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equations are applicable to a cone with or without- a topcap,

but th-e–latt-er equation is relatively cumb-ersone, involving;

complicated k~.rnels with various sin~ul:]rft-i-es. .4 computer

code has b-een developed for each of the three me-thods.

Numerical data for current distributions, input impedances

and radi:ltion patterns are oresented for resist-ivcly loaded

and unloadecl st-r{lctures, both with and without t-opcap.
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SECTION I

INTRODIJCTION

In a companion report [1], the static analysis of a

conical antenna over a ground plane is presented, In th-is

.
. report, the analysis is extended t-o treat the time-har-

. monic case and to incorporate a model of the resistive

loading of the structure. The resistive loading. is intended

to reduce the effect of- diffraction; from the cone edge at

the higher irequencie-s.

If the cone has no topcap, t-he analysis may be consi-

derably simplified and a simple inte~ral equation for this

situation is derived in Section 11 and implementation of

a moment meth-od solution is considered in Section TI1. In

Section IV, an integral equat-ion for t-l-econe with a top-

cap is derived, Presented in Sect-ion t’ are numerical results

in the frequency domain f~r currents on a loaded conical antenna

both with and with-out–a topcap. In Appendix A expressions

are derived for the computation Of fields from the currents

and Appendix B gives the derivation of—an alternate integral

equation from that derived in Section IV.

—. J



SECTION TI

FORMULATION OF AN lNTIIGRAL EQUATION FOR

A BI CONE WITHOUT EN DCAPS

For the symmetrically driven biconic:]l structure of

Figure 1, the current on both the cone and its image are

radially directed and have no circumferential (~) Varifition.

Hence the magnetic field tal]gent to che cone is b-directed

and the boundary conditions can be satisfied by fields which

are transverse magnetic (TM) to r. Thus , the fields may

be completely determined by a radially-directed vector

potential ~ = Ar~ [2]. In an eigenfunction solution ~o

such problems, the fields are determined in the bicone

region from a vector potentiaI Ar wl]ich comes f-rem a

homogeneous solution of Ehe wave equation. In order to

derive an integral equation, however, A must he expressed
r

in terms of the current on the bi.cone. In particular, a

free space Greenls fu~~ction is to be found f-or the vector

potential–Ar due to a unit radially-directed current elemen~.

A superposition integral then expresses the total vector

potential due to currents on the cone.

Beginning with the assumption that--the magnetic field

is determined From ~ = Are,

.

.
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and using Maxwell’s equations,

VXE = -jwpil

VXE = ju~~+~

one readily det-ermines by standard procedures tl~at L saC is-

fies the vector Helmholtz equation

Vxvxi - k2~ = P.lrf - jwpcV@

where @ is a scalar such that

~= -jwi - V4

For a radially-directed unit current element,

: = Jr~ = ?6(;-;’)

; 6(r-r ’)6(8-O’ )d(~=@’)_=

r’2 sin 8’

Expanding out (1) yields

(1)

(2)

8



_4@)— from which it is seen that

c-!

(4)

These conditions are automatically satisfied by the gauge

.

J— .<’

(5)

Sub-stituting (2) and (5) into (3) leaves th-e one scalar

component equality

+ k2Ar= -Md(;-i’) (6)

which can be- rewritten in the more convenient f-orm.

(V2+ k2)( > ) = ‘D-6::-;’) (7)

To obtain (7), one notes that

(5(;-;’)6(;-;’) . ,—,
r r’

A solution of (7) which satisfies the radiation condition for

a exp(j~dt) time convention may be written by inspection of- (7)

as

9



(8)

and the general solution to (3) for a distributed set of

currents is obtained by superposition:

/

/

~ e-jkl;-;l
Ar=& Jr(;’) dV ‘

r’1;-;’1
v

(9)

This form of the vector potential has also been used by

others [3]. For the symmetrically-excited cone and its

image,
J~r(;’)

Jr(;’) =
[ 1
6(6’-6.) - 6(fl’-Tl+60)

rt
(10)

where J is the bicone surface current density.
sr

Sub–

stituting (10) into (9) gives the

vector potential:

2X L
Hr sin 00

A=
4n

JJ
Jsr(r’)

r

o -o

where

desired equation for the

+
e-jkR e-jkR-

——

1

dr’d~$’
R+ R-

(11)

#= ‘rz + rl’2 _ 2rr’ [sin e sin 60cos(@-fj ’): COS8 cos ~o]

The plus superscript denotes source points on the upper bicone

surface while the negative sign denotes source points on the

image surface.

10
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It is convenient to introduce the total axial current

I(r’) = 2nr’ sin OOJ~r(r’) (12)

so that (11) becomes

The radial component of electric field is now given by

22
E-l

[“ 12—+kAr
r = jtipc ~r2

(14)

The simplicity of (13) and (14) compared to t-he–usual

vector potential representations should be emphasized at

this point. One notes that in the usual representation, two

vector poten-tial components, A and A
0’

would b-e present,
r

Furthermore, the integrands of the potential integrals would

contain somewh-at complicated dependence on angles between

observation and source points wh-ich arise from projecting

the source vector ont-o the potential component vector for

each source and observation point, Finally, the expression

for the radially-directed electric f-ield would be comp-licated

and difficult to handle numerically compared to the approach

to be followed here. These complications indeed will–appear

in the formulation which includes a topcap on the bicone struc-

ture (Appendix B).

11



An integral equation for the current is obtained by

applying the boundary condition that the radial electric

field must equal the impedance loadins times the t-otal

current density, i.e.,

Er = Z~(r) I(r)

Since all currents and fields are @-independent, it suffices

to take all observation points along the intersection of the

plane $=0 and the conical surface. Hence, we (lbtain finally

* 1$+“1‘r ‘zJr)’(r)=“ ‘<rs”‘=00’(’=”
(15)

Equation (15) is an integro-dif ferential equation for the

induced current on the bicone. As ih stands, (15) does not

appear to contain a driving term due to the applied

voltage at -the bicone terminals. In the next section,

however, this term appears as a “boundary” condition on

clAr/dr at r=O. One also notes in (15) that discrete or

lumped loading may be introduced by allowing Zs(r) to be

represented by appropriate ~-functions,

‘L
Zs(r) = ~ ZLn &(r-rLn)

n=l

for NL loads where ZLn
th

is the impedance of the n load

located at r=rLn.

12
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SECTION III

APPLICATION OF ME Tl{OD OF MOMENTS. ~ A——.—.—J ..——.

