‘a~ x

(21a)

1

[

’32
—— As(x,y)
ju~e ax3y x 1

‘As(x,y) ,- jB ~y ~ (21b)

L

(-”6) ‘a s
-juA~(x,y) +* ~ Ax(x,y)

1
- j6A~(x,y) , (21C)

13
-— A;(x,y) ,
P ay

(21d)

~
~ [-j@x!Y) -+ QX>Y)I , (21e).

12--— ..$(x,y) . (21f)
~ ay

11



Note that J; and J; are still unknown quantities; however, they can be

determined by enforcing the boundary condition that the total tangential

electric field be zero

E~(x,h) + E:(x,h)

E;(x,h) + E:(x,h)

Due to the symmetry of

condition on the lower

explicitly mitten as

[=%+ “lA:(x*h’
(-B2 +k2)A~(x,h)

on the surface of the vaveguide, viz. ,

=0 ; ]x]:~, (22)

lx~ < L .=0 ; _ (23)

the problem, we do not have to enforce the boundary

plate (y = -h). Equations (22) and (23) can be

- je &A~(x,h) = -jtiuzE;(x,h) ; 1x1 ~ L , (24)

- js +A;(x,h) = -jwu&E;(x,h) ; lx! ~L . (25)

!4ethen substitute Equations (19) and (20) into Equations (24) and (25) and

numerically solve for J; and .I~to obtain ~~ and ~ .
s

12



v. NUMERIC~ COMPUTATION

To solve Equations (24) and (25) numerically, we first transfom

them into finite difference equations:

A:(X + A,h) + (k2A2 : 2)A:(x~h) + ‘;(X - “h)
.

~2A2 i

j ~ [A:(x+A,h) - A;(x- A,h)] = -j ~Ex(x,h)
; 1x1 &L , (26)

and -j ~ [A~(x+A,h) - A;(x- ‘~h)~ ‘k~A2A~(x’h)

where L is a finite i.UCrement in XI
Equations (26) and (27) can be solved

by the method of moments. we expand J: and J: in sets of N subdomain basis

functions as shown in Figures 2a and 2b. We write

x -x

J:(x) = n~l an (1 n
rect — A

where x =nA-L
n

2L
‘“m ‘

and (28) satisfies the end condition

J&L) = O .

f(x) = nilbn~n(d Y
z

x-x

[1 n
Pn(x) = rect — n= 2,3, ● *” (N-1) ,

A,;

6
PN(X) “ —

G
; ~-$~x~L .

(28)

(29)

(30)

(31)

(32)

(33a)

(33b)

(33C)
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It should be pointed out that the A’s in Equations (28) and (32) are not

necessarily the same as those in Equations (26) and (27); we have chosen

the same symbol for the sake of convenience. Next, we enforce (26) and (27)

simultaneously at a set of N match points {Xm’S}. Again, {xm’s} are chosen

to coincide with those points {Xn’S} in (29) for the sake of simplicity.

We then have

A~(xtil,h) + (k2A2 - 2)A;(xm,h) ; A~(xm_l,h)

-j ~
k2A2 i

[A~(xtil,h) - A~(xm_l,h)] =-j — Ex(xm,h)
ul

and -j ~ [A:(xtil,h) - Aj(xm_l,h)1 + k~A2\;(xm,h)

k2A2 i
Jy=-” Ez(xm,h)

(34)

(35)

where m=l, 2, ‘o*, N.

By substituting Equations (28) and (32), the expansion function expressions

for ?X and ~~, into Equations (19) and (20), A~(xm,h) and A~(xm,h) become

N
~:(Xm , h) = A E aSa

4j n=l n m,n Y (36)

a

~

Xn+hi2
where S = [G(xm,h ; x’,h) tG(xm,h ; x’,-h)]dx’ ;

m,n (37)
xn-A/2

n= 1, 2, ““”,N,

m=o, 1, ●**, (N+l),

ti’b
and A~(xm,h) = -p=

4J n~l bnsm,n ‘
(38)

where S
:,1 = [;A’2fi

[G(xm,h ; x’,h) t G(xm,h ; x’,-h)]dx’ , (39a)

Sb = Sa
rn,n ; n= 2, 3, ●*o, (N-1), (39b)

m,n

15



(~b=L r/ L- ~r [G(xm, h ; x’, h) t G(xm,h : x’,-h)ldx’ (39C)
m,N ~.”A/z *

In’= 0, 1,”~”, (N+l) .

su~s~ituting Equations (36) through (39) into Equations (34) and (35), we

[

‘S%l,n m-l,rtl[-~ ,+ (k~A2 - 2)Sa + Sa

1[ 1

~ (s~l ~- S~-l,n)l [an]
m,n

[-j y (s>~,n- S:l,n)l
[k~h2S~,n] [bn]

[1

[+ Bi(xm,h)]

. -A2 ti ,. (xl)
P

[-j@i(xm, h)]

The above equation can be readily solved for an and bn. The unknowns Al and

A; can then be calculated using Equations (36) through (39), and the scattered

fzeld can be determined from Equation (21) and, therefore, the total field.
@

The equations for calculating Sa
b

‘s and S ‘s are given in the following:
tu,n m,n

(.4).Evaluation of S~,n’s

(i) Ifm=n ,

Sa = 10 k igge
In,n

\

xn+A/2

where image = G(xm,h ; x’,-h)dx’ ,
x#2

I
Xm+A j 2

and I =
o

G(xm,h ; x’,h)dx’
xm-A/2

r +A/2
=2m G(xm,h ; x’,h)dx’

x
n

(41)

(42)

(43)

(44)

16



.

