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Abstract

This note presents a complete parameter study of the resonant fre -
quencies of a perfectly conducting spherical chamber with an inner spher-
ically shaped impedance loaded dtamping structure. Frequency shifts are
given for a wide range of damper location and loading. The resulting c;av-

ity damping is given for several lower order E and H modes,
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I. INTRODUCT ION

o This report addresses itself to one aspect of a simulator concept

described by Bauml for simulating EMP-in exoatmosphe ric regions by
.

the incorporation of a spherical vacuum test chamber. Many important

.“

features affect the electromagnetic interactions of a space system with

this type of spherical cavity. One of these is the problem of resonance,

This report considers only the-technique of an impedance loaded concen-

tric shell inside but not in contact with the wall of a spherical cavity to

damp the interior resonances of the cavity.

Ideally, in a system of this kind, the objective is to obtain the most
.—

damping possible through the proper selection of parameters involved.

However, there exist many cavity resonant frequencies for many modes

(n in the spherical vector wave index) and concentrating on damping only

one of these does not produce an optimum simulator design. A reasonable

selection of parameters is also desirable. The re fore, only the first few

resonances of the first few modes are considered here for a fairly wide

range of parameters.

Within this framework then, this report is an attempt to supplement

previous work with a comprehensive numerical study of the shifts of vari-

ous spherical cavity resonant frequencies for an arbitrarily positioned
.4

sheet liner. In addition it is intended that calculations and graphs pre-

sented will give some general insight to pole patterns as well as aid in

establishing design optimization criteria.
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H. MODEL FOR NUMERICAL S’TUDY

Natural frequencies for an object are values s* (complex frequency)

for which the object has a response without an incident excitation. That is
“

the Sa are those frequencies that produce a nontrivial solution to the re - ●

sponse vector of some homogeneous vector wave equation by making the

system impedance vector vanish. Damping the complex resonant frequen-

cies s~ then corresponds to moving these poles off the imaginary axis in

the complex frequent y plane. By maximizing I~al /[Wa[ where s =
G

Qa + iu ~ the optimum damping can be achieved.

Figure 2.1 illustrates the geometry of the

The perfect conducting spherical shell of radius

ical sheet

the cavity

The

with impedance Z at radius b. The
s

object considered here.

a has a concentric sphe r -

electrical parameters in
o

as well as between the spheres are those of free space.

solutions for the interior modes of this geometry are based on

the spherical wave functions and are solved for by Bauml in terms of E

and H modes. The resonant frequencies for the E modes are solutions

of

z
+ [-i*n(m)]’ #{[Ybin(~b)]f }2=o

s

P.

(2. 1) “

-4-



The H mode resonant frequencies arise from

,

{

z
in(~a) 1 +

/
-# ~bkn(~b)?bin(”rb) - kn(?’a) >{7bin(7b)}2 = O (2,,2)

s s

where

(2, 3)

[

v
Zo=$

o

The k= and im functions can be expressed in terms of the spherical Bessel
11 11

and spherical Hankel functions, respectively,

in(t) = injn(~ )

.,

as

(2.4)

All derivatives are taken with respect to the argument of the function.

For convenience let zs = Zs/Zo and equations 2.1 and 2.2 can be rewrit-

ten as

[Tain(?a)]’ { z S - [?bkn(~b)l’ [~bin(?b)l’ } + [~~n(w)]’ { [Win{ ?b)]’ } 2 = O (2.5)

-5-



and

win(w){z~

Asz~+

+ ~bkn(yb)~b~n(’rb) } - wkn(w) {~bin(~b)}2=o (2.6)
.

and/or b + a (equivalent to removing the damper) the 9

E mode resonant frequencies (equation 2.11 reduce to

[’yain(Ta)]’ = O

and the H mode resonant frequencies (equation 2. 2) reduce to

in(ya) = O or ~ain(~a) ❑ O

For Z~ = 0 the cavity resonances of equation 2.1 can be written

[~bin(~b)]’ = O

Equation 2.2 ●for Z = 0 reduces to
s

in(~b) = O or ~bin(~b) = O

and

in(’ya)kn(~b) - kn(~a)in(~b) = O

(2.8)

o
(2.9)

(2. 10)

(2.11) ,

.

(2. 12a)

●
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or

~ain(ya)~bkn(?b) - ~~n(~a)~bin(~b) = O (2. 12b)

Equations 2.7 and 2.8 give the resonant frequencies for a sphere of radius

b while equations 2.10 and 2.12 give the resonances between two perfectly

conducting spherical shells. These equations are used to identify the re -

gion from which a pole might arise and subsequently help define a given

pole trajectory. Thinking in terms of increasing loading from zero to in-

finity for a fixed d/a, equations 2.7 and 2.8 determine where trajectories

originate. Of-course all trajectories must terminate (infinite loading) ax

equations 2.5 and 2.6.

A definition made in reference 1 concerning the solutions to equa-

tions 2.7 and 2.8 should be reiterated here. Let ~a = u be a solution
n,nl

o
to equation 2.7 and ~a = v be a solution to equation 2.8. These sub-

n,n’
0

scripts give a “handle” to any ~a of concern. The n designates the order

of the spherical Bessel and Hankel functions and n’ denotes the ordinal
o

number of the resonance frequency encountered moving positively along

the iu axis for the unloaded (zs ~ ~) cavity. Obviously the terminal

tion (in terms of increasing zs) of any pole trajectory is some u
n,n’

o
v It is necessary to extend this definition to better describe the var-

n,n’ “
o

ious poles and their loci for changing parameters as encountered in this

report. With the addition of a superscript define

-7-



Jo) =
n,nl

The empirical

u
n, n!

o

v
n,nl

o

considerations of this definition become apparent with the

.

definition below. A fairly

given in table 2.1.

(0)
comprehensive listing of u and v(o) is

n,n~ _n=rif

While the values of u(o) and v(o) are under consideration it might
n, nl n,n!

be noted (as was pointed out in reference 1) the significance of the ratios

u(o) v(o)
b n,nt b n,nt—=
a Jo) ‘r I = +0)

n, n“ n, n“

where n“ > n! > I. If the resistive sheet is located

ues (a null of the tangential electric field) no damping

(2. 14)

●

at one of these val-

will occur for some

resonant frequency of that mode. Table 2.2 gives a somewhat expanded

listing of these unwanted values to augment those found in reference 1. An

obvious lack of damping for d/a values cIose to these undesirable ratios

can be seen from the trajectories in section 111. Care should be taken in

using this table, if some other frequency bound is chosen, that is, if a ?.

lower bound will delete values of d/a and a higher bound would add them.
b

Since this report is a parameter study of aIl the resonant- frequency

poles, that arise in a spherical cavity with an impedance loaded sheet

-8-



Al

~1=1 2. 7437i ~1=~ 4.4934i
2 6. l168i 2 7. 7253i

(o) 3 9. 3166i Jo) 3 10. 9041i
l-n, nl 4 12.4859i l,n! 4 14.0662i

5 15. 6439i 5 17.2208i
6 18.7963i 6 20.3713i

~1=1 3. 8702i nf=l 5. 7635i
2 7.4431i 2 9. 0950i

(o) 3 10.7130i Jo) 3 12. 3229i
U2, ~1 4 13. 9205i 2,nT 4 15.5146i

5 17. 1027i 5 18. 61390i
6 20.2720i 6 21. 8!j39i

nl=l 4. 9734i nl=l 6.9879i
2 8.7218i 2 10.4:171i

(o) 3 12.0636i (0) 3 13. 6980i
U3,~t 4 15. 3136i ‘3, n! 4 16. 9236i

5 18. 5242i 5 20. l~!18i
6 21.7139i 6 23. 3t)42i

nl=l 6.0619i nl=l 8. 1[~
2 9. 9675i 2 11. 7049i

(0) 3 13. 3801i (0) 3 15.0397i
‘4, nl 4 16.6742i ‘4, nt 4 18. 3013i

5 19.9154i 5 21.5254i
6 23.1278i 6 24.7276i

*1=1 701402i ~1=1 9. 35=
2 11.1890i 2 12.9665i

(o) 3 14.6701i (0) 3 16.3547i
U5,~1 4 18.0085i ‘5, n! 4 19.6532i

5 21.2815i 5 22.9046i
6 24.5178i 6 26.1278i

nl=l 8.2108i nl=l 10.5128i
2 12.3915i 2 14.2074i.