BICONE WITHOUT EN DCAPS

The usual p.~ocedure in applying the method of moments

[41 is to first represent the unknown current–as a linear

combination of an appropriate set of—basis functions and
—

then “test” the resulting integral equation with a series

of—testing f-unctions. Here it is convenient” t=o reverse

this order and to first test the equation b-e-fore expanding

the current. A set of– te-st-ing functions which of-fer a

numb–~r of advantages in a numerical procedure are th-e piece-

wise sinusoidal testing functions:

.& 3L

‘1 (r) =

{

win(r) =

{

sin k(Ar-r)
O<r<Ar

sin kAr ‘ – –

o > Ar, <r<[,——

sin k~Ar-lr-r,n/)
r <r<r

sin kAr
Y m-1 — — mi-1

o * Ir-r I >Ar
m

m= 2,3 >.,* M (16)

where Ar = L/M, r = (m-l)Ar, m=l,2, ...M .
m

These testing functions are shown in Figure 2. An inner

product is next de~-ined as

..4)

.13



Figure 2. Testing functions for tile cone.



L

<f(r), g(r) > =

J

f(r)g(r)dr

o

(17)

and (15) is successively t-ested with each of the w
m’

In=1,2, .,. ,M:

( Zs(r) I(r), w

)
m

= o, m=l,2, . ...M (18)

Taking, f-or the moment-, M=l and integrating the f-irst term

by parts twice results in

(

wh-ere

d2 +k2

1)

dA
Ar, w = - J +

k
~

—..
I dr

Ar(r2)
dr sin kAr

r=O

k cos kAr
—————— Ar(r2)

sin kAr

Ar(rm) = Ar r=r . Note th-at although
m

10=00
A = o, (19)
r o=T/2

Ar(rl) is not zero along the bicone. In fact-, one notes that

1
a2A

—._ _‘e = jullcr ara;

and that-the bicone voltage at r=O is just

—

—- )

15



‘lT/2

‘o=J”‘@’lr=o

00

00

where, using (19), one sees that ~Ar/~r=O at 6=m/2.

Thus for m=l, (18) becomes

k
jupc sin kAr [ 1

- cos kAr Ar(rl) + Ar(r2)

-( )Z~(r)I(r),wl = _V
o

For m= 2,3,4, ....M. integration by parts twice in (18) re-

sults in

k

[
Ar(r

1
ml) - 2 cos kArAr(rm) + Ar(rm_l)

jw]ls sin kAr

-( }Z~(r] I(r), w s 0
m

m= 2,3, ..,,M

(21)

Note that the. choice of testing functions has resulted

in removing all the derivative operations from the operator

equations. This is the principal advantage of the testing

functions chosen.

16
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A matrix equation now results if the current is

expanded in an appropriate set of basis functions. A

convenient set is the pulse functions defined by

{

1, (j~r~Ar/2
Pi(r) =

o, Ar/2<r<L—_

{

1, lx--r \<Ar/2—
pn(r) =

o, ]r-rn] > Ar/2n

n = 2,3,,.,14

(see Figure 3) and the resulting current expansion is

I(r) = ~ Inp.n(r)
n=l

(22)

Note that th-e current at th-e bicone edge r=L is auto-

matically zero by our choice of basis functions (Figure 3).

When (22) is substituted into (20) and (21), there

results the system of linear equations

“{ k
11 jupc sin kAr [ 1

- cos kAr Y(rl;rl,rl+) + y(r2;r2,r1+)

-( ~s(r)pl (r), WI )} +

..

-.



-( $Zs(r)pfl(r), wl = -vO

and

{

[

‘)co~ kAr Y(rm;r
jw~~ ~in kAr ‘(rm-l;

rl,rl+)- ,r2)

11
1

(
z~(r)pl(r), wm

)]
1

+ Y(rm+l;rl$rl+)

M

{

k
+~1

[
- Y(rm_l;rn-, rn+)-2 Cos ‘Ar’f(rm;rn-’ m+)

n ju~~ sin kArn.~

1
+ Y(rm+l:rn.-,rn+)

/ Zs(r)pn(r), wm
\ $

= 0,m=2,3, ..,M

(24)

These equations may be assembled into the matrix

equation

ZI=V

18
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I:igure 3. Pulse expansion functi[~ns for the current
on t-t~etone.
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and the elements of the impedance matrix may identified

from (23) and (24). The functions Y(r;rn-,rn+) are

defined by

where

Ri= “’2 ‘2 -2rr’(sin2@r+r
o

Cos $’ + COS200)

and where

r+.~ ~ + Ar/2
n— —

The evaluation of the double integral in ( 2L) is

simplified by analytically approximating the in~egratf.on

with respect to r’. This may be accomplished by noting th:lt

in general k(rn+- m_) << 1, so that a few terms in a

Taylor series expansion about some point rn in the interval

[m_, m+] should be accurate. Accord ingly, one writes

-jk Rk -jk Ri
n

-jk(Rf-R~)

e = e e

-jkR~
=e [l-j k(Ri- R~)] (27)

~
where R;= R Substituting (26) into (24) and listingr=r “

n
as a fourth argument the point about which the expansion is

made, one obtains

.

0.
20



Y(r;rn-,rn+) ~ Y(r;rn-,rn+,rn)

77

o

O ‘r
n-

{[

+
l+jk R+

+
-jk R

n rn+(Rn _ + r - rn b+)
e ——--Q log .—

r
rn-(R~+ + r - rn+b+)

-jkR~
-e

+ 2
where b-= sin 9

0

rn+

-jkln –—
r
n-

1

l+jkR~ rn+(Rn- + r - m-b )
— log —

r
r~_(R~+ + r - rn+b-)

rn+ ‘
-jkkn — 1]d~’rn_

(28)

Cos (/)’+ Cos%o. In several situations,—

appropriate limits of the integrand of (27) need to be taken.

First, wh-en the source is the current segment at the bicone

terminals, the integral (27) reduces to the simple form

‘Y(r;rl,rl+) = Y(r;r2,rl+,r1)

Jr

lJ J
-jkr

=___ e (l+jkr)lo~
41T2

o

., -- )

R;+ + r - b--rl+

R;+ + r - b+r2+

d$’

(29)



As the observation point r in (28) approaches the

bicone terminals, r+rl= O, the limiting farm of the inte-

grand can be integrated. ‘fhe result is

Y(rl;rl,rl+,rl
00

) = * log((’ot ~)
.

(30)

a very interestin~ result that is independent of the sub-

domain size.at the bicone terminals. Finally, all the so-

called “self terms” Y(r ;r r +,rn ). n#l, contain nn
n n-’ n

integrable singularity. In fact one easily establishes

that

log

This singular

rn+(R~_+ r - b+rn_)
~. 2 lox [C)‘I

rn_(R~+ + r - b+rn+)
r-r

n

term is then subtracted from the inte~rand in

(27), resulting in a non-singular integrand which is then

numerically integrated. The term

n

+ I I.nl$’ldp’ = ~ (Ln;l -1)
2n

o

is then added to the result to cake care of the part of the

integral contributed by the singularity,

22
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SECTION I-V

FORMUMTION=_&ND NUMERICAL SOLUTION OF AN

INTEGRAL EQUATION FOR A BICONE WITH EN DCAPS

The formulation of the integral equation f-or a cone

radiator over a ground p-lane with an endcap is considerably

more complicated than that for the case when the endcap..is

not present. It is possible, h-owever, t= generalize che

approach used f–o-rthe bicone without a topcap_ and to trans-

f-orm the derivat.iv.es appearing in the equations into-har-

monic operators along the radial cone and top-cap coordinates,

as is done in Appendix B . ll-is approach has the advantage

again that t-esting with piecewise sinusoids allows the re-

placement of derivatives by a finite difference of—potentials.

