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SECTION I

INTRODUCTION

In a companion report [l1], the static analysis of a
conical antenna over a ground plane is presented, In this
report, the analysis is extended to treat the time-har-
monic case and. to incorporate a model of the resistive

loading of the structure. The resistive loading is intended

to reduce the effect of diffraction from the cone edge at
the higher fréduédbies.” 7

If the cone has no topcap, the analysis may be consi-
derably simplified and a simple intepgral equation for this
situation is derived inrsection Ilrand implementation of
a moment method solution is considered in Section TII. In
Section IV, an integrai equétion for the cone with a top-
cap is derived. Presented in Section V are numerical results
in the frequency domain for currents on a loaded conical antenna
both with and without—a topcap. In Appendix A expressions
are derived for the computation of fields from the currents

and Appendix B gives the derivation of an alternate integral

equation from that derived in Section 1IV.



SECTION T1

FORMULATION OF AN INTEGRAL EQUATION FOR
A BICONE WITHOUT ENDCAPS

For the symmetrically driven biconical structure of
Figure 1, the current on both the cone and its image are
radially directed and have no circumferential (¢) variation.
Hence the magnetic field tangent to the cone is ¢-directed
and the boundary conditions can be satisfied by fields which
are transverse magnetic (TM) to r. Thus, the fields may
be completely determined by a radially-directed vector
potential A = Ar? [2}]. 1In an eigenfunction solution to
such problems, the fields are determined in the bicone
region from a vector potential Ar which comes from a
homogeneous solution of the wave equation. In order to
derive an integral equation, however, Ar must be expressed
in terms of the current on the bicone. In particular, a
free space Green's fuunction is to be found for the vector
potentiaLAr due to a unit radially-directed current element.
A superposition integral then expresses the total vector
potential due to currents on the cone.

Beginning with the assumption that -the magnetic field

is determined from A = Ar?,

-

_]:_ -

H = VxA
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and using Maxwell's equations,

<J
b
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jweE+3

one readily determines by standard procedures that A satis-
fies the vector Helmholtz equation
- 2" ~ .
VrVxA - kTA = qur - jwucvd (1)
where ¢ is a scalar such that
E = -juwa - Vo

For a radially-directed unit current element,

2 (r-r")

[
It

[

[a¥]
|

A 0(r-r')8(8-0")8(d~9")

= T (2)
r'2 sin 8'
Expanding out (1) yields
2
aa ! 3°A
-1 [sin 6 rJ— 12 -t - szr 3
r sin 6 r sin 8 3¢
2 2
+ L i.ﬁz 5 + 1 O A ) o
r 8rabd " |r sin 8 Jdor J
- . 1l 3¢ 2 1 3¢ ~
= pyJ £ - JMHE{ 5 Tt ey e T ¢ (3)
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from which it is seen that

-
27A, T
3r30 JWHE 73

2
" A e 22 (4)
36dr JUHE T

These conditions are automatically satisfied by the gauge

choice - 3A
1 r

® = - jwye  or

(5)

Substituting (2) and (5) into (3) leaves the one scalar

component equality

+ szr= —uS(T-") (6)

which can be rewritten in the more convenient form,

A STt
(724 Py £y - i) (7)

r
To obtain (7), one notes that

§(r-r') _ 8(r-t'")

r r

A solution of (7) which satisfies the radiation condition for
a exp(jwt) time convention may be written by inspection of- (7)

as



o dklT-r|
' —T= (8)
r bur'! [g-t']

and the general solution to (3) for a distributed set of

currents is obtained by superposition:

’

dav'! (9)

This form of the vector potential has also been used by

others [3]. For the symmetrically-excited cone and its
image, _
_ Jsr(r')
J (r') = ————— -}&(8'-68,) - S§(8'-7+6) (10)
r oy 0 0
where Jsr is the bicone surface current density. Sub-

stituting (10) into (9) gives the desired equation for the

vector potential:

-+ pus
pr sin 8 e~ij e—ij
A = (r ) ranli - dr'da’
r R R

(11)

where

Ri= /;2 +r'2 - 2rr'[sin 6 sin 80c05(¢—¢')i cos B cos 8

ol

The plus superscript denotes source points on the upper bicone
surface while the negative sign denotes source points on the

image surface.

10
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It is convenient to introduce the total axial current

I(r') = 27r' sin GOJsr(r') (12)

so that (11) becomes

2T L N
. -jkR -jkR™
A = __Uj_.__f f I(x’) |e - £ dr'd¢' (13)
r 2 + -
87
0 0

r' R R

The radial component of electric field is now given by

T jwue 2 Ar (14)

- _ o 2 V
_ 1 3 + k2
or

The simplicity of (13) and (l4) compared to the usual

vector potential representations should be emphasized at

this point. One notes that in the usual representation, two

vector poteﬁﬁial compongqts, Ar and AS’ would be present,
Furthermore, the integrands of the potential integrals would
contain somewhat complicated dependences on angles between
observation and source points which arise from projecting

the source vector onto the potential component vector for

each source and observation point, Finally, the expression

for the radially-directed electric field would be complicated

and difficult to handle numerically compared to the approach

to be followed here. These complications indeed will appear

in the formulation which includes a topcap on the bicone struc-

ture (Appendix B).

11
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An integral equation for the current is obtained by
applying the boundary condition that the radial electric
field must equal the impedance luvading times the total

current density, i,e.,

E. = Zs(r)I(r)

Since all currents and fields are ¢-independent, it suffices

to take all observation points along the intersection of the

plane ¢=0 and the conical surface. Hence, we obtain finally
2 )
.1 d 4+ k2 A -2 (r)I(r) = 0, O<r<f, 6=0_,4=0
juwpe 2 r 8 - 0
dr
(15)

Equation (15) is an integro-differential equation for the
induced current on the bicone. As it stands, (15} does not
appear to contain a driving term due to the applied

voltage at the bicone terminals. In the next section,
however, this term appears as a "boundary'" condition on
dAr/dr at r=0. One also notes in (15) that discrete or
lumped loading may be introduced by allowing Zs(r) to be

represented by appropriate S-functions,

NL
Zs(r) =3 29 6(r~an)
n=1
for NL loads where ZLn is the impedance of the nth load

located at r=r
Ln

12
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SECTION III

APPL;QéTION,QF,ﬂE?HQDZPE MOMENTS T0 A

BICONE WITHOUT ENDCAPS

The usual procedure in applying the method of moments
(4] is to first represent the unknown current as a linear
combination of an appropriate set of basis functions and
then ""test'" the resulting integral equation with a series
of—testing functions. Here it is convenient to reverse
this order and to first test the equation before expanding
the curreﬁt. A set of testing functions which offer a
number of advantages in a numerical procedure are the piece-

wise sinusoidal testing functions:

sin k(Ar-r)
Wl(r) = sin kAr - -

0 , AOr, <r <L

sin k(Ar—[r—rml)

