CLEARED

FOR PUBLIC RELEASE

ELEAS
/‘L//,‘/ 31 02C 96

Sensor and Simulation Notes
Note 228
September 1977
Natural Frequencies and Capacitance of a Wire

Above a Ground Plane and Capacitance of a Wire
in a Parallel-Plate Region

F.C. Yang
G.C. Lewis, Jr.

Dikewood Corporation, Westwood Research Branch
Los Angeles, California

Abstract

The asymptotic antenna theory for a thin wire is used to obtain explicit
analytical expressions for (i) the complex natural frequencies of a wire
arbitrarily oriented above an infinite ground plane, (ii) the capacitance of

a wire with respect to a ground plane, and (iii) the capacitance of a wire

located in a parallel-plate region. Plots of these quantities are presented

for several select cases.
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SECTION I
INTRODUCTION

Because of the relative ease with which one obtains large electromagnetic
field strengths with parallel plates, parallel blates are used to simulate the
effects of an electromagnetic pulse (EMP) on an aircraft or missile in flight.
Obviously, the parallel plates interact with the test obstacle; and, therefore,
the interaction between the plates and the test obstacle should be understood
and qualified. To get some idea about what the interaction is, one may calcu-
late and compare the complex natural frequencies and the capacitance of a test
object in a free-flight environment and in a parallel-plate environment. These
two quantities are calculated in refs. 1 and 2 with the test obstacle modeled
as a cylindrical post, while refs. 3 and 4 give the natural frequencies and
the transient response of a thin cylindrical wire arbitrarily oriented above
an infinite, perfectly conducting plane (which is a special case of the two-
parallel-plate geometry). The analyses in these references are based on
the numerical solution of integral equations. More recently, an analytical

approach using the asymptotic method; which was introduced to treat the thin-

wire problem in the early twentieth century, is reported in ref. 5,

together with some calculations on the natural frequencies and the transient

responses of several thin-wire structures. The results obtained therein are

so simple that it is tempting to apply this method to the problem depicted in
figure 1.

Based on the approach given in ref. 5, the complex natural frequencies
are calculated in section II for a thin cylindrical wire arbitrarily oriented
above an infinite, perfectly conducting plane (figure 1). The more general case
of two parallel plates is left for future consideration. In section IIIL, the
capacitancesof a wire above a ground plane and between two parallel plates are
calculated. This quantity is certainly very useful to characterize the low-
frequency interaction between the wire and the simulator if the wire is excited

by the so-called current injection method.
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Figure 1. A wire above an infinite ground plane.



SECTION II
COMPLEX NATURAL FREQUENCIES

In this section, the asymptotic method is used to calculate the complex
natural frequencies of the geometry shown in figure 1 which depicts a cylin-
drical wire arbitrarily oriented above an infinite, perfectly conducting plane.
The radius of this wire is assumed to be small compared to the shortest distance
between the wire and the conducting plane as well as the length ot the wire.
Under this thin-wire assumption, the total current I(f) £flowing along the
wire satisfies the following integro-differential equation (refs. 3 and 4):
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and Einc is the tangential component of the incident electric field on the

wire.
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To solve equation (1) by the asymptotic method, the first step is to
integrate equation (1) and to obtain the following equation:
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where A and B are integration constants determined from the end conditions

I(0) = I(L) = 0 . Next, the left-hand side integral is approximated by
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Equations (2) and (3) combined with the end condition I(0) =0

the following equation:
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which together with the other end condition I(L) = 0 gives
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Although 4 can be eliminated from equations (4) and (5), the removal of A
leads cne in an unproductive direction. It is preferable to keep equations (4)

and (5) as they are.

The complex frequency S, and the corresponding current distribution
In(E) of the n-th natural mode are qbtained by finding the nontrivial solu-—
tions of the homogeneous equations (4) and (5), i.e., by setting Eénc(a) =0
in these equations. However, before one solves these homogeneous equations,
the constant A 1is set equal to - 1Q. 1If one recalls that In(a) is
determined only within a multiplicative constant, the reason for setting
A=-1¢g 1is apparent when In(g) is obtained.

The asymptotic method is now applied to the homogeneous equations (4) and

(5). First, assume the following asymptotic expansions in powers of 9—1
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Then, substituting these expansions into the homogeneous equations (4) and (5),
one finally obtains '
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¥ = 0.5772 = Euler's constant
and Ci(z) , Si(z) are, respectively, the cosine and sine integrals
(ref. 6).