However, to effect th-is transformation. an extremely com-

plicated kernel must be used (see Appendix B ) wh-ich contains

many singularities other than the usual ones where—source and

field point=s coincide. While this approach has been used,

it has b-een found to be unwieldy and rather inef~icient.

The app-roach described here begins with the descript-ion

of f-i–e-idsin te-rms of the more commonly used vect-or magnetic

and scalar p.otent-ial.s expressed in terms of– the cone currents

and charge. However, it is f-ound that these potentials are

singular at– the bicone terminals which again crest-es an

unnecessary comp-lication. In order t=o circumvent this problem,

the cone and image surfaces are nllflwed t-o intersect with a

23



small ‘!waistF’ of radius “a” (Figure 4). If “a” is very

small, there should be negligible difference in the input

impedance and currents found for this case and that far the

limiting case of a=O. For convenience, Lhe cone coordinates

are defined with respect to the projection of the cone sur-

face to a tip, as in Figure 4. Furthermore, the direc~ion

of the unit vector ~ and the positive direction of corres-
t

pending vector components is taken to be towards the center

of the topcap, in the direction of decreasing
‘t”

The integral equations are obtained by setting the

radiated field tangent to the cone surface equal to the

impedance drop per unit length due to the loading:

-juAr - ~ - ZSIC = 0, aisin 6.< rc< L + a/stn O
0

(31)—
c c

-jwAr - ~ - ZsIL = O, O<rt<Lsin60+a (32)

t t

where the tangential components of magnetic vector potential,

Ar and Ar , are given by
c t

plp
27r L+-a/sin 80

+
-jkRp: -jkR -

cos ~ e cos c ~e
pc

Ar=~ Ic
c

+

)

dr~d+’

P R+ R-

0 a/sin 6
pc pc

o

27r
+

Lsin$O+a

;J [

+
-jkR

pt +
-jkR -

cos C ~e Cos <
pt

It +
pte IIdr~d~’R+ R-

00
pt pt

(33)p=c.t

24
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rt=Lsh80+a

/

//

rc=L+a/sin@o

rc=a/sin8e

/ ----—---- - ----- -
--.

-. \\

1+

Figurc$ 4. Geometry of—cone with

25
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The scalar potential is given by

0

L+a/sin 60 +

J

dT

(

-jkR
pc e

-jkR-

C e
pc

-—— -— — - .=— _
drc

)

dr~d$’
R+ R-

aisin O
pc pc

o

k sineo+a +

J (‘-
dlt ~-jkRpt ~

-jkR-
pL

.— —. ..

)1

dr~d~’
drt R+ R-

0
pt pt

p = C,t (34)

The currents 1 and I are the total linear currents on
c t

the conical and topcap surfaces, respectively, and are re-

lated to the corresponding surface curren~ densities J and
c

The distance quantities are all of the form

Rf=
{r’2 ~ 1 ~

+ 2kJ -tC = C,t
Pq q P& Pq ‘

P?q

where

(35)

bk=-r sinze o cos $1 ; rc cos2fl
cc c

- a cOt f30COS eO(171)
o

26



.3.& 2. r
c

=-~

+ a2cot flO(lXl )2- 2rca cos f30cot O.(l;l)

sin O
0

Cos ($’

Cos (3.) + (a cotf30(a cot eo~- 2r Cos
c

sinco’s eocot
‘t

Cos

.

2
cot eo)‘o + a

-r Cos $’t--

r: + L2cos200(l~l)z
.

‘ -)
—

The angles between the source current elements and the tang-

ential component of electric field at the observation point

are determined by

~
Cos < = + cos $’ sin28

cc — o + cos20 o

+

27



It is convenient to choose as testing functions the

pulse functions pn shown in Figure 5. Thus, testing (31) with

PI results in

Upon integrating by parts in the central term, and rioting

that Ar is slowly varying over the interval and hence may
c

be approximated by Ar (rCl), one obtains

c

But @(rcl) is just the bicone terminal volta~e V
o

with res-

pect to the ground plane. Hence;

-jwAr (rcl)Arc - 2@(rcl+ Arc/2)- 2 ZsIc , PI = -2V0
c ( )

(35)

For the remaining testing functions on the cone,

testing of (31), integration by parts on th-e s-calar potential

term and approximation of the vector potential by its value

at the center of the pulse yields

-.jwArc Ar (rc,i,) - IQ(rcm+ Arc/2) - O(rcIn - Arc/Z)]
c

-< >
ZsIc , pm = O, m= 2,3, ...NI-I (37)
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At the edge, the testing pulse consists of two parts,

one on the cone surface :lnd one on the topcap. Hence, both

equations (31J and (32) must be used. With approxim:ltions on

the two vector potential components similar to that above,

integration by parts, and enforcement of con~inuity of

the scalar potential at the edge, One ob~-ain~

[.

Ar Art
-jti ~-Ar (rcN ) + ~

1
Ar (rtl)

c c t

-~Q(rcN
(

-Arc/2)-@(rtl+Art/2)] - Z I PN ‘j =0
s r’

c r

where I = I or 1 a s is appropriate. On the topcap,
r c t

one has, analogous to (37),

-juArtAr (rtm) - [@(r - ArE/2~ - @(rtm+ Art/2)]
t tm

-( ZJL ~ P* ) o, m=2 ..... Nt+l (39)
-l+m =

c

The current is next expanded in che set of pulse functions

Pn of Figure 5,

Nc

1= (rc) = ~ Inpl,(rc)
n=l

Ne+N
t

It (rt) = ~ lnpn(rt)
n=N

c

(’41)
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- ‘n
.4-

Note that the current IN at th-e edge of the cone is the
c

same on both the cone and the topcap surfaces, The derivatives

of the currents obove are approximated by a finite difference

of adjacent current pulses which is then assumed to be ex-

panded in its own set of “charge” pulses (see Figure 6 );

dIc

dr
c l’n+:rc1- In

(Ht
~c+N... --

t(~-r

—’L I n+l

drt n=N Art ‘—g1
c

p~(rc)

p~(rt)

where lN +Nc+l is taken to be zero.

c
Thus the vector potential quantities in (36)-(39! m:ly

b-e written as

(42)

(43)

_L.A =
2

(
11 ‘pc

(rp, rcl, rcl + Arc/2)
‘t 8T

NC-l

+ 1 In ypc(rp7 rcn- Arcf29 rcn + Arc/2)
n=z

+ IN [Ypc(rp, rcN - Arc/2, l-CN ) + Ypt(rp, rtl, rtl+ rt/2)]
c c c

NC+N
t

+1 InYpt(rp,
n=Nc+l

‘t,n+l-N - Art/2, rt n+l N + Art/2)
c 9 c }

.* )
p = c,t— (44)
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Figure 6. Pulse expansions f[~r the charge on Llle r.one.



and

Q=

the scalar potential is

‘Nc-l (1 - ~ )

~1 n+l n

J *pc(rp S r rcn+ Arc)“=1 — Arc cn’

-1—.—_

8rr2jf.oc

NC+N
t

+Y
(I_I~

1.n+l n.—
Art J ‘pt(rp’ ‘t n+l-N ‘ ‘t n+l N + ‘r ), c 9 -c c

1

L
n=N

c

r
n-9

P= (45)C.t

dr’

d@’

wh-ere

2.n +
-jkR

e Dq

R+
Pq

m+) =

J(

Cos

o r
n-

r

J

n+

4 P-q

-jkR -
e Pq

dr’

)

.-
+ Cos

R
Pqr

n-

P,q = C,t

2Tr rn+ +

f!

