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Abstract

The useful portion of the total transverse electromagnetic (TEM) power
propagating in the conical as well as the cylindrical region of a bounded
wave simulator is defined and calculated. It is found that the parallel

plates offer better energy confinement than the conical plates.
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SECTION I .

INTRODUCTION

In refs. 1 and 4, the impedance and field distribution of the trans-—
verse electromagnetic (TEM) mode on the conical section of the bounded wave
simulator shown in figure 1 are given. Since this type of simulator is an
open structure, the question may be asked as to how well the power from the
generators is bounded by the simulator's structure. The present note deals
exclusively with this question in the conical as well as the cylindrical
section of the simulator by limiting the consideration to the TEM mode. A

similar study has been made on the case where the conical section is considered

to be two circular cones (ref. 5).

From the viewpoint of analytical tractability the best definition is
first found in section II for the useful portion of the total power bounded by
the simulator's structure. It turns out that this definition also leads to
the ratio of the total charge per unit length on the bottom side of the top
plate to the total charges per unit length on the two sides of the top plate.
This is an important askew factor in other interaction problems where, for ‘
example, one may consider the effect a perfectly conducting ground may have
on the charge distribution on the wing of an aircraft. This useful portion of
the total power is numer¥cally evaluated for two conical plates (section II)

and for two parallel plates (section III). The results are graphically presented

for various pertinent dimensions.
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Figure 1. Top and side views of a bounded-wave simulator.



SECTION II .

-

CONICAL REGION

Tn this section, the useful portion of the power launched onto a conical-
plate transmission line is first defined and then calculated. Because the
conical plates are open structures, the definition of useful power becomes
somewhat ambiguous. Perhaps, the useful power can be defined as the total
Poynting vector of the TEM mode crossing the area bounded .by the two conducting
plates and the electric-field lines emanating from the two edges of the upper
plate and terminating at the two edges of the lower plate. In mathematical
language, the fraction (fe) of the total power that is useful in the above

sense can be defined as

(E xH) - dS

f 1)

{
° ] Exmias

Soo

®
where S is the surface of the unit sﬁhere and So is the part of S_ bounded |
by the two conical plates and the two electric field lines CGC' and ClGlCi
(see figure 2) connecting the plates.
There are two reasons for choosing S0 for the definition of useful power.

First, the factor £e as defined by equation (1) can be evaluated exactly to
give a simple explicit result. Secondly, this factor, as will be shown shortly,
is equal to the ratio of the total charge on the bottom side of the upper plate
to the total charges on both sides of the upper plate. This ratio is quite
useful in other interaction problems where the questlon 1s often asked about
the effects the ground may have on the current and charge distributions on an

otherwise isolated body in free space. - --

0f course, there are other ways of choosing So in equation (1). For

instance, one may choose S0 te be the portion of S, bounded by the two
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plates and the straight limes CC' and ClCi , as shown in figure 2. Clearly,
this definition of So will lead to a fe—value smaller than that defined by
the area CGC'C]'_GlCl . But this choice of S0 will make equation (1) very
difficult to be evaluated and, hence, will not be pursued further in this

report.

To show that expression (1) indeed reduces to the ratio of the two charges

mentioned above one proceeds as follows

J(_gxg_)-%dSrz;l- E*EdS
S °3s
[o] [s]
Y .
= ZJ VV+E dS
S
=~ yperxa (V*E=0, in S)
Z,] == ’ °
2
o
= 2V ¢ I cdl
(o]
2’—
= ZCVOQ_ | (2)

where Z0 is the free-space impedance; ¢ is the free-space speed of light;

o 1s the charge density per unit length on the plates; Qo is the line bound-
ary of S0 3 %_ 1is part of io immediately underneath the upper plate;

iVo are the potentials of the upper and lower plate; and Q_ is the total
charge per unit length on the bottom side of the upper plate. Similarly, if
Q+ denotes the total charge per unit length on the top side of the upper
plate, one has

f (ExH)+T dS = 2¢V_(Q, +Q) , (3)
S
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Combining equations (2) and (3), one indeed obtains

Q

fe = W : (4)

i

which also means that fe represents the fraction of the total energy bounded
by the area So . Thus, fe is a measure of the energy confinement of a

bounded-wave simulator.

In ref. 1 , the coniéal-plate problem is treated by using the stereographic
and conformal transformations. The successive steps of the transformations are
summarized in figure 3. These transformations map the first quadrant of S,
(i.e., the area with x = 0 ,Vy 2 () onto the recfaﬁgle ABDE in the W-plane.
Concurrently, the fifst quadrant ofgfsé is mapped onto a sub rectangle CDEG .
Since the fields are uniformly distributed within these rectangles, an inspec-
tion of figuré 37iﬁmediately éives -

cD

R —ﬁ—%ﬁ F(sin [ (1-A))//al|m) (5)

where n , m , Al are given in ref. 1. Expression (5) is plotted in figures

4 and 5 for various &/b and b/a values. As expectcd, the factor fe increases

‘as b/a or &/b is increased.
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Figure 3. Successive conformal transformations used for two conical plates.
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Figure 4. Energy confinement factor fe of a two-conical-plate
’ simulator versus 2/b .
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Figure 5. Energy confinement factor fe of a two-conical-plate

simulator versus b/a .
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SECTION IIX
ciee i oo — - CYLINDRICAL REGION

The analysis of the preceding section can be applied directly to a two-

parallel plate simulator shown in figure 6. Now expression (1) takes the form

J @xm)-zds

(6)

where WSé is the dotted area shown in figure 6. Clearly, the symmetry property

of the problem has been used in expression (6).

In refs. 2 and 3, the parallel-plate problem is solved by the technique of
conformal mapping. The first quadrant of the complex z-plane is mapped onto
the rectangle ABCE in the W-plane within which the field is uniformly distri-
buted (see figure 7). The dotted area S is also mapped onto the dotted

sub-rectangle HBCD . From figure 7, one immediately writes down

CD

B EéT) F(sin_l/(E—m'K)/(mE)Im ) (7)

where m is given in refs. 2 and 3. It should be pointed out that the parameter

"m in equation (7) is different from the parameter m used for the two conical

plates. Equation (7) is numerically evaluated and the results are plotted in
figure 8 inﬂwhiéhrfhe enérgy confinement factér fe for two conical plates

is also given for comparison., In figures 9 and 10 the ratio of the conical to
the parallel-plate energy qonfineﬁent factor is plotted versus b/a and /b ,
respectively. It can be seen from the figure that for the same b/a wvalue the

parallel-plate geometry gives a better energy confinement, as expected on physical

grounds.
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Figure 6. The dotted area is one-fourth the area for defining the

energy confinement factor for a two-parallel-plate simulator.
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Conformal transformation of the complex coordinate (z) plane

onto the complex potenftial (W) plane. (Note that the dotted area

of the top diagram is conformally mapped onto the dotted area of

the bottom diagram.)
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Figure 9. Ratio of the conical to the parallel-plate energy

confinement factor versus b/a .
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Figure 10. Ratio of the conical to the parallel-plate energy confinement
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