Wm(r) = sin kAT m-1 m+1
0 , lr-r | > Ar
m= 2,3,..,M (16)
where Ar = L/M, r = (m=-1)Ar, m=1,2,...M
These testing functions are shown in Figure 2. An inner

product is next defined as

13



Figure 2. Testing functions for the cone.
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L

< f(r), g(r) > =ff(r)g(r)dr (17)
0

and (15) is successively tested with each of the W

A, wr> - <zs(r>1<r>, wn>

=0, m=1,2,...,M (18)

Taking, for the moment, m=1 and integrating the first term

by parts twice results in

2 dA
d 2 _ r k
2 + ok Ar’ w1 T 7 dr * sin kAr Ar(rZ)
dr r=0
k cos kAr
" sin kAT Ar(rZ)
where A (r ) = A . Note that although
r o m , r|ir=r
O=OO
A = 0, (19)
r B=m/2
Ar(rl) is not zero along the bicone. In fact, one notes that
3%a
E. = —i_ 3
) jwper 9ro0

and that- the bicone voltage at r=0 is just

15



r=0
80
/2 2
i 1 J Ar 46 - _ 1 iﬁr(rl)
jwpe 9raf r=0 jwpe  dr
8O

where, using (19}, one sees that BAr/3r=0 at 8=1/2.

Thus for m=1, (18) becomes

k B -
jwpe sin kAr [} cos khr Ar<r1) * Ar(rzﬂ

- <%S(r)1(r),w;>= —VO (203

For m= 2,3,4,...,M, integration by parts twice in (18) re-

sults in

k
juue sin kAr [Ar<rm+l) T 2 cos kArAr(rm) * Ar(rm—lﬂ
- <<? (r)I(r), w >>= 0
s ™
m = 2,3, s M
(21)

Note that the choice of testing functions has resulted
in removing all the derivative operations from the operator
equations. This is the principal advantage of the testing

functions chosen.

16
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A matrix equation now results if the current is
expanded in an appropriate set of basis functions. A

convenient set is the pulse functions defined by

1, 0<r<Ar/2

p,(r) =
0o, Ar/2 <r< L
L, ]r—rnlg_Ar/Z
Pn(r) =
0, ]r-rnl > Ar/2

n = 2,3,..,M

(see Figure 3) and the resulting current expansion is

I(r) =
Tt

[ e B 4

. I p (1) (22)

Note that the current at the bicone edge r=L is auto-
matically zero by our choice of basis functions (Figure 3).
When (22) is substituted into (20) and (21), there

results the system of linear equations

k
L1 {0 Joue sin Kar [‘ cos kbr ¥ (r;5ry,r 4) + W(rz’rZ’rr+ﬂ

- <izs(r)pl(r), wl:> +

17



k . .
- cos kAr W(rl,rn_,rn+) + W(rz,rn_,rw+ﬂ

n jmﬂE sin kﬂ?
-<Zs(r)pn(r), w1> = =Vq

(23)

I e—1%
L

n

and

k . _ .
[y(rm_l,rl,rl+) 2 cos kAT W(rm,rl,rz)

1) jwpe sin kAr
+ W(rm+l;r1,rl+ﬂ - <%S(r)pl(r), wm:%}

k 2
- . _ _72 KAr® . _,
n Y} jwpue sin kAr[‘(rm—l’rn ’rn+) cos Ar?(rm,rn rn+)

I

+
[ e o 4

n

- <ZS(1‘)PH(1‘)» wm>

* W(rm+1;rn”rn+ﬂ

These equations may be assembled into the matrix

equation

Z1 =V
where
-V
o
I 0
I = . . V = 0
I

M 0

18



Figure 3. Pulse expansion functions for the current
' on the cone.
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and the elements of the impedance matrix may identified

from (23) and (24). The functions W(r;rn_,rn+) are
defined by
2w r
+ -
s ! r e_ij+ e"ij
W(r;rn_,rn+) = 872 — T - ——} dr'dé¢’  (25)
r' R R
0 r
n
where
i’ /2 ,2 t -2 T 2
R'= 'r'+ r -2rr'(sin 60 cos ¢' + cos OO) (26)

and where

r X =1 + Ar/2
n n —

The evaluation of the double integral in (24} 1is
simplified by analytically approximating the integration
with respect to r'. This may be accomplished by noting that
in general k(rn+— rn_)<< 1, so that a few terms in a

Taylor series expansion about some point T in the interval

[rn_,rn+J should be accurate. Accordingly,one writes
jkR" jkR®  ~jk(R*-RD
-jkR -jkR -jk(R"-R )
e = e e
+
—ijn o ha
* e [1-3k(R7~ Rn)] (27)

*

+
where R;= R Substituting (26) into (24) and listing

1‘=L‘n
as a fourth argument the point about which the expansion is

made, one obtains

20
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. ~ 4 .
W(r,rn_,rn+) \l(r,rn , T +.rm)
27 r +
U f "I oikrT (1+5kRT
o _ur_ . n [___._fl _ ik
8ﬂ2 .I., r'R+ r'
0 r
n-. - - -
-jkR. [1+jkR .
n n k 1
—e [ —r e - Jr, dr'd¢’
T + + + +o
_ ur f e—JkRn IHikR, log Tt By T o b )
r + +
4 rn_(Rn+ + r - rn+b )
0
r +
~-jk&n |— —
r -
n
-JkR | 1+3kR r+(R 4+ r - r _b )
-e T log —
rn_(Rn+ +r - r ;b))
L
_jkzn n j d¢' (28)
r__
n
, W3 . 2 ' 2 . .
where b = sin 60 cos ¢' + cos 80. In several situations,

appropriate limits of the integrand of (27) need to be taken.
First, when the source is the current segment at the bicone

terminals, the integral (27) reduces to the simple form

. ~ .
W(r,rl,rlf) Q(r,rz,rl+,rl)

ki

! -jkr LIRS bl I
= = e (1+jkr)log T 49

l}'ﬂ' Rl+ + r - b+r2+

0

(29)



As the observation point r in (28) approaches the
bicone terminals, r+rl= 0, the limiting form of the inte-

grand can be integrated. The result is

2 °

. - ot 2
Y(rl,rl,r1+,ri) it log(cot 5 ) (30)

a very interesting result that is independent of the sub-
domain size-at the bicone terminals. Finally, all the so-

called "self terms" ¥(r ;r_ _,r_,,r ). n#l, contain an
n n- n n

integrable singularity. In fact one easily establishes
that
+
IS .
log —¥» - 2 log |¢'}l
r (R+ + r - b+r ) r*rn
n~ " nt nt