(o) 3 15.9387i v(o) 3 17,6480i
‘6, n! 4 19.3212i 6,n’ 4 20.9835i

5 22.6263i 5 24.2628i
6 25.8873i 6 27.5079i

nl=l 9.2755i nl=l 11.65~
2 13.5787i 2 15.4313i

(o) 3 17.1896i (o) 3 18.9230i
‘7, nl 4 20.6154i ‘7, n! 4 22.29!j3i_

5 23.9528i 5 25.6029i
6 27.2390i 6 28.8704i

Table 2.1. The First Six Resonant Frequencies for
the Unloaded Spherical Cavity for the First SevenE and HModes

-9-



b/a

.4486

d/a

.5514

(O) /u(o) .2945 .7055
‘1, 1 1, 3

$0) (0)
1 21U1 3

.6565 .3435
# s

(o) /u(o)
‘2,1 2,2

.5200 .4800

(0) ,U(o)
‘2,1 2,3

.3613 .6387

Jo) (0)
z #2 a .6948 .3052
s 9

(o) /u(o)
‘3, 1 3,2

.5702 .4298

u:)l/u:j .6082 .3918
s 8

+0) (o)
~ Jvl z .5817 ,4183
9 s

v(o) (0)
z Jv2 ~ .6337 .3663

8 s

Ordered Unwanted
d/a Values

● 3052

. 3292

● 3435

.3663

.3918

.4183

.4298

.4800

.5514

.6387

● 7055

Jo) (0)
a Jv3 z .6708 .3292
s s

Table 2.2. Unwanted Values of-d/ afor the Lower Order
E and HModes with an Upper Normalized

Frequency Bound of 10.5ia/c

?

.

● ✎

.

0
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liner without restriction to d/a or zs, some designation of the various

poles is desirable.

first, those arising

* originating between

Two distinct kinds of poles are immediately apparent:

from the innermost’ resonances, and, secondly, those

the liner and the shell itself. The predominance of

the first or second kind of resonant poles is of course dependent upon the
*

parameter values (d/a and zs ) under consideration. Naturally for lower

frequency considerations the innermost resonances tend to dominate for

smaller d/a values, whereas for larger d/a values the resonances from

between the sheet and wall are more significant. The following definition

is made in order to aid in identifying the multiple pole activity as

O<d/a <l. Let u(k) and v(k) be a solution to equations 2.5 and 2.6,
n,n’ n, n’

respectively, for z = O (or simply equations 2.8 and 2. 10) where
s

and

n

nl

k

#

is the order of the spherical Bessel and Hankel functions (same

as above and reference 1)

is the ordinal number of the resonant frequency along the iu axis

for a given n and d/a (same as above and reference 1)

is an identifier that denotes interior resonances (k = 1), reso -

nances between the sheet and shell (k = 2), or the unloaded cavity

mode (k = O)

This definition provides a convenient label for identifying from where tra-

jectories arise, especially for cases where d/a is fixed and the resistively

loaded sheet- varies as O~ zs < co. It should be noted that

-11-



and

An entire trajectory, for fixed d/a and changing

fied by its initial position (zS = O where k = 1,2) or its

O

*

.

z~, can be identi-

terminal position

(z = w where k = 0) since both are unique for a given d/a. The approach
s

taken in this report will be to reference trajectories from their initial posi-

tions (zs =Owithk= 1,2).

The position on the iw axis of any given resonant pole for z~ = O 0

(equations 2.8 and 2. 10) is a function of the parameter d/a. The complete

solution for this special case (unloaded concentric spheres ) with O < d/a < 1
-

(2)is plotted in figures 2.2 and 2.3 for the E mode (un, n, ) resonances. IHg-

ures 2.4 and 2.5 give the H mode (v (2)
~, n, ) resonant solution. Since there

exists an unlimited number of poles (n!) for an unlimited number of modes

(n) these figures represent a frequency bounded solution. As can be seen

from the graphs

U(2)
n, 1

:-0—-

-12-

..



#

tends toward i(n(n+ 1))1’2 and

U(2)
n, n’

:=o, nl>l

increases without bound as does

$2)
n,n’

:-0—-

Asd/a-+l u(2) ~u(o) as’doe~~v~~,~
n,n’ n,n’

Jo)
n,n’ “

The unwanted values of d/a mentioned above are also graphically

illustrated in the figures for two concentric perfectly conducting spheres.

These objectionable damper positions occur at the

and constant u$~, (dotted line), Also observable

(2)
intersections of u

n, ~1‘

in these same figures

is the difficulty in damping the higher order modes (n) as d/a approaches

1.

“13-



o =0

Conductor
Sheet

Impedance
(z~)

Figure 2.1. Impedance Loaded Shell for Damping
Cavity Resonances
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III. IMPACT OF VARYING RESISTIVE LOADING AND
LINER LOCATION ON RESONANT FREQUENCIES

@

It was determined in reference 1 that the trajectories or pole shifts

. (Aun, n, n, n, ) of the resonant poles are circles in the normalizedand Av

complex frequency plane for a changing resistive loading (zS ) for small
*

d/a. Ty-pical trajectories for small d/a along with the asymptotic form!

as presented in reference 1 are illustrated at the end of this section. The

object here is to explore the exact pole patterns for a fairly wide spectrum

of d/a values (O < d/a < 1) and resistive loading quantities (O < z s < m).

In order to calculate the trajectories of poles in the complex fre -

quency plane a standard Newton-Raphson iteration technique was employed

1’

with the derivative of the D mode function (equation 2.5 ) taken as

(3. 1)

-:19-



where

●

s
Sb

-ya =&, = ~b
;-

(3.2)
.

and all derivatives are taken with respect to argument of the modified .

spherical Bessel and Hankel functions.

To evaluate equation 3.1 the derivatives of modified spherical

Bessel and Hankel functions are taken from

so that

where ~ = ig. Similarly,

(3.4)
o

(3. 5)

The second derivatives are taken, using the Riccati-13essel function

2
relation, as

d

(3. 6) ‘

-20”



Similarly,

.

The derivative of the H-mode function (equation 2. 6) is taken as

(3)7)

/{ ( ~)s~in(s~)}- ‘kn(s)~~in(s$)]’~ =
-& Sin(S) zs + S~kn S

sin(s){s~kn(s~)~[s}in(s~)]'+-s~in(s~)~[s~kn(s!)]'}

+[Zs+‘~knk:)s:in(s~)l[sin(s)]’

Again S - Ya = sa/c, S (b/a) s ?b and the in and kn function being taken

as given in equation 2.4.

The trajectories of the resonant frequency poles can thus be deter-

3,4
mined by numerically evaluating the spherical Bessel and Hankel func -

tions (jn(g), j~(~), h~(~) and h:’(:)) for arbitrary values of the param -

eters.

Two conclusions can immediately be drawn concerning the locatior~

of the natural frequency poles. As both Baum5 and Tesche 6 point out the

natural resonances occur in conjugate pairs in the left half plane of the

a)

--21-



complex frequency (or Laplace) domain. For

left half plane (Q S O and iu > O) of the norrna

plane will be represented in this report.

this reason, only the upper

●
ized complex frequency

.