-jkR
e Pq

R+
Pfi

Vpq(rp, r m+) =
n-’

r
n-

1

dr’ d~’

-jkR -
e Pq
.——

R-
Pq

C,tP,q = (47)
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‘l’heinner integrals in (46) and (47) can be approximately

analytically integrated. They are all of the form

r

/

n+ -jk R
e

dr’
R

r
n-

where R is of the form

(48)

(49)

Since the range of integration [rn_, m+] is small com-

-jkR in
pared to a wavelength, it is appropriate cu expand e

a Taylor series about some point R which is the distance
n

from the observation point to a point r in the interval
n

[rn_, m+]. Thus,

-jkR -jk(R-Rn) -jkRn
e . e e

-jkRn
= e [COS k (R-Rn) - j sin k(R-Rn)]

-jkRn k2(R-Rn)
=e [1- —2 - jk(R-Rn)

+ jk3(R-Rn)3/6]

The error in the real and imaginary parts is less than

k4(R-Rn)4 k4(Ar/2)4

Max
—-”-2F ~ —r

r’c~r -,r ]
n n-t-

0

3[,
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—

.

where Ar is the subdomain size. For five subdomains per

wavelength (Ar/A = 1/5), this results in a maximum error

of less than 1% in both the reel and imaginary parts of
.

the integrand, The resulting integral should indeed be

much more accurate than this. With this approximation,

r

.1..

n+ -jkR
e

-j kR.n

R
dr’ = e (11- j12)

r
n-

wh-ere

.
L n+

J
l-k2(R-Rn)2/2

11 = R
dr’

and where

r
n-

R +r+b

!?,n ~n++ m++ ~, + k2Rn(rn+- r )
n-

n- n-

r +b r +b R +r +b
-k2[ ‘+2 Rn+ - ‘~ _ + ~2gn Rn++rn+$~ 1Rn

n- n-

r

J

n+
k(R-Rn) - k3(R-Rn)3/6

12=
R

-— dr’

r
n-

R +r+b
= (-k Rn+ k3R~/6)kn in++ Tn++ b + (k-k3R~/2)(rn+- m_)

n- n-

—

J--
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k3Rn m++ b

[

r +11

I

R +r+b
n- + L@.21n ~s~.t=ti+ ——. — R —.

2 2
R

n+ - 2 n- 2 1]
n- n-

k’ ‘n; -rn~_b(r2 rn~) +C(r.—
6 [ 3

r,,-)
n+ - n+- 1

Combining these results, one has, finally.

r

Jf

n+ -jk R
e

dr’ =
R

r
n-

{[

k2R 2 k3R
3

-jk R
n

e l+jk R-~-j--&--

-[
~:-, ][ )1k’ “Rn c-b’ En ‘n++ ‘n++ b—. —-.

2
.— 2 R +r+b

n- n-

: (kz+ jk3Rn)[(rn++ b) Rn+- (rn_+ b) Rn_]-—

3
3

+r
3

[

r
n+++_. n-

3
- + b(rn~ - rn~)1

[
k3R 2 k’=

+ “—~ + j—-jk + k2Rn+ J 2
6 1

(rn+- m-)

)

(50)

Equation (50) is singular in ~1 if the observation Point is

in the interval ~rn-,rn+], Hence, the integrals in (46) and
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(47) need to be evaluated by subtracting the singularity

from the integrand and adding its integral to the numerically

determined integral. If rn is in th-e-interior of the inter-

val, r < r ~ rn+, (50) behaves like -2Lnl$’l near $’ = O;
n- n

ifr=r orr=r
n n- n n+’

tails of th-e–procedure

of Section 111.

(.513) behaves like -Ln/$’l. Th-e de-

paralle-ls that described at the end

-.
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SECTION V

NUMERICAL RESULTS AND CONCLUSIONS

This section describes numerical results obtained

from the computer code developed from rhe theory described

in Section IV. The resulting code was written to model the

cone with or without a topcap. Hence, results from this

general code could be checked against those obtained from

the code based on the methods of Section III for tlie cone

without a topcap. For narrow cone angles, the calculated

input impedance for unloaded cones for various frequencies

was also compared to the theory of Schelkunoff [5] and

found to be in very good agreement. Results from che general

code for moderate cone angles were also compared with those

computed by the method of Appendix B, which includes the

effects of the topcap. These comparisons were made to vali-

date. the consistency of the various approaches and to com-

pare with existing data. It was also established that

the input reactance at low frequencies could be used to

check the static capacitance calculated in the companion

report [1] for both the loaded and unloaded case. Finally,

it was verified that the computed results were almost

independent of the choice of the waist radius, a, of Section

111, provided a was chosen small enough.
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All the data in this section pertain to a conical

antenna with a vertical height of 40 meters and a cone

angle of t30= 42.26°. These parameters translate to a cone

slant height of 54.05 meters and correspond approximately

to the cone considered in [6]. The locations and values

of the lumped resistive loads usedt are listed in Table 1

and are taken from [6].

Figures 7-10 illustrate the current distribution on

the cone at a frequency of 825 KHz, approximately the first

resonant frequency of the unloaded structure. Figures 11-14

illustrate the same results at. 1.375 MHz, approximately

half-way between f-irst and second resonance uf the unloaded

.a!
>l=’

—

structure (see– F-igures 15 and 16). Two features of the cur-

rent distributions are notahl.e. First, the edge condition

[7], which requires that the current at the edge has in-

finite slop-e., and t-he continuity equation relating current

and charge, which requires tll-at t-he total current approach

zero with zero slope at the center of th-e–topcap, combine

co limit- the amount of current the topcap- can support.

Secondly, the loading, which incre-ases t-o a maximum at the

edge, further limits current flow on the t-opcap.

Figures 15-18 illustrate the variation with frequency

of the input impedance of the conical structure f-or the vari-

ous loading and t-op_cap__Configura tions. Again, the influence

of the topcap is found to be negligible. The absence of

_ J
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Table 1. Positions and values of loading
resistors on tile cone.