This singular term is then subtracted from the integrand in
(27), resulting in a non-singular integrand which is then

numerically integrated. The term

—-—:—E——- & ’::i’l. T -
-3 gl fdp 5= (2nwt -1)

is then added to the result to take care of the part of the

integral contributed by the singularity,

22
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SECTION 1V

FORMULATION_ AND NUMERICAL SOLUTION OF AN

INTEGRAL EQUATION FOR A BICONE WITH ENDCAPS

The formulation of the integral equation for a cone

radiator over a ground plane with an endcap is considerably

more complicétea tL;nrtﬁ;L kof ghe éase when the endcap_is

not present. It is possible, however, to genevralize the
approach used for the bicone without a topcap and to trans-
form the derivatives appearing in the equations into har-
monic operators along the radial cone and topcap coordinates,
as 1is done in Appendix B. This approach has the advantage
again that testing with piecewise sinusoids allows the re-
placement of derivatives by a finite difference of potentials.
However, to effect this transformation. an extremely com-
plicated kernel must be used (see Appendix B ) which contains
many singularities other than the usual ones where—source and
field points coincide. While this approach has been used,

it has been found to be unwieldy and rather inefficient.

The aﬁéroach déscfibed here begins with the description
of fields in terms of the more commoﬁly used vector magnetic
and scalar potentials expressed in terms of the cone currents
and charge. However, it 1is found that these potentials are
singular at the bicone terminals which again creates an
unnecessary complication. In order to circumvent this problem

the cone and image surfaces are allowed to intersect with a

23



"waist" of radius "a" (Figure 4). TIf "a" is very

small
small, there should be negligible difference in the input
impedance and currents found for this case and that for the
limiting case of a=0. For convenience, the cone coordinates
are defined with respect to the projection of the cone sur-
face to a tip, as in Figure 4. Furthermore, the direction
of the unit vector Et and the positive direction of corres-

ponding vector components is taken to be towards the center

of the topcap, in the direction of decreasing L.
The integral equations are obtained by setting the
radiated field tangent to the cone surface equal to the

impedance drop per unit length due to the loading:

3d B . .
-ijrc- g?c - ZSIc = 0, a/sin 80< rCS_L + afsin 00 (31)
-ijr - é% - ZSIt = 0, 0« rtf_L sin 80 + a (32)
t t

where the tangential components of magnetic vector potential,

Ar and Ar , are given by

c t
—_— —_—
27 L+a/sin 80 + —JkRPC N —JkRpC
" cos § e cos £ e
Ar s T2 Ic - + * - - dréd¢'
p 8w R c Rpc
0 a/sin 60 P
2% Lsinb .+ ~5kr_T -jkR_T
T sinb+a 4 TIRR p TIRR,
cos & e cos § e
+ 1 pt + Pt dr'd¢’
t R+ R t
0 0 pt pt
p = c, t (33)

24
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Figiuru 4, Geometry ofcone with enidcap.
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The scalar potential is given by

2n L+a/sin 80 _ij+ ~jKR™
d71 c c
_]_ c e P e P 4
— —— e 1]
= _[ f | Ty T T T pdrdd
817 juwe ¢ R R
0 a/sin 0, pc pc
27 k sin 60+a —3kR+ ~iKR
dar o P e pt _
+ —_ - = dr d¢"
dr R R t
0 0 pt pt
p = c,t (34)

The currents I and It are the total linear currents on
c
the conical and topcap surfaces, respectively, and are re-

lated to the corresponding surface current densities J and
C

J b
¢ ¥

I = 21y sin 6.J
c 07 ¢

o]
U}

27r J (35)
t t

The distance quantities are all of the form

- v 2 N 3

R = r + 2b r + ¢ s P,q = c,t

Pq q Pd ¢ pd

where

b ¥ = - r sin’e s ¢' + r c05%°8 - a cot 8_cos © (1+1)
o i g ©° c 3 0 0

26



The angles between the source current elements and

gential component of electric field at the observation point

1]

r2 + a2cot 8 (1:1)2— 2r a cos B
c 0 c 7 ,O

L c0528

0

COS,BO(a,COt Boj L cgs 80) f (a cot Ooi L cos B

-~ a cos Bocot 6, -

0

2 2
+
T, (L cos 0y + a cot 60)

'
=r cos ¢)
£

2 -
rg + L2c05280(1+l)2

are determined by

+
cos gcc

cCos

I+

h

+1

cos

sin

cos

cos

0

®f sinze
80 cos ¢'
6"

¢' sin O

+ cosze

27

0

r

t

sin 0

0

cot 60(7111)”7

cos ¢'

the tan--

0

)

2



It is convenient to choose as testing functions the

pulse functions P,

Py results in

shown in Figure 5. Thus, testing (31) with

. o
m1e <Arc’pl> - <§vr—;’ pl> - <ZsIc ’pl> =0

Upon integrating by parts in the central term,

that Ar is slowly
c

be approximated by

Ar

. c
‘JwAr (rcl) 2 -

But ¢(rcl) is just

pect to the ground

and noting

varying over the interval and hence may

A (r

}, one obtains
rc cl

[(®(rc + ArC/Z) - ¢(rc1)} - /2

1

the bicone terminal voltage VO

plane. Hence,

s% ’pl>>= 0

with res-

~jwA_ (r_ )8t - 20(r .+ 4r /2)- 2<:§;% : pt> = -2V (35)

c

0

For the remaining testing functions on the cone,

testing of (31), integration by parts on the scalar potential

term and approximation of the vector potential by its value

at the center of the pulse yields

—ijrCArc(rCm) - [e(r_+ br_/2) - ¢(xr_ - b7 _/2)]

28
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At the edge, the testing pulse consists of two parts,
one on the cone surface uand one on the topcap. Hence, both
equations (31 and (32) must be used. With approximations on
the two vector potential components similar to that above,
integration by parts, and enforcement of continuity of

the scalar potential at the edge, one obtains

[Arc Ar,
T 2 ”Ar (rcN >+ 2 Ar <rtl)]
c c t

..[cb(rch—ArC/2)-¢(rtl+Art/2)} - <zsrr,ch) =0 (38)

where Ir = IC or it as is appropriate. On the topcap,

one has, analogous to (37),

—JwArtAr (r

. )y - [¢(rtm— Art/2) - @(rtm+ Artlz)]

tm

- = = « %0 1 + q
(2T ch_l+m> 0, m=2...., N +1 (39)

The current is next expanded in the set of pulse functions

Po of Figure 5,

N
[
I, (r) = ) Lp,(r) (40)
n=1
N AN
I, (ry) = ) Inpn(rt) (41)
n=NC
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Note that the current IN at the edge of the cone is the
C

same on both the cone and the topcap surfaces, The derivatives
of the currents above are approximated by a finite difference
of adjacent current pulses which is then assumed to be ex-

panded in its own set ofr”éhérge” pulses (see Figure ¢ )

p_(r.) (42)

N _
gt NetNe rpoo o
- n+l n +
ar_ z At pn(rt) (43)
t n=N t
c
where IN N +1 is taken to be zero.