The circle approximation oi the resommt frequency trajectory natu-
.

raHy begins to deteriorate as d/a is increased. As can be seen in figure

3.1 for the trajectories originating from u
(1)
~ n, the asymptotic form is

●

very good for d/a = .05, but the difference becomes significant, as the

locus begins to bulge for larger d/a. A simi~ar result is shown in figure

3.2 for the H mode resonant shifts.

or mode (n) the faster the deviation

The higher one goes in frequency (n’)

from a circle for a fixed d/a. As

pointed out in reference 1, for the asymptotic approximation to be correct,

the higher the order of the resonant mode the smaIler d/a must become

o
so that d is still sma~l compared to the complex radian wavelength.

An interesting and somewhat predictable phenomenon occurs in the

trajectories as d/a continues to increase. The path of a given pole from

::1‘v(1)n n,), that has a terminal position (z = ~) of u
(o)

u
● > s n, n! ‘v~l’) ‘or

small d/a, diverts to a terminal position on the imaginary axis in a

(o) (o)
direction toward Un n,+, (vn ~ +, ,). Lager resonant frequencies

s f

(smaller wavelengths) would be expected in the innermost cavity as its

radius decreases. This upper shift in frequency is illustrated in figure

3.3 for the lowest order E mode resonance with arrows indicating the

movement of the pole for increasing z Equivalently the resonant fre-
S“

quencies arising from between the linear and the outer shell decrease

-22-



(longer wavelengths) and the trajectory shift is downward for increasing

(1)
d/a. The trajectories from Un ~are of special

s

for some d/a values. This pole willcence occurs

. be dealt with

on the negative ~ axis

interest in that coales -

in..rnore detail below. Again, all poles whether arising from

th-e-innermost sphere (k = 1) or from between the liner and the shell (k = 2)
+

must terminate at some u(”) or v~~l (including u~~ and possibly
n, n’ Y s

u(o)
n ~) for all d/a.
#

Obviously some bounds must be imposed on the number of resonant

frequencies presented and/or the region in which these resonant frequencies

occur. For the purpose of this report the normalized complex frequency

bounds will be taken as OIS iua/cl< 10.5 and -8,0 sK2 a/c s O. This upper

(o)
iua/c limit is taken to be approximately U7 ~ for the E modes which in-

s
(0)

eludes up to V5 ~ for the H modes. The number of resonant frequencies
#

for each of these modes is n’ s 3. Occasionally these limits will be ex-

ceeded for the purpose of illustrating complete trajectories.

Tables 3.1 through 3.12 suml.marize and somewhat extend the numer- .

ous initial and terminal positions of trajectories found in this section.

Given in these tables for d/a at .05 intervals is the position of the various

(k) and v(k) (0) (“)
poles (un n, n n,) at ZS = o and their terminal positions Un n, (vn n,]

> s 9 #
(0) (o)

as z-w. The uniqueness of n’ in Un n, (vn n,) for a given d/a is appar-
S > $

ent when both k = 1 and k = 2 are considered. The bold line in the tables

separates trajectories found in this report from those not included.

The individual lower order loci that originate (zs = O) at u~~, and

(1)
v are represented in figures 3.5 through 3.15. These plots

n, n’

-23-



(!I8 ~(1) (0) (1) (o) “(l) (o) (1) ~(o)
1.1 ‘1, n’ ‘1. 2 ‘1. n’ 1.3 ul. n’ ‘1. 4 I,n’

—

.05 2. a!)i
“(o) 6. 44i ~(o)
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(o) ~(o) (0)

‘1, 1 ‘1,2
il.65i

1.4
15.601

‘1* 5

.25 3.661
(0)

8. 16i
(o)

12.42i (o)
‘1. 1 ‘1,3 ‘1,4

16. i30i

.30 3.9’01
(o)

8.701
(o) (o)

‘1,2 ‘1,3
13,31i

‘1,4

.35 4.20i
(o) v.4oi

(o) (o)

‘1,2 ‘1,3
14.33i

‘1, 5

.40 4.57i
(0)

lo.19i
(o)

15. 5oi
(o)

‘1.2 ‘1,3 ‘1. 5
r

.45 4. 9W
“(o)

11.12i
(o)

‘1,4
16. Ooi

1,2

1
.50 5. 49i

(o)
12. 23i

(o)

E ‘1,3 ‘1. 5

1
.55 6. 10i (o)

13.50(
(0)

‘1.3 ’105

.60 6.$61
“(o) 15.291

(o)

1.4 ‘1.6

.85 7. 80i
“(o)

1,4
17.48i

.70 9.15i
(o)

‘1. 5

.75 10. 98i
(0)

‘1.5

. W 13. 7UL
((, )

‘1,6

.85 18.3oi
(o)

‘1, ‘1

.90

.95

(2) (o)
‘1. 1 ‘1. n’

1.45i
(0) I

‘1, 10

1.4Qi (o)
‘1.5

1.53i
(o)

“1,3

I. 5ai
(o)

‘1,3

1. 63i
(o)

‘1,2

1. 69i
(o)

‘1, 1

1. 75i
(o)

‘1. 1

1. i12i
(o)

‘1, 1

1. fJoi
~(o)

1.1

1. 98i
(o)

‘1, 1

2.0181
(o)

‘1. 1

2.181
(o)

‘1, 1

2.30i
(o)

‘1,1

2.41i
(o)

‘1, 1

2. 52i
(o)

“1, 1

2. 62i
(o)

‘1,1

2. 09i
(o)

‘1. 1

“(o)
2.72.i ~ ~

“(o)2.74i ~ ~
.

(2) u(o) U(2) (o) “(2) (o) (2) (o)
“1, ~ In’ 1,3 ‘I, n’ 1.4 Ij. n, ‘1. 5 ‘1. n“

15. ?9i

12. 67{
“(o)

1.6

lo.61i
(o)

‘1, 5

9.151
(o)

‘1,4

8. 07i
(o)

‘1,4

7. 25i
(o)

‘1,3

6. 62i
(o)

‘1, 2

6. 13i
(o)

‘1,2

5. 76{
(0)

‘1.2

5. 5oi
(o)

‘1,2

5. 35i
(o)

‘1.2

5. 33i
“(o)

1,2

6.44i
(0)

“1,2

5. 69{
(o)

‘1,2

5. 96i
“(o)

1,2

6. Ioi u! ‘2

15.81{

14. Ofli
u(o)

1,6

12.73i
(o)

‘1. 4

11.62i
(o)

‘1.4

10.72i
(o)

‘1, 3

9. 98i
~(o)

1.3

9. 37i
(o)

‘1.3

8,91i
~(cl)

1.3

8.61i
(o)

‘1.3

a. 55i
(o)

‘1.3

8. aoi
(o)

‘1.3

9. 25i (0)
U1,3

1s.88

14.7oi
(0)

‘1, 5

13. 72i
u(o)

1.4

12. 9oi
(o)

‘1,4

12.251i
(0)

‘1.4
16.04i

11.8oi
(0)

15.2fIi
(0)

‘1.4 ‘1. 5

‘ll.77i
(o) 14. a7i

u(o)

‘1..! 1. s

12.32i (0) 15.33i
(o)

UI,4 Ul, 5

Table 3.1. Initial (u\k)nl) and Terminal Positions (u~~)n,) of E-Mode Trajectories for Increasing z~
from O to’~

o 0 0k * @ *



9
*. ,

da (1) (o) (1) (o) (1) (0) (1) (o)
‘2. 1 ‘2. n’ ‘2. 2 ‘2, n’ ‘2. 3 ‘2, nt ‘2. 4 ‘2. n’

I ‘1
I

~?