ARC LENGTH ALONG
TEE CONE GENERATOR

(METERS)

14.34

16.90

19.93

23.54

27.73

32.59

38.Gl

45.3L

53.43

63.15

72.25

81.35

RESISTANCE

(OHMS)

4.69

7.17

9.06

11.74

15.43

20.82

30.36

50.33

114.88

114,88

100.00

100.00

100.00
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--ARC LENGTH ALONG CONE GENERATOR

Figure 7. Current on unloaded cone with topcap, L=54.05m,
6.= 42.26°, Vo= 1. Volt, f = 825 KHz.
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s 5 - nwtJITwEt M - RERt.I ● - 1RIWIMRR%

ARC LENGTH ALONG CONE GENERATOR

Figure 8. Current on unloaded cone without topcap,

L=54.05m, 6.= 42.26°, VO= 1 Volt, f = 825 Kllz.
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Figure 9. Current on loaded cone with top.cap, L=54.05m,

6.= 42.26°, VO= 1 Volt, f = 825 KHz.
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\

f = 325 Ktiz

I t 1 1
au 22960 45.20 67.80 90 .40

ARC LENGTH ALONG CONE GENERATOR

Figure 10, Current on Inaded cone withou~ tt~pcap,

L=54.05m, t)O= 42.26°, VO= 1 Volt,
f = 825 ~[{Z.
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Figure 11. Current on unloaded cone with topcap, L=54.05m,

O.= 42.26°, Vo= 1 Volt, f ‘1.375 HHz.
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f = 1.375 14Hz
I

ARC LENGTH .4LONG CONE GENERATOR

.40

Figure 12. Current on unloaded cone without topcap,
L=54.05m, 6 = 42.26°, VO= 1 volt,

11f = 1.375 M z.
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Figure 13. Current on loaded cone. with topcap, L=54.05m,

‘o
= 42.26°, Vo= 1 volt, f = 1.375 MHz.
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r = 1.375 IIHZ

\
/

r-
0
*

0

‘0.00
1 I 1 1

22.60 45.20 67.80 90.40

ARC LENGTH ALC)NG CONE GENERATOR

Figure 14, Current on loaded cone without ropcap,
L=54,05m, 6 = 42.26°, VO= 1 Volt.

f = 1.375 Mflz.
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L=54.05m, 9.= 42,26°. Imaginary values are
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resonances in the loaded case can be attributed to the

effectiveness of the resistive loading in eliminating

reflections from the cone edge which would result in

standing waves on the structure. However, one would also

expect the bicone input impedance to approach a value of

56.5 + j 0.0 ohms, the input- impedance of an infinite bicone

of the same cone angle, with increasing frequency. Inst=ead, the

impedance in Figures 17 and 18 seems to be approaching a value

nearer 40 + j 0.0 ohms. Computations at higher frequencies

indicate that the real part of the impedance begins to increase

at about 3.0 MHz and at 10 MHz is at about 60 + j 8 ohms,

slightly above the infinite bicone impedance. Repeating the

computations with the continuous loading function described—

in [6] did indeed result in an input impedance which mono-

tonically approached th-at of an infinite bicone. Thus, it

ap-pears that some further adjustment in the values of the dis-

crete loading resistors might be made in order t=o more closely

approximate the impedance behavior of the infinite bicone.

Radia~ion patterns in the near-field region of the

loaded structure with a topcap (r = 100 meters and the

frequency is 550 KHz) are shown in Figures 19-21. Figures

22.-24 give the corresponding patterns in the Far f=ield

(r = 104 meters). For comparison, f-ar field patterns for

the unloaded structure are illustrated in Figures 25-27.

Although resources did not permit a time-domain analysis

of the response OE the structure, such a study, which could

include a simple equivalent circuit model of the pulser,
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Figure 19. radiation pattern for loaded cone
:qth ~opcap, L=54.05m, 6.= 42.26°,

Vo=l volt, f = 550 KHz, r = 100m.
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Figure 21. E radiation pattern for loaded cone

w~th topcap, L=54.05m, 6.= 42.26°,

‘o= 1 Volt, f = 550 KHz, r = ~OOm.
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would be a logical extension of the present problem. To

be done efficiently, however, some improvements in the

present computer code should be implemented. Specifically,

an adaptive integration procedure should be employed to

handle the integrations over the conical current sub-

domains, whose radii vary drastically from regions near the

feed to those near the cone edge. The present code uses a

fixed order quadrature rule for all segments on th-e

structure. Additional parameter studies can be carried out

using the present code to assess the effects ofelumped vs.—

distributed loading and th-e effects of various load distri-

butions on the performance of–the simulator. A more

ambitious project would more carefully model tile actual

wire structure with loading,

Orie conclusion of this and the companion study [I.]

is that the addition of–a topcap does not significantly

change the electromagnetic parameters of- the structure -

at low frequencies, the static capacitance and effective

heights are almost unchanged and at the higher frequencies,

the loading and the sharp angle at the edge tend to pre-

ven~—current from flowing on the top.cap.. This observation

may have some impact on the design of future simulat-ors.
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APPENDIX A

CALCULATION OF RADIATED FIELDS

Once numerical values for the current distribution

have been determined, the fields radiated by the bicone

structure can readily be determined. Because of th-e

symmetry of the structure and the excitation, the only

non-zero components of– the electric and magnetic fields

are E E and H .
r’ 9’ @

These are defined in terms of the

vector and scalar potentials as

(A-1)

where ~ = Ar~ + AO~.” A spherical coordinate system centered

at the bicone f-e-e-dand with 6 measured from the z-axis is

assumed. Since the fields are @-independent, all fields

are evaluated in- the” x-z-plane-where ~ = O. The vector

potential and scalar potential are given by

Ap(r.6) = ~

‘“” {

11
yY pc(r,6,r1 + Arc/4)

8TI

N

+ lc ~nypc (r,O,rn) +
rl=2

Q)
6-5



%c+l
[

Ar Art
+

2
Vpc(r,13,L- ~) + Ypt(r,6,rN +1 - ~)

c 1

+? InYpt(r,6,rn)

}

;P = r,e
n=Nc+2

(A-2)

(A-3 )

where the currents and coordinates are defined in Section TV.

The potential functions Y and $ are defined as

2TT

J(

-jkR: -jkR~

Ypq(r,6,rq)=Arq
+e

Cos & + Cos c- e

)

d$ ‘ (A-4)
Pq ~+ Pq ~–

c) q q

2E

J(

-jkR~ -jkR~

@q(r,9,rq)=Arq
e e

)

d+’, p=r,~; q=c,t (A-5)
R; R;

o

where

*
Cos ~ = f sin 6 cos @v sin 6 + Cos e Cos e

rc o 0

~
Cos ~ = f cos 6 cos $’ sin EIO- sin e cos 60

ec

Cos Er: = ~ sin 8 .0s $’

&

Cos% = ; Cos 0 Cos $’

and the radius vectors are all of the form

~;

‘r’2
~

+ 2btr’ +C
q qq ~
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$’ sin 8 sin

Csc

Cos

e.