—

[

\

xm+A/2
2 H$2)[kt(x’ - xm)]dx’ ; k2 > f32

xm
.

~~

4J
Xm+Aj2

T
KO[kt(x’

x
m

[

~

/

ktA/2

k
H&2.)(t)dt

to.

\

ktA/2
Q

KO(t)dt
rk

to

Since simple algorithms have been deve

- xm)]dx’ ; k2 < 82

;k2>f$2

.

kz < $2

(46)

oped to evaluate the integrals

of H$2) and K. from zero to any positive number [6], Equation (46) can be

evaluated efficiently and accurately.

(ii) Ifm~n ,

Sa =
m,n

[

\

x
m

xn-Aj2

\

Xni-Aj2

x
m

G(xm,h ;

G(xm,h ;

where the image

(B) Evaluation of Sb ‘s
ci,n

First consider S; ~,
9

Sb
=11+12 ,

m,l

l’-
X

x’,h)dx’ - m G(xm,h ; x’,h)dx’ timage ; m>n
X +A/2

u
(47)

\

xn-A/2
x’,h)dx’ - G(xm,h ; x’,h)dx’ *image ; m<a

x
m

is given in Equation (42).

which is expressed as:

(48)

where I
,= /:--’2 K [G(xm,h ; X’,h) fG(xm,h ; x’,-h)]dx’ (49)

and 12 =
j
‘~+A’2 T~L+x, [G(xrn,h; x’,h) tG(xm,h ; x’,-h)]dx’ .. (50)
x,-A/2

17



(i) Ifm+O ,

11= j--:’”(/z [G(xm,h ; x’,h) i G(xm,h ; x’,-h)j

}
- E ~G(xrn,h; “s’) ‘ ‘(xdh ; “$-h)] ‘x’

+ [G(xm,h ; -L,h) t G(xm,h ; -L,-h)] j:;’2,&d.

(51)

where /:;’2=
dx’ can be evaluated analytically,

I
-L+A/2

which iS

-L

(ii) Ifm=O ,

first, the small

& dx’=fi A. (51a)

argument behavior of function G is obtained:

lim G(-L,h ; x’,h) = -
$lkt(LJx’!l y

(52)

xl+-L

where y = 0.5772156649. Then, in evalmting 11 in Eq~tion (49),

the singularity at x’ = -L ~ firgt subtracted from, then added

ta the integrand, and by using Equation (52), we have

The first integral in the above equation

integration, and the second integral can

kr.I}.&+dx’ . (53)

is amenable to numerical

be evaluated analytically:

18
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..d~,=\~~(/~ ,[G(xm,h ;x’,h) iG(xm,h ; x’,-h)]

}
- [G(xm,h; X’,h) H(xm,h ; x’,-h)] dx’ +S:,N ; (58)

m = 0, 1, ● “” (?? +1) .

Using the equations obtained above to compute S~,n’s and S~,n’s in

Equation (40) and inversingthe matrix,we then are able to determinethe

an’s and bn’s.
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VI. NUMERICAL RESLiiTSAND DISCUSSION

The results evaluated by the methods discussed in the last section

are now presented in graphical form. The physical dimensions of the

waveguide and the current source for which we perform the computation

are (see Fig, 1 and Equations (1) and (2))

L = 12.5 m

H=12.75n

hoa5m

x =Or!l
o

p=l.

The frequency used is 25 MHz, and the current source is of even mode.

The magnitudes of the induced-current components, 1~~1 and 1~~1, are ‘“

plotted in Figs.3(a) and 3(b) as functions of the transverse coordinate of

the waveguide. They are presented for different B/k values in the range

between 0.86 and 0.99. ““

The plots of the magnitudes of the electrical field components, @x~,

l~yl, and Ifiz\,consist of ,twoparts.
:-

(A) Field components a~funct~ons of B/k:

Ex, E,andEz
Y

are plotted for $/k in the range between O and

0.999 in Figs. 4(a), 4(b) and 4(c), when x = 0.5L, y = 0,47H.

It is obsemed from these plots that for most values of B/k between

O and 1, l~xl, l~yl,

with respect to %/k;

the magnitude of the

Therefore, the major

and l~zl are relatively small and vary rather slowly

however, for B/k in the region between 0.7 and 1,

field component is found to have a sharp peak.

contributions to the total fields should come from

this portion of the spectrum.
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Figure 4(c). \Ezl as a function of B/k for xfl.= 0.5, y/H = 0.i7.
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.-

(B) Field components as functions of the

the waveguide

In Figs. 5(a * 5(b) and 5(c), l~xl,

as functions of the x-coordinate for y =

transverse coordinate of

and l~zl are presented

0.47H. They are plotted for

different 0/k values in the region between 0.879 and 0.999. When B/k

approaches 1, ~y becomes the dominant component and l~z[ diminishes to

zero as we would expect.
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APPLYDIX

A computer program for determining the magnitude of all six components

of the EM field is presented here. Data were obtained for x/L between

o- 1 with step 0.05, % between 0,879 - 0.999 with step 0.02, and y at any

given value. The program can be readily modified to obtain the real and

imaginary parts of all field components as functions of the x-coordinate

and B.

—

‘t
,
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