WI

.05 4.071
(o)

‘2, 1

.10 4. 3oi
(0)

‘2. 1

.15 4. 55i
(o)

‘2, 1

.20 4. 84{
(o)

‘2, 1

.25 5. Iili
(o)

‘2. 2

.30 5. 53i
(o)

‘2. 2

.35 5. 95{
(0)

‘2, 2

.40 6. 45i
(o)

‘2, 2

.45 7.041
(o)

‘2, 3

.50 7. 74i
(o)

‘2, 3

.55 8. 60i
(o)

‘2. 4

.60 9.68{
(o)

‘2, 4

.65 10. 06i
(o)

‘2. 5

.70 12.90i
(o)

‘2. 6

.75 15. 48i
(o)

‘2, 6

.80 19.35i

.83

.90

.95

7.83{
(o)

11.28i
(o) (o)

‘2, 2 ‘2, 3
14. 65i

‘2. 4

8.271
(o)

11.901
(o)

15.471
(o)

‘2. 2 ‘2, 3 ‘2. 4

8. 76i
u(o)

12. 60i
(o)

2.2 ‘2. 4
16.38i

9. 3oi
(o)

13. 39i
(o)

‘2, 3 ‘2, 4

10. 63{

{1.45{

12.40{

13.551

14. 89i

16. 54{

414281 ‘f)
(o)

15.3oi
(o)

‘2, 3 ‘2. 4

(o)
‘2, 3

16.481

(o)
‘2, 4

(o)
u

2.4

(o)
‘2. 5

(o)
‘2. 6

(2) (o)
‘2, 1 ‘2. n’

2.51{
(o)

‘2, 1(

2. 58i
(o)

‘2, 5

u(o)
2.66i z s

2. 74i
(o)

‘2. 2

2.83i
(o)

‘2. 1

2. 92i
(o)

‘2. 1

3.03i
(o)

‘2. 1

3. 14i
(o)

‘2, 1

2.26i
(o)

‘2. 1

3.391
(o)

‘2, 1

3. 51i
(o)

‘2. 1

u(o)3.63{ z ~

3.i’2i
(o)

‘2. 1

3.79i
(o)

‘2. 1

3. 84{
(o)

‘2, 1

3.86i
(o)

‘2, 1

3. 88i
(o)

‘2. 1

3. 87{
(o)

‘2, 1

3. 87i
(o)

‘2, 1

(2) (o) (2) (o) (2) (o) (2)
‘2. 2 ‘2. n’ ‘2, 3 ‘2. n’ “2, 4 ‘2. n’ ‘2. 5

15. 95{

12.88i
(o)

‘2. 6

10. eei
(o)

‘2, 5

n

8. 50i
(o)

‘2. 3 I 16. 03{

7. ??i
(o)

‘2, 2

I
14. 35i

7.26i
(o)

‘2. 2
13. 05i

6. 92i
(o)

“2. 2 I
12. Ozi

I

..(o)
“2. 5

(o)
‘2. 4

(o)
‘2, 3

6“74i‘WINJ!i
6.71{

(o)
10. 59i

(o)
‘2. 2 “2. 3

6.82{
(o)

10. 18i
(o)

“2. 2 “2, 3

7.04{
(o)

10. Ooi
(o)

‘2, 2 ‘2. 3

7. 26i
(o)

10. 13i
(o)

‘2. 2 ‘2. 3

7.39i
(o)

10.46 I
u(o)

‘2, 2 2.3

7.44i
(o)

10. 67i
(o)

“2. 2 ‘2. 3

7. 44{
(o)

lo.71i
(o)

‘2. 2 ‘2, 3

16. 19i

15. 10i

i4.23i

13.59i

13.24i

13. 3&i

13.78i

13.92i

(o)
‘2. 4

(o)
‘2. 4

(o)
‘2. 4

(o)
‘2,4

,0)

‘2. 4

(o)
‘2. 4

16.78i

(o)
‘2. 4

17.09i

(Q)
Table 3.2. Initial (U$-)nt) and Terminal Positions (U2, nt) of E-Mode Trajectories for Increasing zs

from O to ~

I
,,

1’



~(1)da ~ ~ (o) (1) (o) (1) (0)
‘3, n’ _:3,2 ‘3, n’ _‘3, 3 ‘3, n

.05

.10

.15

.20

.25

.30

● 35

.40

.45

● 50

5.24i U$)l 9.18i uf~

5.53i (o)
%, 1 9.69i uf)2

5.85i u~)l 10.26i uf~

6.22i u~\

6.63i uf)2

7.10i u~~
*

7.65i u~~

8.29i Uf),

9.04i u~j
*

9.95i u~\
,

(0).ii5 11.05i U3~

.60 12.43i u~~

.65 14.21i U~]5
#

,70

● 75

.80

.85

.90

.95

12.70i u!),:

13.40i u!,):

14.19i u~)4

15.08i u&)4

(2) (o)
‘3, I ‘3Ld

3.55i

4. 13i uf)l

4.27i Uf)l

4.41i u~)l

4.55i u;),

4.69i u~~

4.80i u~\

4.88i U;;#

4.93i u~~

4.96i u~~

4.97i u~{

4.97i u;{

(;)
4“‘7i ‘3, 1

(o)
4“‘7i ‘3, 1

4.97i uf)l
*

(2) u(o) (2) Jo) o
U3,~ 3,n’ ‘3, 3 3,nl

.

.

13.20i

11.28i

9.99i U:)4

9.101 &2

8.51i u~)2

8.16i u~)2

8 Oli Jo;.

8.03i u~;~,

8.20i (o)
U3,2

8.42i u~~

8.60i u~~
,

8 69i L$o).

8.72i u~i~

8.72i u~~

8.72i u~~
*

13.52i

12.59i

11.92i

11.51i

11.38i

11.55i

11.86i

12.02i u$\

12.06L U~\

12.06i U~)3
*

Table 3.3. (k) (0)Initial (U3 ~,) and Terminal Positions (U3, ~~) of E-Mode
Trajectories for Increasing z~

.
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● 10

,15

● 20

.25

.30

.35

.40

dfa (1) (o) (1) (0)
‘4, 1 ‘4, n’ ‘4, 2 ‘4, nt

.05 6.38i u~~

6.74i u~~
#

.45 11.02i

.50 12.12i

.55 13.47i

.60

.65

.70

● 75

.80

.85

.90

.95

10.49i

11.08i

11.73i

12.46i

13.29i

14.24i

(o)
‘4, 2

u(o)
4, 2

Jo)
4.3

(2) (o)
‘4, 1 ‘4, n’

4.59i u;;

4.71i u~~

4.85i u~\
*

5.00i u~~

5.15i u~~

5.32i u~~

5t.48i u~)l

5.65i u~~

5.79i Ujj)l
s

(o)5. 91i ‘4, 1

5. 98i (o)
‘4, 1

0.03i u~)l
,

i3.05i u~)l

6.06i u~)l

6.06i u~)l

6.06i u~)l

6.06i u~)l

6.06i u~)l

6.06i u~)l
a

(2) (0) (2) u(o)
‘4,2 U4 ~1 ‘4, 3 4,n’:

13.60i

11.79i

10.62i (o)
‘4, 3

9.87i Jo)4, 2

9.44 (o)
‘4. 2

9.26 (o)
‘4, 2

9.29i Uf)2

9.46i u~)z

9.69i U~)2
,

9.86i Jo)

9.94i u~;[

9.96i u~)z

9.97i (o;
‘4, 2

9. 97i (o)
‘4, 2

Jo)9.97i d z
,

13.34i

12.86i

12.71i

12.87i

13.16i

13.33i (o)
‘4, 3

13. 38i (o)
‘4, 3

13.38i (o)
‘4, 3

13. 38i (o)
‘4, 3

Table 3.4. (k) (o)Initial (u4, n!) and Terminal Positions (u4, n!)
of_E-Mod_e Trajectories for Increasing z

s
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dla $1) ~(o) (1) (o)
5*1 5,n’ ‘5,2 ‘5, n’

.05 ?. 52i (0)
‘5, 1

.10 7.93i (o)
‘5, 1

.15 8.40i (0)
‘5, 2

.20 8.93i (o)
U5,2

.25 9.52i (o)
‘5, 2

● 30 10.20i (o)
‘5, 2

.35

.40

.45

● 50

.55

.60

.65

.70

● ‘?5

.80

.85

.90

● 95

11.78i (o)
U5,2

(2) (o)
“%, 1 ‘5, g

5.62i

5. 77i

5. 94i

6. 12i

6. 30i

6.49i

6.68i

6,85i

6.98i

7.06i

7. lli

7. 13i

7. 14i

7. 14i

7. 14i

7. 14i

7. 14i

7. 14i

7. 14i

(o)
‘5, 4

(o)
‘5, 1

(o)
‘5, 1

(0)
‘5, 1

Jo)
5, 1

(0)
‘5,1

(o)
‘5, 1

(o)
‘5, 1

(0)
‘5. 1

(0)
‘5, 1

(o)
~5, 2

(o)
‘5, 1

(o)
‘5, 1

(o)
‘J5,1

(0)
‘5, 1

Jo)
5, 1

(0)
‘5, 1

u(o)
5, 1

u(z)
5,2

.