As can be seen from equation (7), the leading term of In(i) is sin(nng/L)

and S, is expressed in terms of a double integral. By introducing a suitable



coordinate transformation the double integral is reduced to a single integral,

i.e.,
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For the special case of B =0, Fn(O,n) can be integrated to yield
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which agrees with the result presented in ref. 5. For the other special

case where B = w/2 , the integral can also be carried out to glve
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which, apart from the factor (- 1)n in the last two terms of equation (10) is
similar to the result that is given in ref. 5.- For the general case of an arbi-
trary wire orientation, the integral is evaluated numerically by using Simpson's

rule. Several numerical results are given in figures 2 -9. However, it should

. be mentioned that the region where n - sin B << 1 1is excluded from the figures.

The reason is that when n - sin B << 1 the i{interaction between the wire and

the ground plane becomes so strong that the asymptotic approach is no longer
valid.
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Figure 2. Variation with n = 2h/L of the functions Fn(B,n) (n = 1,2,3) defined by equation (7)

fz; B =0. The + sign denotes Fn(B,w) - The complex natural frequency s, of the
n~ resonance is given by s, = inme/L + (c/Lﬂ)Fn(B,n) .
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Variation with n = 2h/L of the functions F_(8,n)
(n = 1,2,3) defined by equation (7) for g = =n/6 .
The + sign denotes Fn(B,w) . The complex natural
frequency s, of the nth resonance is given by

s = inwce/L + (c/LQ)Fn(B,n) .
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Variation with n = 2h/L of the functions Fn(B,n)
(n = 1,2,3) defined by equation (7) for B = wn/4 .
The + sign denotes Fn(B,m) . The complex natural
frequency s, of the nth resonance is given by

s = inne/L + (c/LQ)Fn(B,n) .
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Variation with n = 2h/L of the functions Fn(B,n)

(n = 1,2,3) defined by equation (7) for B = n/3 .

The + sign denotes Fn(B,w) . The complex natural
th :

frequency S, of the n resonance is given by

s, = inmc/L + (c/LQ)Fn(B,n) .
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SECTION III
CAPACITANCES

The capacitance of a wire with respect to two parallel plates is calculated
in this section by the low-frequency version of the asymptotic approach. The
capacitance of the wire-single plate geometry as shown in figure 1 can then be

obtained by removing one of the two plates of figure 10.

To calculate the capacitance of the structure in figure 10, one assumes a
constant potential Vo on the wire. Then, the linear charge distribution

1(£) satisfies the following equation

L
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I [ n=-o R(Z) n=- R b ] 0
o n n
with
1
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L
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s
R(l) = {[(L-£-£')sin B - 2(h-+nd)]2 + [(§-E")cos B]z}

n

Similar to section II, the asymptotic method is now used to solve equation

(11). Substituting the following relations into equation (11)
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one immediately obtains
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Figure 10. A wire located in a parallel-plate region.
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The capacitance of the geometry showu in figure 10 is then given by
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sin B for n 0
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When n >>1 and A -n > 1, equation (13.b) is approximated by

¢, =t + a7 v - v +n/8) = $(L-n/8)]

where ¢(x) 1is the Psi function (ref. 6).

For the special cases of B8 = 0° and 90° , all the Cpn's are simplified
and are given by

(1) for B8 =0°

Cp(g;) = -2<Yn2+l-n)+ 2 !Ln( v/l—+ n—z + n-l)
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(ii) for B = 90°
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To calculate the capacitances of the wire-single plate geometry shown in

figure 1, one takes the limit A -n =+« in equation (13) and obtains

Neb )
po

[}4

CP(A-n-+“)
(15)

. _n" in{(l +sin 8)(1L ~sin B vY1 + coszsfnz)i‘_}_ - fnz-i-coszs + 1
sin B
(1-sin B)(1 +sin B vY1 + cosZB/nz) ¥n2-+c0528 -1

which reduces to n—l when n >> 1.,

Several numerical examples of Cp are shown in figures 11 -13. It is noticed
that the result agrees with that of ref. 2 where the special case of B=mw/2,

A~-n >« is considered. Finally we mention that

L c-cC,
E Cp = C (16)

o

where C_  1is the capacitance of a wire in free space,

QHEOL 1
- Q [l Ly {(2-%n 4)] (17)
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Figure 11. Variation with n of the function Cp defined by equation (13.b) for 8 = 0

and A

2d/L = 2,3,4,5,6,10.
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