00

00

60 002ot= -r

= r’

. -r

2= r

Cos (

f 2ra cos 8 00a&csc L+

+

sinfl cos $’

~ 2rL cos 6

Assuming a suitable choice and one may approxi-

(A-1) by finite differencemately compute the fields in

approximations;

-jwAr(r,6) -Er(r,6)
0(r+Ar,8)-@(r,O)

Ar

@(r,O+AO)-@(r,6)

rAO

.

.EO(r,6) -juA8(r,0) -

Ae(r+Ar,9)-A6(r ,6)
~A8(r,fl) +

Ar

Ar(r,0+Af3)-Ar (r,9)

rA8
(A-6 )
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APPENDIX B

AN ALTERNATE INTEGRAL EQUATION FOR

A CONE WITH TOPCAP

The purpose of this appendfx is to show how a novel

identity involving the free space Creen’s function may be

used to change the integral equation into a form where the

testing procedure of Section 111 is applicable. In ex-

change for simplicity in the form resulting from the testing

procedure, however, one obtains extremely complicated ker-

nels in the integral equation. Furthermore, the new ker-

nels have a number of singularities other than the usual

one where match points and field points coincide. These

complications make both the analysis and the numerical

treatment tedious. Nevertheless, numerical results have

been obtained for several cases using the approach and che

results are in good agreement with data obtained by the

method of Section 111. For simplicity, we treat here only

the unloaded cone.

As a prelude to the integral equation derivation,

we derive a transformation of the formula for electric

field components. Consider the x-component of electric

field given by

jupc Ex = 3*(k2+VV*)~

2 -%X)
‘kAxi-2x

~z 3 2A 32A
= (— + k2)Ax+ ~ + —

2X3:
(B-1)

ax2
axay

o
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where the vect”or potential A in terms of current density

3 is

The identity

where

and w

.

J
-jkl=-~’l

z=%
-e
J—

,;-;,, ‘v’

v

R=
d 222
u +V +W can be used with u = x-x’, v = y-y’,

= z-z’ to rewrite (B-1) as

jupc Ex =
[5+ ‘2] J(JX- ‘y ,::;:;::;::::)’

v

(x-x’ )(z-z’)

)

e-jkR

- Jz d“l

(y-y’ )2+(z-z’)2 R

.
a2

ax’

The vector

as the sum

+’
2

lJ
J v

“= (X-x’)i;-r

_ (x-x ’) [f(y-y’)+?(z-z’) d
(y-y’)L+ (z-z’)’

e-jkR
-x

R
dv’

+ (Y-Y’)9 + (Z-.z’)$

r-r’ = (r-r’)xi + (r-r ’)tf

where

can

(B-4)

written

(+)x = i“( ;-;’) = x-x’
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is just the component of ~-;’ along the direction of ? and

is just the component of ;-~’ transverse co 2. Thus ,

(B-4) can be written as

(B-5)

Since the choice of the coordinate system is arbitrary, we

may choose the x-axis parallel to some constant unit vector

~ and write the component of electric field in the direc~ion

of.~ to be

e-jkK
x

R
dV’

v
(B-6)

where now ~ denotes the direction of the component of

(=-11) transverse to $ and s denotes distance along a line

in the direction of $. Note that the integrand in (B-6) is

singular not only when R=O, but also when the angle between

~ and ~-~t becomes either 0° or 180°. Since in (B-6) the
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9) only differential operator is the harmonic operator, then

along a line in the direction of ~, the testing procedure

of Section III which uses piecewise sinusoids may again be

used to transform the harmonic operator into a finite dif-

ference operator. This is the advantage, gained at the

expense of–-obtaining a more complicated kernel, of em-

ploying the transformation (B-3).

Returning to the cone problem, we choose the direction

of ~ to be along the cone generator formed by the inter-

section of the +=0 plane and the cone surface, and apply

the boundary conditions. Afte”r s-o”me“straightforward but

tedious vector projection operations, one arrives at the

integral equations

*k%+‘2H’CJ‘CL]=-‘“’(r:o+)’
()<rc:L— (B-7)

*[+ + “w+‘4=0’‘Srt-s’‘in‘0 (B-8)

where ‘n L

Y Pc(rp) = ‘~

JJ

Ic(r~) (K+ + K-pc)dr~d+’
8m

pc

00

‘n Lsin60

Ypt(rp)= ~

JI

Tt(r~)(K~t+ K~t)dr~d$’,
87T

o “o
p=cort (B-9)
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The kernels Kt in (B-9) are of the form
Pq

-jkRf
e Pq

x
Rt
Pq

,
The distance between source points and field points, R’

Pq’

is of the form

R* = J ‘2 + 2bf r’ + C*
P~ ‘~ Pq q Pq

~ ~
and b and c are as defined in Section IV with “a” set

Pq Pq

equal to zero. The term Ci may be expressed as
Pq

The parameters A* B1 Di
~

Pq’ Pq’ Pq’
and f are defined in

Pq

Tables (B-1)-(B-4).

Testing Equations (B-7)and (B-8) with piecewise -

sinusoidal testing functions as in Section 111 results in

the equations

jups~inkdrc
{
- coskArc[Ycc(rcl) + Yct(rcl)]

+ [Ycc
}

(rc2) + yct(rc2)l = -vO (B-1o)
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-d)
.

DEFINITIONS OF

--)

sin 2 60[sin2$’

TABLE B-1

PARAMETERS FOR THE KERNEL Kcc

+ COS*(30(COS $’71)2]

o

f 2
-e = sin O

0
Cos +’ ~ Cos 2 00

cc

r
c

DEFINITIONS OF

TABLE B-2

PARAMETERS FOR THE KERNEL Kct

.
cos2e o COS2$’ + sin’+’

= sin

sin 0 0

‘o Cos

L COS260

Cos ($’
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TA3LE B-3

DEFINITIONS OF PARAMETERS FOR THE KERNEL Ktc

A k = sin20
tc c1

sin2~; + Cos%o—

~
B - L COS200
Cc =

f ~
D
cc = -etc

= sin 6 ~ Cos $’

TABLE B-4

DEFINITIONS OF PARAMETERS FOR THE KERNEL K
tt

*
B
tt

=0
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and
k—--

jupcsinkArc
(

[Ycc(rc,m+-l) + Yct(rc,m+l)l

= o,

~cos kArc]:ycc(rcm) + Yct(rcm)]

.

edge

m=2,3 Vc-lY ● ..71

(B-n)

with a piecewise sinusoidal testingthe cone

function which straddles both the cone and the

at the cone edge, one

topcap and

which has its peak value obtains

kArc[Y (rcNc) + Yct(rcNc)]
cc

k

{jupcsinkArc -
Cos

}
[ycc(rc,~ +) + ‘c#rc,Nc-l)]

c
+

+
k

{juHcsinkArt -
kArt[Y tc(rtl) + Ytt(rtl)]Cos

[’+’tc(rtJ + ytt(rtJl
}

+

1

__ [[

ay
+——

j(JPE a;c c

1 r

11.
‘t ‘rtl

I
-1rr =c CNC

aytt

art+ + +

(B-12)

