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Abstract

The asymptotic antenna theory for a thin wire is used to obtain explicit

analyticalexpressions for (i) the complex natural frequenciesof a wire

arbitrarilyoriented above an infiniteground plane, (ii) the capacitanceof

a wire with respect to a ground plane, and (iii) the capacitanceof a wire

locatedin a parallel-plateregion. Plots of these quantitiesare presented

for several select cases.
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SECTION I

INTRODUCTION

Because of the relative ease with which one

.

obtains large electromagnetic

field strengthswith parallel plates, parallel plates are used to simulate the

effects of an electromagneticpulse (IMP)on an aircraft or missile in flight.

Obviously, the parallel plates interactwith the test obstacle; and, therefore,

the interactionbetween the plates and the te~t obstacle should be understood

and qualified. To get some idea about what the interactionis, one may calcu-

late and compare the complex natural frequenciesand the capacitanceof a test

object in a free-flightenvironmentand in a parallel-plateenvironment. These

two quantitiesare calculatedin refs. 1 and 2 with the test obstacle modeled

as a cylindricalpost, while refs. 3 and 4 give the natural frequenciesand

the transientresponse of a thin cylindricalwire arbitrarilyoriented above

an infinite,perfectly conductingplane (whichis a special case of the two-

parallel-plategeometry). The analyses in these referencesare based on

the numerical solution of integral equations. More recently, an analytical

approach using the asymptoticmethod; which was introducedto treat the thin-

wire problem in the early twentiethcentury, is reported %n ref. 5,

Eogetherwith some calculationson the natural frequenciesand the transient

responses of several thin-wirestructures. The results obtained therein are

so simple that it

figure 1.

Based on the

are calculatedin

is tempting to apply this method to the problem depicted in

approach given in ref. 5, thecomplex natural frequencies

section II for a thin cylindricalwire arbitrarilyoriented

above an infinite, perfectly conductingplane (figure1). The more general case

of two parallel plates is left for future consideration. In section 111, the

capacitancsof a wire above a ground plane and between two parallel plates are

calculated. This quantity is certainlyvery useful to characterize the low-

frequency interactionbetween the wire and the simulator if the wire is excited

by the so-called current injectionmethod.
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Figure 1. A wire above an infinite ground plane.
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SECTION II

COMPLEX NATURAL FREQUENCIES
.

In this section, the asymptoticmethod is used to calculate the complex

natural frequenciesof the geometry shown in figure 1 which depicts a cylin-

drical wire arbitrarilyoriented above an infinite,perfectly conductingplane.

The radius of this wire is assumed to be small compared to the shortest distance

between the wire and the conductingplane as well as the length of the wire.

Under this thin-wireassumption,the total current I(C) flowing along the

wire satisfies the followingintegro-differentialequation (refs. 3 and 4):

o

where

-%
c = (lJoCo)= speed of light

(1)

and E~ is

wire.

the tangentialcomponent of the incident electric field on the

—
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To solve equation (1) by the asymptoticmethod, the first step is to

integrate equation (1) and to obtain the followingequation:

L
2+

[

-s[(<-E’)* + a ] /c
I(E’) e

4TT[(C-:1)2 + a21%

d~v + sinh(s&/c)+% cosh(s~/c)

o

6L

H [
2 2’

c-— 11(~’)sinh[s(&-&’’)/c.]~E~3&, +>COS 29 G1(&’’,C’)dE’dg” (2)
s
00 c

where A and B are integrationconstantsdetermined from the end conditions

I(0) = I(L) = O . Next, the left-handside integral is approximatedby

L
1

J

-s[(&-~’)2+ a2]~/c
I(E’) e ‘I(5) +_&in[4C(L-C)/L2]I(E#)

4U[(5-5’)2+ a2]+ ‘g’ = 4170
(3)

with O = 2 In(L/a) .

Equations (2) and (3) combinedwith the end condition I(0) = O result in

the following equation:

L -slg-&’//c
I(5){l+fl-11n[4(L-&)~/L2]}+0-]’

J

l(~’)e - I(E) dg,
IC-L’I

o

L -Sc’lc
u M1-lsinh(sE/c)+ ~-lcosh(st/c)

~

I(&’)e

~’
dc‘

o
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- 4KCCJI
-1

1

~inc f
~ (~ )sinhts(:-&’)/c]dg’ , (4)

o

h
L

-1
32 ‘

- i14ncs
[

I(F’)sinh[s(&-#’’)/c]-+
1

2 COS 2f3 Gl(~’’,;’)d~’d&”
c’00

which togetherwith the other end condition I(L) = O gives

L

P

L
, ~-s(L-gv/c -ac’/c

I d~’ = A sinh(sL/c)+ cosh(sL/c)JI(~T)e
L-t’ t’

0 0

dc‘

LL
4WC

H [

32 2
-—

s 1I(E’)sinh[s(L-:’’)/c]H+ZCOS 2P G1(L’’,~’)d~’d$”(5)
~2

00

L

o

Although A can be eliminated from equations (4) and (5), the removal of A

leads one in an unproductivedirection. It is preferable to keep equations (4)

and (5) as they are.