Thus the vector potential quantities in (36)-(39) may

be written as

S
A = I.¥Y (r , r ., r + Ar /2)
v gn L pc p cl 1 c
N -1
c
+ z I Y (r , r - AOr /2, r + Ar /2)
h=p D PC c c c

- 2 .
+ IN [Wpc(r T Arc/ 'y Ten ) + Wpt(r ’rtl’rtl+ rt/Z)]
c c c
N +N
CZ.‘. t

+ I ¥ (r , r Ar /2, r + Ar /2)}

n=NC+l n pt p t,n+l—NC t t,n+1-N t

p = c,t— (44)
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Figure 6. Pulge expuansions for the charge on the cone.



and the scalar potential is

O

where

dr'

pP,yq (46)

and

(47)

»

33



The inner integrals in (46) and (47) can be approximately

analytically integrated. They are all of the form
"n+ -jkR
g dr! (4 8)
R
r
n-

where R is of the form

R= """+ 2r'b + ¢ 4 9)
Since the range of integration [r

, r ] is small com-

n+
-jkR

n-

pared to a wavelength, it is appropriate to expand e in
a Taylor series about some point Rn which is the distance

from the observation point to a point L in the interval

[rn_, rn+]. Thus,
-jkR -jk(R-R_) -JkR_
e = e e
~JkR_
= e fcos k (R-R_) - j sin k(R—Rn)]
i 2
—JkRn k (R—Rn)
= e [1- —5 - Jk(R—Rn)

+ jk3(R—Rn)3/6]

The error in the real and imaginary parts is less than
/, I

k4 (r-r ) k*(ar/2)"

Max Y TR

< —

34



A
&

where Ar is the subdomain size.

wavelength

(Ar/Xx = 1/5),

For five subdomains per

of less than 17 in both the real and imaginary parts of

the integrand, The resulting integral should indeed be

With this approximation,

much more accurate than this.
: r .
n+ e—JkR _ijn
t ~ - .
f o dr' = e (Il JI2)
e _ : . _
where
r
+
"t k3 (R-R ) P/2
I, = n dr'
1 R
r
n-
k2R ) +r + b
= 1- — | £n nt nt
2 + r + }
n- n-
_kz[ rn++ b . _ rn_+ b . . c-b
n+ 2 n- 2
and where
I+ 3 3
k(R-R ) - k" (R-R )7 /6
1.= L L dr'
2 R
r
a-
r
= (-k R_+ k°R3/6)en |-NE 0t + (k-k
n n n- ro.
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Rn/2)(rn+— r

this results in a maximum error

n-
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3
+ + 2 R +

PRI (Y A Y R €5 S RO o UM Sl

2 2 n+ 2 n- 2 Rn—+ r + b

3 3
3rr - r
k n+ n- 2 2

T 6 [ 3 - b(rn+ - rn—) * C(rn-i-” rn—)]

Combining these results, one has, finally,

Fn+ -jkR
e -
.f. = dr
r
n—
~§RR K 2 k3Rn3
e [l + ijn -3 -3 3
) k3R 2 R +r .+ b
_ 4 i — D [c—q_)] 3 n+ ot
2 173 3 n ¥ r + b
n- -
1 2 3 '
- = 3 - +
Z (k "+ ik Rn)[(r ++ b)Rn (r b)Rn ]
3 3
3 + r
ik n+ n- 2 2
+ 6 [ 3 + b(rn+ rn—)}
2 k3Rn2 k3c
+{-Jk + k Rn+ i—3 + 3 } (rn+— fn_) (50)

Equation (50) is singular in ¢' if the observation point is

in the interval [rn_,r ]. Hence, the integrals in (46) and

n+
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(47) need to be evaluated by subtracting the singularity
from the integrand and adding its integral to the numerically
determined integral. 1€ o is in the interior of the inter-

val, r <r_ <r (50) behaves like -2%n|¢']| near ¢' = 0;

n- n n+’

5 = = i - ' X -
if ro=r _orr =T, (50) behaves like -&n|o¢'|. The de

tails of the procedure parallels that described at the end

of Section IT1II.

37



SECTION V

NUMERICAL RESULTS AND CONCLUSTONS

This section describes numerical results obtained
from the computer code developed from the theory described
in Section IV. The resulting code was written to model the
cone with or without a topcap. Hence, results from this
gencral code could be checked against those obtained from
the code based on the methods of Section III for the cone
without a topcap. For narrow cone angles, the calculated
input impedance for unloaded cones for various frequencies
was also compared to the theory of Schelkunoff [5] and
found to be in very good agreement. Results from the general
code for moderate cone angles were also compared with those
computed by the method of Appendix B, which includes the
effects of the topcap. These comparisons were made to vali-
date the consistency of the various approaches and to com-
pare with existing data. It was also established that
the input reactance at low frequencies could be used to
check the static capacitance calculated in the companion
report [1] for both the loaded and unloaded case. Finally,
it was verified that the computed results were almost
independent of the choice of the waist radius, a, of Section

ITII, provided a was chosen small enough.
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All the data in this section pertain to a conical
antenna with a vertical height of 40 meters and a cone
angle of 60= 42.26°. These parameters translate to a cone
slant “height of 54.05 meters and correspond approximately
to the cone considered in [6]. The locations and values
of the lumped resistive loads used are listed in Table 1
and are taken from [6].

Figures 7-10 illustrate the current distribution on
the cone at a frequency of 825 KHz, approximately the first
resonant frequency of the unloaded structure. Figures 11-14
illustrate the same results at 1.375 MHz, approximately
half-way between first and second resonance uvf the unloaded
structure (seefPigures 15 and 16). Two features of the cur-
rent distributions are notabhle. First, the edge condition
{7)], which requires that the current at the edge has in-
finite slope, and the continuity equation relating current
and charge, whiéh requires that the total current approach
zero with zero slope at the center of the topcap, combine
to limit the amount of current the topcap can support.
Secondly, the loading, which increases to a maximum at the
edge, further limits current flow on the topcap.

Figures 15-18 illustrate the variation with frequency
of the input impedance of the conical structure for the vari-
ous loading and topcap configurations. Again, the influence

of the topcap is found to be negligible. The absence of
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Table 1I. Positions and values of leoading
resistors on the cone.

