
,.

Sensor and Simulation

Note 230

September i977

Notes

Energy Confinement of a Bounded-Wave Simulator

Dikewood

.

F.C.Yang
K.S.H. Lee

Corporation, Westwood Research Branch
Los Angeles, California

Abstract

The useful portion of the total transverse electromagnetic

propagating in the conical as well as the cylindrical region of

wave simulator is defined and calculated. It is found that the

plates offer better energy confinement than the conical plates.
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SECTION I o
INTRODUCTION

In refs. 1 and 4, the impedance and field distribution of the trans-

verse electromagnetic (TEM) mode on the conical section of the bounded wave

simulator shown in figure 1 are given. Since this type of simulator is an

open structure, the question may be asked as to how well the power from the

generators is bounded by the simulator’s structure. The present note deals

exclusively with this question in the conical as well as the cylindrical

section of the simulator by limiting the consideration to the TEM mode. A

similar study has been made on the case where the conical section is considered

to be two circular cones (ref. 5).

From the viewpoint of analytical tractability the best definition is

first found in section 11 for the useful portion of the total power bounded by

the simulator’s structure. It turns out that this definition also leads to

the ratio of the total charge per unit length on the bottom side of the top

plate to the total charges per unit length on the two sides of the top plate.

This is an important askew factor in other interaction problems where, for

example, one may consider the effect a perfectly conducting ground may have

on the charge distribution on the wing of an aircraft. This useful portion of

the total power is numerically evaluated for two conical plates (section 11)

and for two parallel plates (section 111). The results are graphically presented

for various pertinent dimensions.
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Figure 1. Top and side views of a bounded-wave simulator.
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SECTION II ,

CONICAL REGION

In this section, the useful portion of the power launched onto a conical-

plate transmission line is firsk defined and then calculated. Because the

conical plates are open structures, the definition of useful power becomes

somewhat ambiguous. Perhaps, the useful power can be defined as Che total

Poynting vector of the TEM mode crossing the area bounded.by the two conducting

plates and the electric-field lines emanating from the two edges of the upper

plate and terminating at the two edges of the lower plate. In mathematical

language, the fraction (fe) of the total power that is useful in the above

sense can be defined as

%
(1)‘e=f(N&fds “

where S is the surface of the unit sphere and So is the part of Sm boundedm

by the two conical plates and the two electric field lines ‘CGCf and CIGIC~

(see figure 2) connecting the plates. —

There are two reasons for choosing So for the definition of useful power.

First, the factor fe as defined by equation (1) can be evaluated exactly to

give a simple explicit result. Secondly, this factor, as will be shown shortly,

is equal to the ratio of the total charge on the bottom side of the upper plate

to the total charges on both sides of the upper plate. This ratio is quite

useful in other interaction problems where the question is often asked about

the effects the ground may have on the current and charge distributions on an

otherwise isolated body in free space. .-.

Of course, there are other ways of choosing So in equation (1). For

instance, one may choose So to be the portion of Sm bo~nded by the two
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Figure 2. The surface So fs bounded by the electric field lines

CGC‘
and clGci and the conical conducting plates.
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plates and the straight lines CC~ and CICi , as shown in figure 2. Clearly,

athis definition of So will lead to a fe-value smaller than that defined by

the area CGC’C~G C
111’

But this choice of So will make equation (1) very

difficult to be evaluated and, hence, will not be pursued further in this

report.

To show that expression (1) indeed reduces to the ratio of the two charges

mentioned above one proceeds as follows

= 2cVoQ- (2)

where Z is the free-space impedance; c
o is the free-space speed of light;

a is the charge density per unit length cm the plates; Eo is the line bound-

ary of s ; L is part of flo
o- immediately underneath the upper plate;

&v are the potentials of the upper and lower plate; and Q-
0 is the total

charge per unit

~ denotes Che

plate, one has

length on the bottom side of Che upper plate. Similarly, if

total.charge per unit length on the top side of the upper

6

(3)
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Combining equations (2) and (3), one indeed obtains

Q.
‘e ‘Q++Q-

(/”)

- which also means that fe represents the fraction of the total energy bounded

by the area So . Thus, fe is a measure of the energy confinement of a

bounded-wave simulator.

In ref. 1 , the conical-plate problem is treated by using the stereographic

and conformal transformations. The successive steps of the transformations are

summarized in figure 3. These transformations map ~he first quadrant of S,m

(i.e., the area with x ~ O, y> O) onto the rectangle ABDE in the W-plane.

Concurrently, the first quadrant of—S. is mapped onto a sub rectangle CDEG .

Since the fields are uniformly distributed within these rectangles, an inspec-

tion of figure 3 immediately gives

f
=g=~+ 1——

e BD 2 2K(m)
F(sin-l[(l-A1)/fi] lm) (5)

where n,m,A
1

are given in ref. 1. Expression (5) is plotted in figures

4 and 5 for various E/b and b/a values. As expected, the factor fe increases

as bfa or L/b is increased.
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U. = l+ F(sin‘1 Gfm) /K(m)

V. = K’ (m)/K(m)

V* = 1 +F(sin-l[ (1 -A1)/~] ~m)/K(m)

Figure 3. Successive confmmal transformations used for two conical plates.
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The

parallel

where So

analysis of the

plate simulator

SECTION III

CYL:[NDRICALREGION

.-
preceding section can be applied directly to a two-

shown in figure 6. Now expression (1) takes the form

fe = (6)

is the dotted area shown in figure 6. Clearly, the symmetry property

of the problem has been used in expression (6).

In refs. 2 and 3, the parallel-plate problem is solved by the technique of

conformal mapping. The first quadrant of the complex z-plane is mapped onto

the rectangle ABCE in the W-plane within which the field is uniformly distri-

buted (see figure 7). Thedotted area S- is also mapped onto the dotted

sub-rectangle HBCJ)‘. -From figure 7, one”iminediatelywrites

fe=g=J=-
K(m)

F(sin‘l~(E-m’K)/(mE)\m )

dow

(7)

where m is given in refs. 2 and 3. It should be

m in equation (7) is different from the parameter

plates. Equation (7) is numerically evaluated and

pointed out that the parameter

m used for the two conical

the results are plotted in

figure 8 in which the energy confinement factor fe for two conical plates

is also given for comparison. In figures 9 and 10 the ratio of the conical to

the parallel-plate energy confinement factor is plotted versus b/a and L/b ,

respectively. It can be seen from the figure

parallel-plate geometry gives a better energy

grounds.. ___

11

that for the same bla value the

confinement, as expected on physical



.-

,

,Y

k. a z

x

/0
/0

#“0 electric field line

Figure 6. The dotted area is one-fourth the area for defining the

energy confinement factor for a two-parallel-plate simulator.
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Figure 9. Ratio of the conical to the parallel-plate energy

confinement factor versus b/a .
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