The complex frequency sn and the correspondingcurrent distribution

In(g) of the n-th natural mode are obtained by finding the nontrivial solu-

tions of the homogeneousequations (4) and (5), i.e., by setting
~inc
~ (g) s o

in these equations. However, before one solves these homogeneous equations,

the constant A is set equal to - i~. If one recalls that In(5) is

determinedonly within a multiplicativeconstant, the reason for setting

A=- ifl is apparentwhen In(E)

The asymptoticmethod is now

(5). First, assume the folloving

is obtained.

applied to the homogeneous equations (4) and
-1

asymptoticexpansions in powers of Q
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Then, substituting

-1S-so+sln +..O
.

I=Io+Il#+eo,

these expansionsinto the homogeneousequations (4) and (5),

one finally obtains !

L
;s = ilm + Q

n ‘lFn(B,n)+ 0(0-2)

_In(g)= sin(nng/L)+ O(fl-l)

Fn(B,n) = - E(2nm)

11
i D [

32 e-innR(&’’,C’)

-G sin(n7r<’’)sin(nn&’)~g,,ag,- n252cos *I3.1 R(&’’,G’)
00

R(&’’,~’)= {((1-E’’-)sinin 8-
*%

Q]* + [(&’’-)cososf3]}

n = 2h/L

z“

E(z) =
J

[1 - exp(- is)]E-ld&

o

=y+

Y = 0.5772

and Ci(z)

(ref. 6).

En z - Ci(z) +iSi(z)

= Euler’s constant

3 Si(z) are, respectively,the cosine and sine integrals

AS can be seen from equation (7), the leading term of In(c) is sit-~(nn~/L)

and sn is expressed in tek of a double integral. By introducing a suitable

I
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coordinate transformationthe double integral is reduced to a single integral,

i.e.,

Fn(fhn) = -

1-

+

+

,

00

sin $
E(2nw) +~

[{q’

e - imp(cos 6 - sin 8)L
Cos B - sin e

o

‘]1

P2
exp[- innp(cos 8 + sin %

do
Cos f!i-sin 6

PI
(8)

60

n cos $
(-1) -7j--

/{

exp(fnz[v - p cos f3(sin6 + cos O)]/sin 6)
sin 6 + Cos 6

0

1

P2
exp - inmln + p cos B(sin B - cos 6)]/sin B) de

SiII 6 - COS 6
PI

where

60 = tan-l(cos B/q)

P2 = (~+ sin ~)/cos(6-~)

PI =(n - sin f3)/c0s(9+6)

For the special case of 6 = 0°, Fn(O,n) can be integrated to yield

Fm(O,q) = - E(2nn) - 2E(n~n) + E[nn I+nZ+ 1] + E[n~ m-,] (9)

which agrees with the result presented in ref. 5. For the other special

case where B = Tr/2, the integral can also be carried out to give

Fn(n/2, n) = - E(2nm) + (-l)nisin(nnn)ln[q2/(n2-1)]

(10)

[
+-+ exp(inxri)E(2nm(q-I))+ E(2n?r(n+l))- 2E(2nrn)1
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which, apart from the factor (-l)n in the last two terms of equation (10) is

similar to the result that is given :Lnref. 5.- For tie general case of an arbi-

trary wire orientation, the integral is evaluated numericallyby using Simpscm’s

rule. Several numerical results are given in figures 2-9. However, it should

be mentioned that the region where n -

The reason is that when ~ - s~ B ‘< 1

the ground plane becomes so strong that

valid.

sin 8 << 1 is excluded from the figures,

the interactionbetween the wire and

the asymptoticapproach is no longer

9



Qr------ , I -0.5, , 1

2.0

B

‘q=o.[-

4.0
I .3

5,6
0.3

3,0

0.5

1.0
u

-3&_._-_L.—~~
-4 -3 -2 -1 0

Re f

P
Q

-1

-2

L@

E

H -3

I
‘o

, 4 3

pa

1P+.1.0
‘q =0.1

J
Los

~

{

r 0.3
A

i~,~

5 -4 -3 -2 -1 0-

Re F3

-3.5I s !
-5 -4 -3 -2 -1 0

Re~

Figure 2. Variation with n = 2h/L of the functions Fn(6,rI) <n - 1,2,3) defined by equation

for @ = 0 . The + sign deno~es Fn(13,~). The complex natural frequency Sn of
~Ch

resonance is given by Sn = inmc/L + (c/~)F (p,n) .
n

o.