+

the topcap surface yieldsFinally, testing on

k

{
———–- [Ytc(rt ~+1) + Ytt(rt,m+l)]
jwpcsinkArt $

-“2 cos kArt[Ytc(rtm) -1-Ytt(rtm)]
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m=2,3, ....Nt+l (B-13)

Substitution of the current expansions, Eqs. (40) and (41) of

Section IV, into (B-10)-(B-13)yie lds a matrix equation for

the determination of the unknown current coefficients. Be-

cause of the pulse expansion for the current, the matrix

elements involve integrals like (B-9) but with the curr-ent

in (B-9) equal to unity and the limits on the radial inte-

gration replaced by the limits of the corresponding current

subdomain. According to (B-12), the term at the edge also

requires the derivative of such integrals. In the following,

we present a procedure for approximately evaluating the

radial integration, leaving &he 41 integration to be done

numerically. The required integrals are all of the form

r+’‘r’‘JTD+c$~:;B)l ‘:” ‘r’

(R-14)

r r
n- n-

where, for convenience, all subscripts and superscripts have

been suppressed. Since the number of subdomains should be

n I is smallchosen such that klrn+- r _ 9 we chose some point

r~ in the interval [rn+,rn _] and expand exp(-jkR) in a Taylor

series about the point rt= rn;



_@)
-jkR -jkRn -jk(R-Rn)

e =e e

=e
‘jkRn [~-jk(R-Rn)]

—

(B-15)

resulting approxi-where R denotes R evaluated at r’=rn. The
n

mate integral is

l-jk(R-Rn)

1
dr’

R

r

J

n+ Ln+
-j kRn

Kdr?~

J[

D
C(Ar’+B)—

R’-c’
1[

+
. e

r
n-r

n-

-jkRn
(11 + (B-16)+ 13)

12
= e

where
r

J

n+

-jk
+ C(Ar’+B

R’-C’

dr’11

12

D

r
n-

dr’
D(l+jkRn) R

J
r
n-

‘ni-

(l+jkRn)

..==.!

C(Ar’+B) dr’

R’-C’ R13

‘n-

by substituting theThe first integral may be evaluated

definitions for R and C in terms of b,c,e, and f;



Ln+

1(

Aerr
2
+( Be+ Af)r’+Bf

11= -jk D+

)

dr’

(l-ez)r’z -t-2(b-ef)r’+c-f
2

r
n-

{

~2_~2

= -jk Fl(rn+-rn- ) + F2f.n I ‘+ ‘~1

R2-C
rl- n-

[[

-1 (1-e2)rn+-+(b-ef)
+ F3 tan

G(c-f2)-(b-ef)2 —--1

I_l (1-e2)rn_+(b-ef) )

- tan
~-(b-ef)2

11}

(B-17)

where

Ae
‘1

=D+—
l-e2

= (Be+Af) (l-e2)-2Ae(b-ef)
‘2

2(1-e2)2

‘3
= [2Ae(b-ef)2- Ae(l-e2) (c-f2)- (Be+Af)(b-ef )(1-e2)+Bf(l-e2)2]

x [(1-e2)2 “(1-e2)( c-f2)-(b-ef)2]-1

The tabulated integrals DW 160.01, 160.11, and 160.21 aid in

-1-the evaluation of I
1“ 12

may be evaluated using Dw. 380.001

as r

J-

n+

= D(l+jkRn)
dr’

12 R

r
n-

t
The abbreviationsDw and GR refer to Tables of Integrals and

other Mathematical Data, Fourth Ed., H.B. Dwight, Macmillan,
%.Y., 1961; and Tables of Integrals, Series and Produc&, I,S.
Gradshteyn and I.W. Ryshik, Academic Press, N.Y., 1965, res-
pectively.
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R +r +b
= D(l+jkRn)kn ~n++rn++b

n- n-

(B-18)

The subscripts n, n+, and n- clenote quantities which are

evaluated at r’=r r and r
n’ n+’

respectively.
n-’

The evaluation of I
3

is facilitated by expanding it

in partial fractions and using the substitut-ion

sinh 8 = (r’+b)/”’c-b2 to obtain

L

-[

n+

= (l+jkRn)
C(Ar’+B) dr,

‘3.. __
R*-C

2

r
n---

(l+jkRn) ‘+
=

2 f I*- +1 ‘Ari+’) ‘r’
r
n--

‘9

[

n+
-(l+jkRn) —

.
2

(A’’c-b2 sinh 6+ B-Ah)

aJ
e
n-

/ 1
‘~ ,— .—

\
42 4
c-b cosh El- e c-b2sinh 6 - f+be

Using GR 2.451.2 and GR 2.451.4, one finds the latter integral

to be
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13 [1= (l+jkRn) ~ An

l-e

Rn++r +b
n+

Rn +rn_+b I

-FA fin
2(1-e2)

(Rn+-C *+)( Rn-+C )
n-

(Rn_-Cn-)(Rn++Cn+)

[

4
-1

c-b2(Rn -Cn )- (be-f)Rn+-t-bL-c
+ F4 tan ..—

F5(rn+-+b)

/
-1

c-b2(Rn -Cn- )-(be-f)R +b2-c
-tan

1’1-

F5(rn-+b)

d 2

-1
c-b2(Rn++Cn+)+(be-f )Rn++b -c

-tan
F5(rn++b)

d 2)

-1
c-b2(Rn +Cn-)+(be-f)R +b -c

+&an
n-

F5(rn +b)
I

(R-19)

where

(B-Ab)(l-e2)-Ae (be-f)
‘4 =

F5(l-e2)

‘5 =
~(c-b2(l-e2)- (be-f)2

Equations (B-17)-(B-19) complete the evaluation of (B-16),

The derivative terms appearing in (B-12) require

evaluation of integrals of the form

L
‘n+

J J

n+

3 a ~ + C(Ar’+B) e
-jkR

z
K dr’ = ~ ——

R2-C2 R ‘r’
r r
n- n-
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where the unprimed variable r is r or r as appropriate.
c t’

The two edge terms also have non -integrable singularities

at the edge which cancel between the various terms. To

handle this situation numerically, the singularity must be

explicitly identified and removed for numerical integration.

Thus the same kind of approximate analytical integration of

(B-20) as used to evaluate (B-16) would both eliminate one

integrat-ion and explicitly identify the singular term. The

derivative can be taken inside the integral if care is taken

to identify the singular terms. Noting that aC/ar = 1,

a(R2-c2)/ar = O, and aA/ar = ~B/ar = O, we have

.&jn+, ,r! .jn+[-y.:
r r
n- n-

(+ Ar’+B 1 _ jkC2 C*

R2-C
2 F

)]R* - ~ ‘-jk’dr’

With the approximation of (B-1.5), the above may be written

as
r..