14.09i

12.40i

11.37i

10.77i

rO.50i

10.49i

10.65i

10.89i

11.07i

11.16i

11.18i

11.19i

11.19i

11.19i

11.19i

(o)
‘5, 2

(0)
‘5, 2

(0)
‘5, 2

(o)
‘5, 2

(o)
‘5, 2

(0)
‘5,2

(0)
‘5,2

(k) {0)Table 3.5. Initial (U5, ~1) and Terminal Positions (u5, ~f)
of E-Mode Trajectories for Increasing z

s
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d{a (1) (o)
‘6, 1 ‘6 ~t

.05

.10

.15

.20

8. 64i

9. 12i

9. 66i

10.26i

(o)
%, 1

(0)
‘6, 1

(o)
‘6, 2

(o)
‘6, 2

.25 10095i

● 30

.35

.40

● 45

● 50

.55

.60

.65

.70

.75

.80

.85

,90

.95

(2) (o)
‘6, 1 ‘6. n’

6. 65i

6.83i

7.03i

7.23i

7.45i

7.66i

7.85i

8.Oli

8.l15i

8. 173i

8. 198i

8.207i

8.210i

8.211i

8.211i

8.211i

8.211i

8.211i

8.211i

(o)
‘6, 3

(o)
‘6, 1

(o)
‘6, 1

(o)
‘6, 1

(o)
‘6, 1

(o)
‘6, 1

(o)
‘6, 1~

(o)
‘6g 1“

(o)
‘6, 1

(0)
‘6, 1

(o)
‘6, 1

(o)
‘6, 1

(o)
‘6, 1,

(o)
‘6, 1

(o)
‘6, 1

(o)
‘6, 1

(o)
‘6, 1

(o)
‘6, 1

Table,3.6. (k)Initial (u6, n, (o)) and Terminal Positions (U6, n,)
of E-Mode Trajectories for Increasing z

s
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dla {1} (0)
‘7* 1 ~7 ~1

● 05 B.76i
u(o)
7, 1

● 10 10.31i p)
7.1

● 15 10.91i

.20

.25

.30

.35

.40

●45

.50

.55

.60

.65

.70

● 75

.80

.85

● 90

,95

(2) (01
‘7,1 . U7 ~f

7.68i

7.89i

8. lli

8. 35i

8.59i

8.81i

9.oli

3. 14i

9.222i

9.258i

9.271i

9.274i-

9.275i

9.275i

9.2?5i

9.275i

9.275i

9.275i

,9.275i

(0)
‘7, 3

Jo)
7, 1

(o)
‘7. 1

(0)
‘1’, 1

(o)
‘7, 1

(0)
‘7, 1

(o)
‘7, 1

(o)
‘7, 1

(0)
‘7, 1

(0)
‘7* 1

~(o)
7, 1

(0)
‘7, 1

(0)
‘7, 1

(0)
‘7, 1

(0)
U7*1

(0)
%, f

(0)
U7,1

(o)
‘-%,1

Table 3.7. (k) (o)
Initial (u7, n!) and Terminal Positions (u7, n~)
of E-Mode Trajectories for Increasing z s
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:

d f a
(1) (o) (1) (o)

‘1. 1 ‘1, n* ’102 ‘1, n’

.05 4.7301

.10 4.9931

.15 5. 286i

.20 5. 617i

.25 5. 991i

.30 6. 419i

.35 6. 913{

.40 ‘1.4891

.45 8. 170i

.50 8.9871

,55 9.9851

.60 11.2331

.65 12.8361

.70 14.9761

“(o)
1, 1

(o)
‘1. 1

(o)
‘1, 1

(o)
‘1. 1

(o)
‘1, 1

“(o)
1.2

(o)
‘1. 2

“(o)
1, 2

(o)
‘1, 2

(o)
v.

I. i

v(o)
1.2

(o)
‘1, 2

“(o)
1.2

(o)
‘1. 3

.75

.60

.85

.90

.95

8.1321
(o)

“Vi, 2

8.5841
“(o)

1, 2

9. 089i
(o)

‘1, 2

9. 657i
(o)

‘1, 3

10. 300i
(o)

‘1, 3

11.036i v(o)
1, 3

11.885[
(o)

‘1, 3

12.8751
(o)

‘1, 4

14. 046i
(o)

‘1, 4

v(l) (o)
1, 3 ‘1, n?

11.4781
(o)

‘1, 3

12.1161
(o)

‘1, 3

12.8281

13.6301

(2) (o) (2) (o) (2) “(o)
‘1, 1 ‘1, nt ‘1, 2 ‘1. n’ ‘1. 3 1. n’

15. 787i

12. 671i

10.6041

9. 141i

8. 055i

7. 224i

6, Ei72i

6. 054i

5. 639i

5. 307i

5. 043i

4. 838i

4. 686i

4.5831

4.5221

4. 497i

(o)
‘1, 3

(o)
‘1. 2

Jo)
1, 1

(o)
‘1, 1

(o)
‘1, t

(o)
‘1. 1

“(o)
“1,2

(o)
‘1, 1

(o)
‘1. 1

(o)
‘1, 1

(o)
‘1, 1

(o)
‘1, 1

(o)
‘1, 1

(o)
‘1, 1

(o)
‘1, 1

(o)
‘1, 1

L10. 6!39i
(o)

‘1. 3

9.9431
(o

‘1. 3

9. 314i
(o)

‘1. 2

8. 796i
(o)

‘1, 2

8.3781
(o)

‘1. 2

8. 060i
(o)

‘1. 2

7. 847i
(o)

‘1, 2

‘t. 743i
(o)

‘1, 2

Table 3.8. (k) (o)
Initial (VI ~f ) and Terminal Positions (VI, ~! ) of H-Mode Trajectories for Increasing z

● s

10.9511
(o)

‘1. 3

:1,“



I
a
N
I

d/a (1) (0) Jl) (o) (1) (o)
“2. 1 ‘2, n! 2,2 “2. n! ‘2. 3 ‘2, n’

.05 6. 067i

.10 6. 404i

.15 6.7811

.20 7.2041

.25 7. 685Ii

.30 & 234i

. 3s 8.8671

.40 9. E06i

.4s 10.4791

.$0 11.5271

. 5s 12“ tlofil

.60 14.409i

(o)
‘2, 1

(o)
“2, 1

(o)
‘2, 1

(o)
‘2, 1

(o)
‘2,2

(o)
~!2.2

(o)
‘2. 2

(o)
‘2, 2

(o)
‘2, 2

(o)
‘2, 2

(o)
‘2. 2

(o)
~2. 2

.65

.70

.75

.80

.85

.9’0

.95

9.5741
(o)

‘2, 2

10.1061
(o)

‘2, 2

10. 7ooi
(o)

‘2. 2

11.36fIi
(o)

‘2, 3

12. 127i
(o)

‘2. 3

12.993i
(o)

“2, 3

13.9921
(o)

‘2. 4

1S. 1581
(o)