ARC LENGTH ALONG RESISTANCE

THE CONE GENERATOR
(METERS) {OHMS)
12.17 4.69
14.34 7.117
16.90 9.06
19.93 11.74
23.54 15.43
27.73 20.82
32.59 30.36
38.41 50.383
45.31 114.88
53.43 114.88
63.15 100.00
72.25 100.00
81.35 100.00
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-~ .--ARC LENGTH ALONG CONE CENERATOR

Current on unloaded cone with topcap,

0,= 42.26°, Vo= 1 Volt, f = 825 KHz.
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Figure 8. Current on unloaded cone without topcap,

L=54.05m, eo= £2.26°, v0= 1 Volt, f = 825 Kilz.
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Current on loaded cone with'topgap,
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Figure 10, Current on loaded cone without topcap,

L=54.05m, 6.= 42.26°, v0= 1 Volt,
f = 825 MUz.
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Figure 12. Current on unloaded cone without topcap,

L=54.05m, 8,.= 42.26°, VO= 1 Volt,
f = 1.375 MHz.
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0.,= 42.26°, v.= | Volt, £ = 1.375 MHz.
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resonances in the loaded case can be attributed to the
effectiveness of the resistive loading in eliminating

reflections from the cone edge which would result in

standing waves on the structure. However, one would also

expect the bicone input impedance to approach a value of

56.5 + j 0.0 ohms, the input impedance of an infinite bicone

of the same cone angle, with increasing frequency. Instead, the

nearer 40 + j 0.0 bhﬁé.”;Cbhputations at higher frequencies
indicate that the real part of the impedance begins to increase
at about 3.0 MHz and at 10 MHz is at about 60 + j 8 ohms,
slightly above the infinite bicone impedance. Repeating the

computations with the continuous loading function described

in [6] did indeed result in an input impedance which mono-
tonically approached that of an infinite bicone. Thus, it
appears that some further édjustmentrin tﬁe values of the dis-
crete loading resistors might be made in order to more closely

approximate the impedance behavior of the infinite bicone.

Radiation patterns in the near-field region of the
loaded structure with a topcap (r = 100 meters and the
frequency is 550 KHz) are shown in Figures 19-21. Figures
22-24 give the corresponding patterns in the far field
(r = 104 meters). For comparison, far field patterns for
the unloaded structure are illustrated in Figures 25-27.

Although resources did not permit a time~domain analysis
of the response of the structure, such a study, which could

include a simple equivalent circuit model of the pulser,
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would be a logical extension of the present problem. To

be done efficiently, however, some improvements in the
present computer code should be implemented. Specifically,
an adaptive integration procedure should be employed to
handle the integrations over the conical current sub-
domains, whose radii vary drastically from regions near the
feed to those 6ear the cone edge. The present code uses a
fixed order quadrature rule for all segments on the
structure. Additional parameter studies can be carried out

using the present code to assess the effects of-lumped vs.

distributed loading and the effects of various load distri-
butions on the performance of the simulator. A more
ambitious project would more carefully model the actual

wire structure with loading.

"One conclusion of this and the companion study [1]
is that the addition of-a topcap does not éignificantly
change the electromagnetic parameters of the structure -
at low frequencies, the static capacitance and effective
heights are almost unchanged and at the higher frequencies,
the loading and thebéﬂ;;p agéié”at fhe edge tend to pre-

vent current from flowing on the topcap. This observation

may have some impact on the design of future simulators.
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APPENDIX A

CALCULATION OF RADIATED FIELDS

Once numerical values for the current distribution
have been determined, the fields radiated by the bicone
structure can readily be determined. Because of the
symmetry of the structure and the excitation, the only
non-zero components of the electric and magnetic fields
are Er’ EB’ and H,. These are defined in terms of the

¢

vector and scalar potentials as

o L
Ep = -JwAL - 57
. 39
By = ~JvAg - 7 5%
JA JA
1 g 1 °f,
H = — F —— - S et -
H o) rAe or r 30 (a-1)
where A = Ar + Aeﬁ.” A spherical coordinate system centered

at the bicone feed and with 6 measured from the z-axis is
assumed. Since the fields are ¢-independent, all fields
The vector

are evaluated in the x-z plane where ¢ = 0.

potential and scalar potential are given by

- . I
S S B §
Ap(r.e) 8n2 5 Wpc(r,e,rl + Arc/ﬁ)
N
[
+ Z I wpc(r,e,rn) +
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Nc+l Arc Art
+ 5 [Wpc(r,G,L- A ) o+ ?pt(r,G,rNc+l 4 )]
i
+ I ¥ (r,8,r ) ; p = r,0 (A-2)
n=N +2 " pt n
c
TN
I - Ar
¢(r,0) = —2—— ¢ ¥ |BEL_miy lre,r + —S
8 2, It Ar 2
T jwe | n=1 c
N 11 -1 ] Ar
n+l n t
) —_— [r,e,r - } (A-3)
n=NC+l Art t n 2

where the currents and coordinates are defined in Section IV.

The potential functions ¥ and ¢ are defined as

r -jkR” -jkR_
Y (r,8,r )=Ar cos £+ £ : + cos £ = : do!' (A=-&)
L I A Pq o PQ -~
p q q
2n —ijZ -ij;
Y (r,8,r )=4r = i S ld¢", p=r.8: q=c,t (a-5)
q q q R R
0 q q

where
cos gri = + gin 6 cos ¢' sin 80 + cos B cos 80
cos Ee; = % cos B cos ¢' sin 80 - sin 8 cos BO
cos Eri = + sin 9 cos ¢'

+

cos get = + cos O cos ¢'

and the radius vectors are all of the form

= + +
Rq Jr'2+ 2b ' + c”
q q q q
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ith

£
[

o
0 I+

I+

o

O I+

-r cos ¢' sin B sin 60 ¥ r cos 6 cos B

r

2

+ 2ra cos 6 csc 60 + azcsc2 8

0

-r sin 6 cos ¢'

r

2

¥ 2rL cos 6 cos 60 + L

2

Assuming a suitable choice for Ar and A0, one may approxi-

mately compute the fields in (A-1) by finite difference

approximations;

Er(r,e)

Eo(r,e)

MH, =

_ G(r+Ar,0)-0(r,0)

= —ijr(r,G)

Ar
. _ $(r,0+46)-9(r,H)
Juag (r,0) Y-
A, (r+Ar,8)-A_ (r,0)
Ip (r,0) + 2 6
r O Ar

Ar(r,6+A8)-Ar(r,9)

- TAB (A-6)




APPENDIX B

AN ALTERNATE INTEGRAL EQUATION FOR
A CONE WITH TOPCAP

The purpose of this appendix is to show how a novel
identity involving the free space Green's function may be
used to change the integral equation into a form where the
testing procedure of Section III is applicable. In ex-
change for simplicity in the form resulting from the testing
procedure, however, one obtains extremely complicated ker-
nels in the integral equation. Furthermore, the new ker-
nels have a number of singularities other than the usual
one where match points and field points coincide. These
complications make both the analysis and the numerical
treatment tedious. Nevertheless, numerical results have
been obtained for several cases using the approcach and the
results are in good agreement with data obtained by the
method of Section I1I. For simplicity, we treat here only
the unloaded cone.