J
n+

aK
-jkRn

~ dr’ = e (14 + 13 + 16 + 17+ 18) (B-21)

r
n-

The various integrals appearing in (B-21) are defined and

evaluated as follows:
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r r

J

n+

J

n+

2 ~ drt = -k2 D(er’+f) dr,

14 = ‘k R

r
n-

r
n-

[
I

Rn++rn++b
= -k2 De(Rn+-Rn_ )-(be-f)kn R +r +b

1]
(B-22)

n- n-

where Dw 380.001 and Dw 380.011 have been used.

r

J

n+

= k2R
(De-A)r’+fD-B dr,

15 n
r’2 +2br’+c

r
n–

+ fD-B-b(De-A)

!

-1 ‘n+
+b

— - tan
-1 ‘n-+b

tan

~ ~ 47
c-b

1]
o

(L-23)

where Dw 160.01 and Dw 160.11 have been used. Using

DW 300.003 and DW 380.013, one obtains

r

J

n+

= (l+jkRn)
.(A- De)r’+(B-Df) dr,

16 R3

r
n-

l+jkR

{
~1

r r
.

2n
[B-Df-b(A-De)] A - ~

c-b ~Rn+ n-

(
+ [b(B-Df)-c(A-De)] ~ - #

n+ n- )}
(B-24)

82



*

-. )

Again using 12w 160.01 and Dw 1,60,11, we have

..

J
Ln+

Ar’+13
17 =

-jk(l+jkRn)

R2-C2 ‘r’
r
n-

I Ar’+B. -jk(l+jk Rn) dr’

(1-e2)r ’2+2(b-ef)r ’+c-f2r
n-

. -jk(l+jkRn) A
I.n

2(1-e2)

+ B(l-e2)-(b-ef)A
‘1

(1-e L)F6

where

/—
‘6 =

(1-e2)(c-f2 )-(b-ef)2

The remaining integral is

J
‘n+

18
= k2

[
(Ar’+B) ~ - ——

R’:c’~dr’
r
n-

L

1
n+

-k* C2(Ar’+B). ~—dr ‘

r R(R2-C )

Rnf-C 2
n+

R 2-C 2
n- n-

1_l (1-e2)rn++b-ef
tan

‘6

[

_l (1-e2)r +b-ef
-tan

n-

‘6
!]

(B-25)

n-



.
‘ n+

J

C(er’+f)(Ar’+B) ~r,= -k2 —

R(R2-C2)

-1

.
‘n-

r

J

n+

= -k2 Q&z ‘2+(Af+Be)r ’+B~dr,

R(R2-C2)
r
n-

.

Dividing R2-C
2

= (1-e2)r’2 + 2(b-ef)r’+c-f
2

into the

bracketed term in the numerator of the integrand, we may

write the integral as

r
I-I+

2

J [-

5*+

1

(Af+Be+W)r’+Bf+U dr!

18 = ‘k R 2
R2-C2

L

where

n-

w=- 2Ae(b-ef)

l-e
2

~ = _ Ae(c-f2)

l-e
2

Expanding the second term in brackets in the integrand in

partial fractions, one can write 18 as

18 = 18
‘+ I “

8

where r
n+

-k2Ae.—
18’ = ~ ~2

-J

‘r~+f dr’

r
n-

-kzAe

[ I

+rn++b
. ———

2
e(R -R ) + (f-be)l.n ~:++r +b

l-e
n+ n-

n- n- !]
0

(B-26)



>

<

&_-

.)

,

and
r

J

ni-

-kz

18” = ~ [ 1
[(Af+Be+W)r’+Bf+U] & - A ~Ri-C

r
n-

The substitution sinh 8 = (r’+ b)l~c-b
2

enables one to write

18
“ as

e

J

n+
-kz m11= _

18 2
[(Af+Be+W) c-b sinh 6 + Bf+U-b(Af+Be+W)]

6
n-

X.(_ _ ____1

/---2 /--7
c-b cosh 9-e c-b sinh e-f+be

1 )de
/-----2 ‘n
c-b cosh f3+e c-b sinh O+f-be

Using GR 2.451.2 and CR 2.4.51.4, we obtain finally

!!_
2

‘- .{

Af+Be+W ~n

18 - ‘k
2(1-e2)

+ e(Af+Be+W)Ln

(1-e2)

(R -C n+l@n-+cn-)11+

~l--cn_)(Rn++cn+)

R +r +b
n+ n+

Rn +rn +b

r 4 z)
i

-1

L[

c-b2(Rn+-Cn+) -(be-f )Rn++b -C
+F

7
tan

(rn+ +b)F5 I

1=(R .-c )-(be-f)Rn_+b2-c
-1

- tan —
n- n-

1

J

(r +b)F5
n- J

85



- tan
-1

[

~(R
+Cn+-) + (be-f)Rn++b2-c~

n+

(rn+ +b)F5
i

/
———

c-b2(Rn +Cn_ ) + (be-f)R +bz-c~
n- —

(rn_ +b)F5

i]

where .

[Bf+U-b (Af+Be+W)](l-e2 )-e(be-f)(Af+Be+W)
‘7 =

(1-e2)F5

-1

(B-27)

Equations (B- 22) through (B-27) complete the evaluation of

the integral, (B-21). Recall that the integral (B-21) needs

to be evaluated only for observation points at the bicone

edge (see Eq. (B-12)). For the source current pulse

associated with the bicone ed~e, there results a non-

integrable singularity (with respect to $’ integration)

which comes from the term I/Rn+ in (B-24). Each of the

derivative terms in (B-12) contains such a non-integr~ble

singularity, however, and they are of opposite signs so as

to cancel each other. For numerical integration, of course,

the canceling singularities must be analytically subtracted.

The Integrals 11 through 18 contain integrable singu-

larities such as the usual one where source and field points

coincide (i.e., R=O). In addition, however, there are al-so

integrable singularities introduced by the ~ransformati.on

(B-6). These arise from current sources which lie along and

are directed transverse to the line which- passes through

ttte observation point and which is in the direction of the

>

0’
86



electric field component of interest. For example, in

computin$ the tangential field component E on the cone,
r
c

singularities arise from currents on the topcap and its

image. Wl]ile the many singularities complicate the numerical

procedure, they can, in principle, be handled. However,

lhe unwieldiness of the functions appearing in the integrals

11
through 18 makes the numerical procedure rather ineffi-

cient--and subject to error. For example, the computer code

Jerived from the f-ormulation presented here seemed to yield

reasonable results for moderate cone angles, but often

yielded erroneous results f-or the very small cone angles

used to check the program. The complexity of the formulation

became a considerable hindrance in determining the source

of these diff-iculties. Consequently, the final calculations

were- done using the formulation of Section III which was

developed as an ext-ension of—m-ethods currently being used

to treat flat plate surfaces.

%

—
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