‘2. 4

12.9711 (o)
‘2, 3

13.6921
(0)

“2. 3

(2) (o) (2) (o) (2) “(o)
‘2. 1 ‘2, xii ‘2* 2 “2. n! ‘2. 3 2. n)

1s. 943i

12. 877i

10. 866i

9.4621

!3.443i

7.6641

7. IiZt

6. 680i

6. 357i

6. 123i

5. 961i

5. a5e.i

5. 800L

5.7731

5. 765i

5. 764i

(o)
‘2. 2

(o)
‘2, 1

(o)
‘2, 1

(o)
‘2. 1

(o)
‘2, 1

(o)
‘2, 1

(o)
‘2. 1

(o)
‘2, 1

(o)
“V2. 1

(o)
‘2. 1

(o)
‘2, 1

v(o)
2, 1

(o)
‘2, 1

(0}
‘2, 1

(o)
‘2, 1

(0)
‘2, 1

13.0261
(o)

‘2, 3

11.9791
(o)

‘2. 3

11.141t
(o)

‘2. 3

lo.474i
(o)

‘2, 2

9. 955i
(o)

‘2. 2

9. 570i
(o)

‘2, 2

9. 310i
(o)

‘2. 2

!). 1841
(o)

‘2, 2

9.107[
(o)

‘2, 2

9.0951
(0)

‘2, 2

.
12.325i

+’1)3

Table 3.9. (k) (0)
Initial (v2, n,) and Terminal Positions (v2, n, ) of H- Mode Trajectories for Increasing z~
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=

e
d/a (1) (o)

‘3, 1 ‘3, n’

,05 7.355i v~)l

.10 ‘7.764i v~),

.15 v(;)8.221i ~ ~

.20 8.735i v~)l

.25 9.317i v~~

.30 9.!383i v~~
●

v(o)
3, 2

.

.35 10.751i

.40

● 45

.50

.55

.60

.65

.70

.75

.80

.85

.90

.95

(1) (0)
‘3, 2 ‘3. n’

10.965i v!)

11.575i (:)
‘3, 2

12,255i

13.021i

(2) (0) V(2) (o)
‘3, 1 ‘3, n! 3,2 ‘3, IIf

13.180i

11.246i

9. 924i

8. 991i

8.323i

7. 845i

7.509i

7.280i

7. 135i

7.051i

i’. OIOi

6. 993i

6. 989i

6. 988i

6. 988i

Jo)
3, 1

(o)
‘3, 1

(o)
‘3, 1

(o)
‘3, 1

(o)
‘3, 1

(o)
‘3, 1

v(o)
3, 1

(o)
‘3, 1

(o)
‘3, 1

v(o)
3, 1

v(o)
3, 1

(0)
‘3, 1

v(o)
3, i

v(o)
3, 1

v(o)
3*1

10.839i

10.597i

10.473i

10.427i

10.418i

10.417i

v(o)
3,2

(0)
‘3, 2

(0)
‘3, 2

v(o)
3,2

(o)
‘3, 2

(o)
‘3, 2

Table 3.10.
(k) (0)

lhitial (V3, ~t) and Terminal Positions (V3, n!) of H-Mode
Trajectories for Increasing zs
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Cl/a (1) (0)
?4, 1 ‘4, nr

., ,

.05 .8.613i (o)
‘4, 1

.10 -9i092i (0)
‘4, 1.

,15 .9.626i ,V(o) “
‘4, 1,

.20 10.223i (0)
‘4, -2

. ... ..... _., ._.. -.
.25

,30

.35

.40

.:4,5

.50

.55

.60

.,65

.70

.75

..80

.,85

.90

..95

.10.910i

11.689i

k2.288i

,13..637i

14.877i

(o)
‘4, 2

(o)
’482

f(o)
:4,2

,(0)
‘.4, 2

(0}
‘v!, 2

(1) (o)
‘4, 2 ‘4, n’

12.321i “(o)
‘4* 2

13.005

(2) (0)
‘4, 1 ‘4, n’

.

*

16.-479i

13.573i

11.732i

10.507i

9. 672i

9. 10li

8.717i

8.469i

8.319i

8.238i

8.201i

8. 187i

8. 183i

8.183i

8. 183i

8. 183i

(0)
‘4, 1

(o)
‘4, 1

(0)
‘4* 1

(o)
‘4, 1

(o)
‘4, 1

(0)
‘4. 1

(o)
‘4, 1

(0)
‘4, 1

{0]
‘4, 1

(o)
‘4, 1

(0)
‘4, 1

(0)
‘4, 1

(0)
‘4, 1

(0)
‘4, 1

(0)
‘4, 1

(o)
‘4, 1

Table 3.11. Initial (v(k)
(0)

~ ~,) and Terminal positions {V4, ~1) of
H-Mode ~rajectories for Increasing zs
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.

d/a (1) (0)
‘5, 1 ‘5, n’

.05 9.848i (o)
‘5, 1

10 v(o). 100395i s ~

.15 11.007i v(;)
c1

(1) $0)
‘5, 2 5, nl

13.649i v(o)
5,2

.20

.25

,30

.35

.40

.45

,50

.55

.60

.65

.70

.75

.80

.85

.90

.95

11.695i (0)
‘5, 2

v(o)12.474i s z

13.365i (;)
‘5, 2

14.394i (0)
‘5, 2

(2) (o)
‘5, 1 ‘5, n!

16.851i

14.04%

12.313i

11.191i

10.456i

9. 980i

9. 682i

9. 508i

9.417i

9.376i

9.361i

9.357i

9.356i

9.356i

9.356i

9.356i

(0)
‘5, 1

~(o)
5, 1

(o)
‘5, 1

(o)
‘5, 1

v(o)
5, 1

(0)
‘5, 1

(o)
‘5, 1

(0)
‘5, 1

(o)
‘5, 1

v(o)
5, 1

(o)
‘5, 1

(0)
‘5, 1

v(o)
5, 1

v(o)
5, 1

v(o)
5, 1

v(o)
5.1

Table 3.12, (k) (o)Initial (V5 ~,) and Terminal Positions (V5, ~1) of
H-Mode ~rajectories for Increasing zs
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demonstrate the trajectory of a given pole through the entire z~ spectrum

o
for a fixed d/a. Note that in these graphs only the pole designated has

—

been plotted with no attempt to illustrate various other poles that might .

come into play in that region of the complex frequent y plane of concern.
.

Additional graphs will hopefully clarify the trajectory interaction of the

poles originating from the innermost

tween the liner and the outer shell (k

sphere (k = 1) with those from be-

= ‘2). This approach is simply an

effort to organize the data presented and avoid the confusion from

multiplicity of pole patt ems that arise for a given area. Because

extreme variation in pole paths and wide d/a range more than one

sometimes employed to avoid undue loss of detail.

the

of the

graph is

As a rough guide to the relation between the pole shift and the change

●
in the resistive load, some trajectories are tagged to indicate the loading

at that point. The parameter value at these points k zs = .2, .4, .6.

The arrow indicates the direction of movement as zs increases.

The trajectories of-the E and H mode resonant poles arising from

the region between the resistive liner and the shell wall are represented

individually in figures 3.21 through 3.44. Again several graphs are em-

ployed to avoid loss of detail in widely varying loci.

The pole originating at u(2) is of special interest in that it coalesces
n, 1

*

on the negative ~ axis for certain ranges of the d/a parameter as the

loading varies

coalesces with

o~z&h In terms of increasing

its image from the lower h~f plane

.

zs, the pole which

(complex conjugate I

●

-36-



O

.