As a prelude to the integral equation derivation,
we derive a transformation of the formula for electric
field components. Consider the x-component of electric

field given by
&+ (K2+VV A

jwue Ex =
- k%A + 2 (V.3)
X 9x 5 2
52 2 B Ay aAz
- (3x2 kAt o9xdy axdz (B-1)
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where the vector potential A in terms of current density

[N

-jk]r-r']
..__U_ .-e ' _
A-MfJ dv (B-2)

J is

|e-x" |

\Y

The identity
32 e-'ij - _ 32 + k2 uv e_JkR (B-3)
Jud v R 2 2 2 R
ou vo+w
' ' Y2 2, 2 . . _ '

where R = "u"+v +w~ can be used with u = x-x", v = y-y ',
and w = z-z' to rewrite (B-1) as

2 , '
jwpue E = {8——5 + szf J -3 (x-x7) (y=-y')

B 9x y (y—y')2+(z~z')2
\
(x-x")(z=-2") e—JkR .
-, 2 5 g 4V
(y=y') +(z-2")
(a2 2 = (x=x")[§(y-y ) +E(z-2")]
= 5 + k I Je X - ’ 5
3 x ) (y=y')"+ (z-2z")
Vv
e—ij
L 1 -
X R dv (B-4)
The vector r-r'= (x-x')% + (y-y')§ + (z-z')Z can be written
as the sum
- ? =77 _' e 5 V_'
T-r (r-r )xx + (r~-r )tﬁ
where
(r-1' = Re(r-r') = x-x'



is just the component of r-r' along the direction of & and

a X!
i

cr-E')tﬁ = - (E-E')xi

is just the component of r-r' transverse to ®. Thus,
(B-4) can be written as
2

jwpe E =[a + k2
X 2
3 x

(B-5)

Since the choice of the coordinate system is arbitrary, we
may choose the x—axis parallel to some constant unit vector
4 and write the component of electric field in the direction

of -3 to be

2 £(r-t') (r-r")a
- |2 2 =. {2 _ t
jwueEa—(2+k]fJ a 3
t

ds (r-r")
v
-jkR
e - '
X R dv
2 -jkR
= (3 + kz]f.P[ﬁ - £ cot (:’i,r—?')i]e dv'
R
3s
\'

(B-6)
where now £ denotes the direction of the component of
(;—;') transverse to 4 and s denotes distance along a line
in the direction of 4. Note that the integrand in (B-6) is
singular not only when R=0, but also when the angle between

4 and r-r' becomes either 0° or 180°. Since in (B-6) the
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only differential operator is the harmonic operator, then
along a line in the direction of &, the testing procedure
of Section III which uses piecewise sinusoids may again be
used to transform the harmonic operator into a finite dif-
ferencewopéféior.ﬁtfﬁig"i§“fﬂehaHVadtégé;rééihed at the
expense of—-obtaining a more complicated kernel, of em-
ploying the transformation (B-3).

Returning to the cone problem, we choose the direction
of & to be along the cone generator formed by the inter-
section of the ¢=0 plane and the cone surface, and apply

the boundary conditions. After some straightforward but

tedious vector projection operations, one arrives at the

integral equations

2
1 3 2 +
o { — + & chc+ \vct] = - v 8(r_-0"),
c

or
Of_rci_L (B-7)
1 32 v v v a0 ocr <t sin e
JjwHE {5 2 te” et » DL TS b sin By (B-8)
t
where 21 L 4
= __..P..._. ' + - 1 '
‘i’pc(rp) 87;2_/‘ flc(rc)(Kpc+ Kpc)drcdcb
0 0
27 Lsineo
= .____..u ' + - ' '
Yo (ry) 52 f f T (rp) (RO + Ko dr[de,
0 0
p = ¢ or t (B-9)
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The kernels K;q in (B-9) are of the form

*

t ¥ ] i 4 ] 1
c (rqf¢ )[quﬂ¢ )rqupq(¢ )]

KE (c_,e',0")= [D (¢")+ B9
Pq P’ q’ Pq REZ L et L o")
Pq Pq q’
'kRi
=J
e P4
X +
gt
Pq
¥
The distance between source points and field points, R;q’
is of the form
+ +
R = /r'z + 2b” r' + ¢
Pq q q 9 q

" kr

+ +
and b; and c”q are as defined in Section IV with "a" set

+
equal to zero. The term C;q may be expressed as

+ + +
C = e r' + f
Pq Pq 9 q
* e + o
The parameters A~ , B~ , D, and ¢ are defined in
Pq Pq Pq pPq

Tables (B-1)-(B-4).
Testing Equations (B-7)and (B-8) with piecewise ~
sinusoidal testing functions as in Section III results in

the equations

k
jwuesinkﬂrc

{— coskArc[WCC(rcl) + Wct(rcl)]

+ [ch(rc2) + wct(rCZ)]} - _VO (B-10)
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TABLE B-1

DEFINITIONS OF PARAMETERS FOR THE KERNEL ch

si

DEFINITIONS OF PARAMETERS FOR THE KERNEL KC
coszeO cosz¢' + sin2¢'

- 2 '
+ L cos 60 sin 80 cos ¢

n

8

0

[sin2¢' + coszﬁo(cos o' F 1)2]

sin 80

g
L cos 60

TABLE B-2

cos ¢'
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TABLE B-3

DEFINITIONS OF PARAMETERS FOR THE KERNEL KtC

sin26o sin2¢' + c05200

- L COSZGO

+
-e ~ = sin 6. cos ¢'
c 0 ¢

TABLE B-4

DEFINITIONS OF PARAMETERS FOR THE KERNEL Kt

sin2¢'
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and

) K

jwuesinkArc {}ch(rc,m+l) + Wct(rc,m+1ﬂ

- 2cos kAr [¥__(r_ ) + Wct(rcm)]

m=2,3,...,N -1
c

S (B-11)

Testing at the cone edge with a piecewise sinusoidal testing

function which straddles both the cone and the topcap and

which has its peak value at the cone edge, one obtains

jwuesinkArc

¥ jupesinkdr {— cos kdr [¥  (r ) + ¥  (r )]

ct

jwuE Src BrC.J Brt or
r =r
¢ “cNec

R Y 1 ¥ Y
1 cc tc

(B-12)
Finally, testing on the topcap surface yields

k
jmuesinkArt {[\ytc(rt,m+l) + \ytt(rt,m-l'-l)]