(7)

the

.,



“d

ah
. I

-1.0

lx-

E
l-l
-1.5

-2.0

-1.0

5
-1.5

-2.0

, I I i

8= 7r/6 1

-3.0 -2.5 -2.0

1.0

0.9

t) .8

/

,\t
77=0.7

1 I
-4.0 -3.5 -3.0

Re F3

, 1 I , %

& 7r)6

-1.0 -

IL.w
E
u

-1.5

;

-20-
‘\

\ ‘ .YQ8S
, , “> t ,

-4.0 -3.5 -3.0 -2.5

Re F2

Figure 3. Variation with ~ = 2h/L of the

(n = 1,2,3) defined by equation

The + sign denotes F.(6,w) .

functions Fn(B,n)

(7) for B - n/6 .

The complex natural
‘th

frequency Sn of the n resonance is given bY

s x innc/L + (C/M)Fn(B,q) .
n



-1.0

-1.5

-1,0

-1.5

-2.0

-2.0

-25 ~
-3.0 -2,!3 -20

Re F,

I t I I 1

p= 7r/4
1

\,. q= 0.8

-4.0 -3.5 -3.0

Re F3

I , \, 1 T I
--4.0 -3.5 “30 “25

Re F2

~/

‘4_L~B
h= 77L/2 ‘

Figure 4. Variation with ~ = 2h/L of the functions Fn(6,q)

(n = 1,2,3) defined by equation (7) for p = r/4 .

The + sign denotes Fn(@,CCI). The complex natural

frequency s th
of the n resonance is given by

s = in~c/L ~ (C/Id2)Fn(6,rI).
n



w“

““0p.n-/3
I 1 1

1.5

:( i ~

3

q.~ 2

-1.5
5+ :

3.0

k- [.0
~

-20

7=0.9 “

-2.5

I-J
w

. .

-1.0

-3.5 -3.0 -2.5

Re ~

I 1 1 1

@=7r/3
t

~n 2.0

.5
4

(ii?) ,1 + 5“6
1.0

*
“< “ ,i

\\ -d
\ 1.5

---+ . ._.-=’

\,
~ m.93

, ,
5 -4.0 -3.5 ‘_=

Re F3

-Lo

-1.5

-2.0

I 1 1 I

/hT..3

17)=0.9
-2.5 I

-4.0 -3.5 -3.0

.

//////////./////////// 7

Figure 5. Variation with q = 2h/L of the functions Fn(13,n)

(n - 1,2,3) defined by equation (7) for $ = x/3 .

The i- sign denotes Fn(6,m) . The complex natural

frequency Sn of the n
th

resonance %s given by
2 s = innc/L + (C/Lf2)Fn(B,~) .

n



-r.o 1 1 1 1

B=7r/2
I

~-,.5 : /’32 ‘:
k-

77=1.1

i
-2.03.

-20

P
s- -0.5

-1.0

~F7

~

-[5

-2.0

-[.0 1

p=T/2 ,~

/
q=l.1

i

-“d
-2.0 1 , , , 1

-4.0
1

-3.5 -3.0 -2.5

Re ~

7 1 i J 1 1

p=7T/2

./”-p
q=l.1

<

/ --L

h=qL/2 ‘

~

Figure 6. Variation with ~ = 2h/L of the functions Fn(B,q)

(n = 1,2,3) defined by equation (7) for !3= x12 .
1.5

The i- sign denotes Fn(f3,CD).
1 I 1 I The complex natural

t-h
-4.5 -4,0 -3.5 -3.0 frequency s of ahe n“” resonance i8 given by

Re ~ s
n = innc/L ~ (C/LCl)Fn(13,rI).

0 ●



. .

-2+2572”0’
T 1 I I 1

q=lo—
7*!5 .

-2,75 -

.s.zs~ 1 I I t I i

—-

-0.75

-“

>
- ,“-

-... --
7T/4 7T/2

P
..

L
q=1.5 —

q=lo

?7=5

-,.7, LJ_l_l_ 1 t 1 t 1 I
o 7T/4

Figure 7. Variationwith $ of the function F1(13,~) for

~ = 2h/L = 1.5, 2, 5, 10 . The arrows denote the

value of Fl(6,=) .

7v2

15



o 7T14 7/2

—

-1.75c ! I 1 I I I 1 I !

o n-/4 T/2

Figure 8. Variation with B of the function F2(&3,~) for

TI= 2h/L = 1.5, 2, 5, 10 . The arrows denote che

value of F2(fl,CQ).