.

splits and proceeds positively and negatively along the n axis. The pole

moving negatively along the n axis coalesces again with yet another pole

with a positive movement on the O axis. After this second collision the

trajectory returns to some u
(0)

along the iua/c axis as z~ - ~. The
n,nl

(0)
“second” positively moving pole is possibly from infinity (un, ~ ) or some

higher n’ pole of the same order. Figure 3.15 depicts the movement-in -

volved in the double coalescence. It is obvious that this entire pattern

could be repeating any number of times outside the limits under investiga-

tion. The interaction of this returning pole with other poles in the regicn

(2)
for n = 1 (before other u, _, come into play) is given in figure 3.16.

L,LL”

The point of coalescence and the corresponding

taken as the definition of critical clamping for a given

3.17 gives the resistive sheet loacling plotted against

damping of the lower E modes.

resistive value is

mode (n). Figure

d/a for critical

““37-
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Iv. OPTIMUM DAMPING

For any given trajectory in the complex frequency plane, there ex-
.

ists a point and correspondingly the determining z in its path where max-
S

imum damping occurs. Naturally this maximum damping point shifts as .

d/a changes. In addition, the loading that produces an optimum or maxi-

mum damping for one part ic ular pole is seldom the best value for another.

Thus the selection of a d/a parameter within a given normalized frequent y

Urnit must consider not only the number of poles within this frequency

limit, but where these poles are optimally damped. This fact becomes

even more important when tradeoffs between which poles might be damped

are considered. Moreover it has become obvious from figures 2.2 through

2,5 in conjunction with the trajectories in section 111that as the parameter ●
d/a increases the trajectories from u(1) ~:d U(2)

~, n, (and correspondingly
n,ni

(1)
those from Vw ~ ~ and V(2)~ ~,) dramatically shift and eventually effect a

LL, LL 1A, LA

complete interchange in position and consequent importance.

With the above information in mind then, the graphs in

through 4.11 are presented in an effort to show just how this

figures 4.2

optimum

damping (position and loading) changes with d/a. The graphs are pre -

(k)sented as pairs from u or v(k)
n,n~

with k = 1,2 to represent the pole
n,n’

(0)interchange around u and v(0) as d/a
n,n’ n9n’

(k)load is also plotted and labeled as zs with

ing pole type association. It might be noted

increases, The resistive

the superscript k represent-

that although the trajectories

.

.
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.

“

make a smooth transition as d/a increases the optimum damping position

does not. The reason for this stems from the coalescence that occurs be-

tween the interior (k = 2) and exterior (k = 1) poles. Typical discontinue -

ties from coalescence are illustrated in figure 4.1.

It might be pointed out that a different definition from the outset

and/or different combinations of poles presented on a graph could produce

more

from

continuous optimum damping curves. For example, consider loci

U(2)
.n and u!’)<, two poles which coalesce around d/a = .47. Plot-
1, L lj 1

(2)ting the optimum damping of the pole from U1 z up to
s

(1)
cence and the optimum damping of the pole from u

1,1

the point of coales -

after this point pro-

duces a continuous curve. This approach was not taken, however, to

avoid the multitude of curves that would be necessary for some poles.
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v. RESONANT FREQUENCY SHIFT RESULTING FROM
THE SHEET LINER LOCATION WITH FIXED RESISTANCE

If the sheet liner is allowed to vary from the shell wall to the sphere

center (O ~ d/a < 1) while holding its resistance (zs) constant, the resonant—

frequencies shift in a reamer quite different from those illustrated in sec -

tion III. With the addition of these trajectories the entire pole reaction to

parameter alteration is provided.

For very small zs the trajectory of a particular resonant frequency

(1)
must move approximately as u or v(’)

n, n’
as discussed in section II.

n,n’

Large zs traject-ories must apprbach u
(o) or v(o) as shown in the
n,n’ n,n’

asyznptotic form in reference 1.

The trajectories of the resonant frequencies (E and H) as the con-

stant resistance sheet liner moves through the range O < d/a < 1 are given

in figures 5.1 through 5.6. The curves are not identified as far as kind

(k = 1 or k = 2) since a smooth transition is made from one to the other

and this distinction is not the utmost interest here. In general, however,,

the upper movement of the loci represents poles from u(1)
n,n! ‘v~~!) ‘hi”:

the descending loci tend to be poles from u
(2)
n,nl ‘v~~f

) for increasing d/a.

One exception is the trajectory from u(2) which has an upward mobility
n, 1

with increasing d/a.

The graphs are arranged according to increasing mode with some

modes broken into two graphs - -one with z = .2, .4 and the other with
s

z=. 5, . 6. This arrangement is solely to avoid crowding. The values
s

-!35-
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of constant z selected for parameters are those that cut through inter-
s

esting portions of the damping versus loading graphs in the previous sec -

t ion.

As mentioned in connection with tables 3.1 through 3.7, one pole

exits each u(o) for each pole entry. The seemingly disjointed trajectory
n,n!

loops seen in the upper portion of the graphs (e. g., zs = .4 for loci from

u(k)
l,n’

in figure 5. 1A) are the results of the smooth transition of the tra-

(2) (1)jectory from u into the trajectory from u
n,nt

as mentioned above,
n, n’

●

✎

.
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VI. COMBINED RESONANT

0

Prom the graphs of pole trajectories in

.
some interior resonances

d/a and z~. Of course it*

x

18

DAMPING

section III it is evident that

will damps while others will not, for the same

is this damping and the damping of as many

resonant frequencies as possible that are of interest. It is not enough to

damp an individual resonance and in addition the individual modes cannot

be segregated to determine optimum parameters.

The graphs in this

realized damping ( I ~a I /

ted against zs with d/a

section

Wal)of

are presented by mode with all the nor-

each resonant frequency of that mode plot-

a parametlar. Since the higher order modes be -

come increasingly difficult to damp as d/a increases the concentration of

this parameter will be restricted to the range O < d/a <.6. Of course

the number of resonant frequencies for any one mode and d/a is deter-

mined by the normalized frequency bound (iwa/c x 10.5 ) stated at the out-

set. These plots demonstrate the resistive loading (zs) that best damps-

the individual poles from u
(k) and v(k) as well as all the resonances
n, n’ n,n’

grouped by mode (n). This arrangement should prove to be very useful :if

some of the higher frequencies (n’) of a particular mode were deleted or

scaled according to their importance in the normalized frequency range.

Determining an optimum loading for a given d/a for all seven E

modes and correspondingly an optimum loading for all five H modes is a

challenge. Several questions come to mind immediately. First, should

-1o3-



the higher resonant frequencies be scaled down in importance?

modes be treated equally, that is, should the modes be scaled?

Should a-ii

If the
●

resonant frequencies and/or modes are

used ?

Although intuitively the answer to

scaled what method should be .

.

the first two questions is yes, it

is not the intent here to delve into these areas. Hopefully, ample informa-

tion is contained here so questions of relative importance concerning fre -

quencies and modes can be answered.

Assigning a resistive loading for a given d/a value can be achieved

simply by combining all the modes for that d/a parameter, This over-

simplification results in loss of much information. Keeping in mind that the

lower order modes should (in some way) dominate, tables 6.1 and 6.2 list

the optimum loading

number in the tables

as progressive modes are considered. The first

gives the optimum loading (zs ) and the second number

is the least amount of normalized darnping for all the poles for the modes

considered. It should be noted that the approach resulting in these tables

places equal emphasis on all the resonant frequencies (within the frequency

bound) of the various modes. In addition it should be stressed that inter-

polation in this table is nontrivial.

.

.

-1o4-



Modes (n)
Considered

1

1,2
I
-
0
m 1,2,3
I

1,2, 3,4

1,2, 3,4,5

1,2, 3,4,5,6

1,2, 3,4,5,6,7

1’
,,

,?