S ; +
2 cos kArt[WtC(rtm) + Vtt(rtm)]

®.
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m=2,3,...,Nt+1 (B-13)

Substitution of the current expansions, Egqs. (40) and (41!) of
Section IV, into (B-10)-(B-13)yields a matrix equation for
the determination of the unknown current coefficients. Be-
cause of the pulse expansion for the current, the matrix
elements involve integrals like (B-9) but with the current

in (B-9) equal to unity and the limits on the radial inte-
gration replaced by the limits of the corresponding current
subdomain. According to (B-12), the term at the edge also
requires the derivative of such integrals. In the following,
we present a procedure for approximately evaluating the

radial integration, leaving the ¢' integration to be done

numerically. The required integrals are all of the form
rn-f- rn-f- ~35KkR
t
K dr' = p + S(ACTHB) | e dr' (B-14)
2 2 R

R ~-C

r r
n- n-

where, for convenience, all subscripts and superscripts have

been suppressed. Since the number of subdomains should be

chosen such that k[rn+— rn_l is small, we chose some point
r in the interval [rn+,rn_] and expand exp(-jkR) in a Taylor
series about the point r'= o
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-jkR -3kR_ ~3k(R-R )

e = e e

—JkRn

1]

where Rn denotes R evaluated at r'=rn

mate integral is

rn+ rn+
> —JkRn C(Ar'+B) l—Jk(R_Rn)
K dr' = e D + ——2—-—2——' R
R ~-C
r T
n- n-
~jkR_
= e (Il + 12 + 13)
where
I:n-i-
]
1, = -ik p + SLAE IR 4y
R -C
r
-
rn+

=
(A%
[t}
o
—~
—
+
[
=
el
3
~
"‘L‘j
Q.
el

-
and
rn+
. C(Ar'+B) dr'
I, = (1+jkR )
3 n f 22 R
R of
n-

The first integral may be evaluated

definitions for R and C in terms of

77

e [1-jk(R—Rn)]

(B-15)

The resulting approxi-

dr'

(B-16)

by substituting the

b,c,e,

and f;



r

n+ Aer' 24 (BetAf)r'+BFf
I,= -jk D + dr'
1
f (l--ez)r'2~}-2(b—ef)r'+c—f2
r
n—
2 2
R - C
n+ n+
. -3k Fl(rn+-rn-) + Fzﬁn | 2]
R - C
n- n-
2
1 {(l-e")r  +(b-ef)
+ F tan 7 5 ot o
3 (1-e2)(c-f2)~(b-ef)?
2 )
-1 (l-e )rn_+(b-ef)
- tan (B-17)

Y (1-e2(c-£2)=(b-ef)?

(Be+Af) (1-e?)-2Ae(b-ef)
2(1-e%)2

rry
1]

[24e (b-ef)-he(l-e2) (c-£2)~(BetAf) (b-ef) (1-e2)+Bf(1-e2)?]

Y, . -1

x [(1-e?)? V(1-e?) (c-£%)~(b-e£)?]

The tabulated integrals Pw 160.01, 160.11, and 160.21 aid in
-i<

the evaluation of Il. I2 may be evaluated using Dw. 380.001
as T+
_ . dr’
IZ = D(l+JkRn?f R
r
n-

+The abbreviationsDw and GR refer to Tables of Integrals and
other Mathematical Data, Fourth Ed., H.B. Dwight, Macmillan,
N.Y., 1961; and Tables of Integrals, Series and Products 1.S.
Gradshteyn and I.W. Ryshik, Academic Press, N.Y., 1965, res-
pectively.
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Rn++rn++b
’; = D(1+ijn)2n f{_————n-+rn_+b (B-18)

The subscripts n, n+, and n~ denote quantities which are

evaluated at r'=rn, r and roo respectively.

n+’

The evaluation of'I3 is facilitated by expanding it

in partial fractions and using the substitution

sinhg = (r'+b)//c—b2 to obtain

r
n+

. C(Ar'+B) ,
3 (Hﬂfn)‘/‘ 2 2 dr

(]
1]

R™-C

kR L
2 R-C R+C

%t
. (1+jkR ) [ D />
= n (A" c-b" sinh 8 + B-AD)

(Ar '+B)
R

dr'

2

D

1

/c—bz cosh © —e/c—bzsinh 8 - f+be

—

- 1 de

c—b2 cosh 8+ e c—b2 sinh 6 + f-be

Using GR 2.451.2 and GR 2.451.4, one finds the latter integral

to be
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R +r +b
- . Ae n+ n+
I3 = (1+3kR ) 2 2“‘ R +r_ +b
l-e - n-
A (Rn+_cn+)(Rn-+Cn-)
+ 5 £n
2(1-e°) (R__-C__)(R_,+C )
Ye-b2(R ~C  )~(be-f)R ,+b>-c
L -1 n n nt
4 |tan F_{r ,+b) T
5" ' nt
Ye-bZ(R_ -C_ )-(be-f)R +b’-c
-1 n=-_ n- n-
-tan F_(r_ +b)
5 n-
v 2 2
et c=b"(R_,+C_ )+(be-f)R_ +b"-c
Fs(rn++b)
3
e-b2(R +C )+(be-f)R +b-c
+tan"t LI LI (R~19)
F_(r +b)
5" n-
where
o= (B—Ab)(l-ez)—Ae(be-f)
4 2
Fs(l—e }
Fo - (e=b2(1-e2)- (be-f) >

Equations (B-17)-(B-19) complete the evaluation cof (B-16).
The derivative terms appeiring in (B-12) require

evaluation of integrals of the form

X + T
3 " p) C(ATr+B) e TJER
= K dr' = +— D + L dr'
or ar RZ_CZ R

(B-20)
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- 3 where the unprimed variable r is r,orr., as appropriate.

- The two edge terms also have non-integrable singularities

at the edge which cancel between the various terms. To
handle this situation numericaslly, the singularity must be
explicitly identified and removed for numerical integration.
Thus the same kind of approximate analytical integration of
(B-20) as used to evaluate (B-16) would both eliminate one
integration and explicitly identify the singular term. The
derivative can be taken inside the integral if care is taken

to identify the singular terms. Noting that 3C/3r = 1,

8(R2—CZ)/8r = 0, and 3A/3r = 3B/3r = 0, we have

n
W
o)lb)
~
L‘"‘ﬁ
-
[a¥
'.1-
]
‘ d
—
|
g
oo
(@]
t
=l

L AC'+B (1 jkc?  ¢? ~jkR,
7 2 \R T T 27" 3 )|°® dr
R“-C R R

With the approximation of (B-15), the above may be written

as
-3jkR
, 3 K v J5%n
f ™ dr' = e (14+13+I6+I7+I8) (B-21)

The various integrals appearing in (B-21) are defined and

evaluated as follows:

®.
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— CD 4, = _y2 D(er [+£) 4.+
I& kf Rdr: = kf R dr
] (B-22)

+
Rn++rn+ b

R +r_ +b
n- n-

_k2 {ée(Rn+—Rn_)—(be—f)2n

where Dw 380.001 and Dw 380.011 have been used.