16
0



. .

8
,) ““0r———_~

-4.” ~ 1 ! I I I I I
o 7T14 T/2

-1 I i I t i 1 I 1 1

<—

-2 I I I I 1 t I 1 1
0 7T/4 lT12

Figure 9. Variationwith 8 of the function F3(6,~) for

rIE 2h/L = 1.5,,2, 5, 10 . The arrows denote the

value of F3(13,,=).

17



SECTION III

CAPACITANCES .

The capacitanceof a wire with respect to two parallel plates is calculated

in this section by the low-frequencyversion of the asymptotic approach. The

capacitanceof the wire-singleplate geometry as shown in figure 1 can then be

obtained by removingone of the two plates of figure 10.

To calculatethe capacitanceof the structure in figure 10, one assumes a

constant potential V. on the wire. Then, the linear charge distribution

T(E) SatiSfieS the followingequation

(11)

with

Similar to section 11, the asymptoticmethod is now used to solve equation

- (11]. Substitutingthe following relations into equation (11)

one immediatelyobtains
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The capacitance ofthe geometryshow:lin figure 10 is then given by

with

4rcoL
=

[
—1

Q
-~(ln4 -2-CP) 1

. ~ J’) _ ‘y ,(2)
n=O ‘n .=1 ‘n

,. ..- -.

J1) = n

[

~n (l+sin @)(l-sinS/l + cos26/ri2)
po sin $

(1-sin 8)(1+sin 6~, 1

Jl) = q+nA En

1(

I+sin S)[l-sin $ -f-cos2$/(u+nA)2]

pn sin 8
(1-sin i3)[l+sin !3Jl + cos2t3/(u+nA)2]

o(13.b)
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q-nA An
+—

1(
l-sin ~)[1+ sin B ~1 + cos4B/(n-nA)zl_

sin B
[( l+sin fl)[l-sin 6

+ An
ni-nA)2 + COS26 + 1 + ~n

J(rl+nA)2+ COS2B - 1

1 + cos2f3/(q-nA)2]

~(nA-~)2 + COS2B - 1

fornd O

C(2)
= 2(1 -

- &nAsin B)2+(nA cos B)2+(l-nAsin B)
pn

nA sin 6)2n
‘[

(1 - sin B)nA 1
‘- L~(l+nA sin 6)’ + (nA cos f3)L+ (1 +nA sin @~

+2(1 + nA sin B)En
(1+ sin f3)nA

J

-2 [

-2.[

4(1 - nA sin 6)’ + (nA cos 13)’- nA J

41 + nA sin B)2 + (nA cos 6)2 - nA1
and

Wten

A=2d/L>2h/L=q>sin B

~ >> 1 ~d A- q >> 1 , equation (13.b) is approximatedby

Cp.n ‘1 +A-1[2$(1) - $(l+i/A) - 1#(1-n/A)l

where +(x) is the Psi function (ref. 6).

and

(i)

For the special cases of 8 = 0° and 90°

are given by

for 6 = 0°

, all the c ‘s
pn

are simplified

~(1) = -2(q+nA)
pn

[~”

—

-2 + l-p)C(l) = -2(j~~-q)+2 I.n([”l- n
po

- ~]+ 2 ~n [~+ (n+nA~l]

21
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+2(n-n,)[#GF7-

J2) = 4 ~~
pn

[-+ (.*)-’]

(ii) for 6 = 90”

@
po

= rILn(l-n-2) + En[(n+l)/( n-1)1

(14.a)

C(l)= (~ +n,4)Ln[l - (n+nA)-2] + f.n[(n+nA +l)/(n+nA -1)]
pn

- (q-nA)P.n[l- (~-nA)-2] + S!,n[(nA-q+l)/(nA -n-1)] , n+O

~(2) = 2(l+nA)Ln[l + (nA)-l]+ 2(nA-l)tn[l - (nA)-l] (14.b)
pn

To calculate the capacitancesof the wire-singleplate geometry shown in

figure 1, one takes the limit A - n + - in equation (13) and obtains

Cp(A-~+~) = C
(1)
po

n

[

~n (l+sin B)(l -sin ‘dLzX7] ,,n=—
sin $

(l-sin k?)(l+sin~ ~] 1
-1

which reduces to n when rI>> 1 .

Several numerical examples of C are shokm in figures 11-13. It is noriced
P

that the result agrees with that of ref. 2 where the

A- n + ~ is considered. Finally we mention that

special case of 6 = rf2 ,

where C is the capacitance of a wire in free space,m

4RE L

[
Cw”+ 1+; (2-Ln 4)1

22
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