— ' -
Is - sz (De ;)r +fD-B ar"
o r'“+2br'+c
r
n-
R
= sz {(De-A)%n o+t
R -
fFD-B-b(De-A) -1 Tast? -1 Ta-th
tan - tan
Y 2 Y 2 Y 2
c—-b c-b c—-b
(C-23)

where Dw 160.01 and Dw 160.11 have been used. Using

Dw 300.003 and DPw 380.013, one obtains

r

n+
— ' -—
I = (1+jkR ) (A-De)r'+(B-Df) ir’
6 n 3
R
T
n-
1+jkR T r
4+ -
= ————53 [B-Df-b(4a-De)] [R“ - EE“
c-b L n+ n-
1 1
+ [b(B—Df)—c(A-De)} _— - } (B-24)
R R
n+ n-

82



o~

Again

r

n+
I7 = -jk(1+ijn)f

r
n-

r

n+

= -jk(1+jkR )f
n 2. .2 2
(l-e")r' +2(b-ef)r'+c-f

r
n-=

= -jk(1+jkR ) { -

+

A

B(l-e2)=(b-ef)A

(1—e2>F6

where

(1-e2) (c=£2)=(b-ef)?

_ Y
Fp =

The remaining integral is

rn+
3
1, = k7 (Ar'+B) [% - —ldr
R -C
r
n-
rn+ 2
= _kz _QJA*I“_-*.B) J
5 -2-——-dr
r R(R"-CT)
n-

83

using Dw 160.01 and Dw 160.11, we have

Ar'+B '

dr
R2—C2

Ar '+B

dr'

2 2

+ “n+
¢n | AE 0T

2
2(1-e%) R 2_c 2

n- n-

2
(1-e )rn++b—ef

Fe

-1

tan

(l-ez)rn_+b~ef

Fe

—tan !

(B-25)



r
n+
1 T
- 'sz C(exr'+f) (Ar'+B) qr’

R(R2-C2)
r
n—
rn+ 2
- k2 ClAer' "+ (Af+Be)r'+Bf] ., ,
- 2 > dr
R(R°-C%)
r
n-

Dividing R2—02 = (l—ez)r'2+ 2(b-ef)r'+c—f2 into the

bracketed term in the numerator of the integrand, we may

write the integral as

rn-l-
t
I, - _kz % Ae2 + (Af+B§+W;r +BE+U | 4
l1-e R -C
r
n—

where
W o= - 2Ae(b;ef)
l-e
Ae(c—fz)
u = 2
l-e

Expanding the second term in brackets in the integrand in

partial fractions, cone can write I, as

8
- ' "
18 18 + 18

where T

2 R +r _+b
- —k Ae - - .t ot
B 2 [:E(Rn+ R -) + (f-be)ln \R +r +b ]
]._e n- n-—
(B-26)



Uy
A

rn+

' 1 _ _1 | dr'
J{ [(Af+Be+W)r'+Bf+U]) [R-C R+C] =

r

n-—

The substitution sinh ©

I8 as
1 1 "kz
8 2
Using GR
1

Ig

+

=

r'+ b)//c—b2 enables one to

[(Af+Be+W)'c—bzsinh 8 + Bf+U~b(Af+Be+W)]

1

1

c—bzcosh B-e c—bzsinh 8—f+ber

dé

——— —
c—bzcosh f+e c-b " sinh 8+ f-be

2.451.2 and GR 2.451.4, we obtain finally

¥

7

e(Af+Be+W)£n

Af+Be+W
2(l—e2)

£n

- +
(Rn+ cn+l(Rn- Cn-)

(Rn—-cn—)(Rn++Cn+)

+ +
Rn+ rn+ b

N

(l-ez)

R +4r +b
n- n-

2
n+—Cn+)-(be-—f)Rn+

-1 {/c-bz(R
an

tan

—

c-

b2

3
+b —CJ
(rn++b)F5

2
R__~C__)-(be-f)R__+b"-c

(rn_+b)F5
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Ye-b2(R +C ) + (be-f)R +b%-c)
_ tan-l n+ n+ n+
k (rn++b)F5
o /c—bZ(Rn_+Cn_) + (be-f)Rn_+b2-c‘
+ tan (B-27)
k (rn_+b)F5 ]
where
; [(BE+U-b(Af+Be+W) ] (1-e°)=e(be=f) (Af+Be+W)
, ,

' 2
(l-e )F5

Equations (B-22) through (B-27) complete the evaluation of
the integral, (B-21}. Recall that the integral (B-21) needs
to be evaluated only for observation points at the bicone
edge (see Eq. (B-~12)). For the source current pulse
associated with the bicone edge, there results a2 non-
integrable singularity (with respect to ¢' integration)

which comes from the term l/Rn in (B~24). Each of the

+
derivative terms in (B-12) contains such a non-integrable
singularity, however, and they are of opposite signs so as
to cancel each other. For numerical integration, of course,
the canceling singularities must be analytically subtracted.
The integrals I

through I, contain integrable singu-

1 8

larities such as the usual one where source and field points
coincide (i.e., R=0). In addition, however, there are alsc
integrable singularities introduced by the transformation
(B-6). These arise from current sources which lie along and
are directed transverse to the line which- passes through

the observation point and which is in the direction of the
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electric field component of interest. For example, in
computing the tangential field component Er on the cone,

c
singularities arise from currents on the topcap and its
image. While the many singularities complicate the numerical
procedure, they can, in principle, be handled. However,
the unwieldiness of the functions appearing in the integrals

I, through T, makes the numerical procedure rather ineffi-

1 8

clent- and subject to error. For example, the computer code

dJerived from iHé’fbfﬁi%ﬁIEBh pféééﬁtéa”hé;éigééﬁéaito yield
reasonable results for moderate cone angles, but often
yielded erroneous results for the very small cone angles

used to check the program. The complexity of the formulation
became a considerable hinderance in détermihing the source

of these difficulties. Consequently, the final calculations
were done Qsing the formulation ofVSectioﬁrllI which was

developed as an extension of methods currently being used

to treat flat plate surfaces.

87