.1

I
!2

G

z w
s C-YI——

.38 .05

.39 ● 04

.39 .04

.39 ● 04

● 39 .04

.39 .04

.39 .04

.2
Q

II a
z

II
w

s CY——

.60 .11

.59 .11

.57 ● 07

.57 .07

.57 .07

.51 .07

.42 .06

d/a

.3
$2

!-! Q
z

_l_!
Ld

s CY

.32 .04

.32 .04

.32 .04

.32 ● 04

.32 .04

.45 .04

.42 .02

.4
Q

CY
z w

s c?——

.40 .08

.40 .08

.15 .03

.05 .006

.06 .005

.08 .003

.08 .003

.5
$2

I
z

s la——
.22 .07

.08 .02

.14 .01

.18 .008

.25 .004

.60 ,002

.70 ● 001

.6

11
$2

CY
z

I
(d

s CY

.22 .04

.34 .03

.85 .01

.85 .002

.85 .0008

.85 .0002

.85 5x1O
-5

Table 6.1. Resistive Loading for Optimum Darnping of

All E Mode Resonances (n’) in the Frequency
Bounded Solution

I



Modes (n)
Considered

1 1
w
o
m
I 1,2

1,2,3

1,2,3,4

1,2,3,4,5

‘o

d/a

●1 .2 .3 .4 .5
IQ 1

z
s

.49

.52

.52

.52

,58

LLl
I

z
o! s-

.06 .68

.06 .68

.06 ● 68

.06 .68

● 05 .68

Table 6.2.

pi-l p !2II c?
o! (2’ a II (2-

Iw I z w
C2 I z w

s @ s I z
CY II

w
s L-1’

—— —— .—

● 09 .6 .16 .13 ● 02 ● 49 ●20

● 09 .48 .07 .14 .02 .55 ● 12

.09 .25 ● 03 .14 .02 .76 .07

.09 .25 .03 .14 ● 02 ● 71 ● 05

● 09 .25 .03 .17 .02 .65 ,02

Resistive Loading for Optimum Damping of

All HMode Resonances (n’) in the Frequency
Bounded Solution

o

.6
fl~

II
z

II
w

s 0’——

● 68 .16

.65 .06

*55 ● 02

,50 .008

.48 .003
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VII. LOADING TKE SHEET LINER WITH
OTHER THAN PURE RESISTANCE ●

If R~ XL and XC represent some resistance, inductive reactance, -,

and capacitive react anc e, then ar.y cornplex impedances Z = R + i(XL +-
-.

XC), can be written in terms of the magnitude (rm = Z ! ) and phase

(arg(Z), i. e., o = tan-l[(XL + XC)/R])

Z=rme
M

For the purpose here the natural log is taken as

Qn(Z) = In(rm} + ieo

(7. 1)

(7.2)

with the phase angle given its principal value O., - T < 60 ~ r to avoid

the multiple -valueness of In(Z). This is a very useful form for the

impedance

Now

written by

for the approach used below.

cons ider an E and H mode impedance function which can be

solving equations 2.5 and 2.6, respectively, for -z as
s

~(S) = -{[Sbk (Sb)]’[Si (S)j’[Sbin(Sb)]’ -n n n

[Skn(S)l’ ([Sbin(Sb)]’)2} ([Sin(S)]’ J-l (7. 3) ‘

.

and

●
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f~(S) = - {Skn(S)[Sbin(Sb)]2
}

- Sin(S) Sbkn(Sb)Sbin(Sb) [Sin(S)]- 1 (7.4)

Obviously then z~ +f~(S)

Hmodes will, for a fixed

= O for the E modes and z~ + f~(S)

geometry (i.e., d/a), describe the

= O for the

natural reso-

nances of the spherical cavity regardless of the complex nature of z
s“

The two functions actually represent all solution of z~ in the complex S
—

plane

same

with the exception of the trivial solution.

The scheme to be used here is to present f~(S) and f~(S) in the

form as equation 7.2. The natural log of the negative impedance

functions is written as

ln&(S)) = ln(lf~(S)l) + iarg~(S)) (7. 5a)

and

(7. 5“b)

Now a subdivision of the complex frequency plane can be made by simply

plotting constant magnitude and phase contours to produce an orthogonal

mapping such that each intersection defines a particular impedance con-

figuration. 13y applying the same magnitude and phase constraint around

all poles and zeros of concern the resonant shift and consequently the

daiiping can be determined.

-139-



?(S} and f:(s), pre.ented in ●For the negative impedance function, n

this section the phase contours have been plotted7 with values such that

-J

c
()

n
—-1 , n=O, ~1, +2, ●*O, +N; N=6 (7.6)

phase = n ~N”
.

The magnitude contours are taken in the same increments to produce

curvilinear squares in the complex S plane. A somewhat truncated series

of contour values is used for the phase from that described for the principal

value since the entire phase map is mirrored across the imaginary axis

a.?r+c As many magnitude contours
phase’

c nr
n=O, +1, ~2, **”

mag ‘s’
(7. 7)

are
o

taken as needed to define regions around the zeros and poles.

Note that the phase lines exist along the ues. In particular along

the

n.

the

phase line extending in the negative iua /c direction (but not across

ordinate the phase is either -r/’i? (where n = N) or n-/2 (where

-N) alternating between poles and zeros. The phase line extending

(0) ‘0) ) is -T/2 while thepositive iwa/c direction from any Un, nl {Vn, nr

in

id c = o) is irlz.

Vividly shown in the contour map are the zeros and poles 01 the irn -

pedance function. These points have previously been defined, The zeros

k
n,n! ‘v~,nl

(01 ~v(o) )
corre spend to u ) and the poles correspond to un, n, n, n! “

The relationship to the zeros is obvious when the numerators of f
E
n (S) and

●
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b-

.

f~(S) are factored and compared with equations 2.9 through 2.11. The

poles of the negative impedance functions stem from equations 2.7 and

2.8.

Although it- might be expected from line integral theorems (of the

Cauchy and Rouche type) concerning poles and zeros in the complex plane,,

it is nonetheless interesting to note some of the constant phase patterns;

for example the pole- zero phase line connection. A quite different pat-

tern is present about two zeros or two poles. The two-pole or two-zero

configuration is not as obvious in the impedance function presented here

as it will be in a forthcoming report byR. F. Blackburn on the impedance

loaded loop. In addition each pole has M phase lines radiating from-it

where A = 2m/M (here M = 24 with 12 in each half plane). The num -
phase

ber of constant phase lines coming from a pole or zero is directly related

to its order, that is, a second order pole would have 2M phase lines for

P H
the sane A All poles and zeros of the functions

phase”
and fn pre -

n

sented here, however, are of the first order.

Of special interest is the particular phase cent our

Cphase ~ ()
= arg f~(Sz) (7. 8a)

and

()=arg f~(SZ)
Cphasez

(7. 8b)
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where SE
is defined as

[P ]~(sz) ‘ =o

[1f:(sE) ‘ =0

~(s) and ~(s). By plotting CphaseZ onlYThat is, simple the saddles of ~
n

through the saddle point SE with which it is associated (even though it may

exist in other parts of the plane) affords a convenient method for subdi-

viding the plane into pole or zero regions. Saddle argument contours

from pole to pole encompass the associated zeros while argument con-

tours from zero to zero determine regions of associated poles. A com-

plete discussion of the use of phase and magnitude mapping as an

●
approach to solutions to impedance functions including saddle argument

8
contours is given in a recent note by Baum .

Figures 7.1 through 7.12 give the constant magnitude and phase

contours of ~and fH. The saddle argument contours are represented
n n

as dotted lines. Poles, zeros and saddle are indicated on the graphs

as p, z and 2, respectively.

An obvious contour to be noted in the graphs is the -~ phase line

which corresponds to the purely resistive loading. In this case -z~ =

-R + Oi and has a constant phase of -r. Since the phase is independent

of the magnitude in this case the - mphase contour is actually the

-142-
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*

trajectory of the resonance frequency as

section III the intersection along its path

presented

measures

in section III. As in

various magnitudes of

l-z I = [RI. Of course for other than pure resistive loading the contour
s

map defines discrete or interpolated points of magnitude and phase at the

curve intersection since magnitude and phase are interrelated.

.
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Vm CON CLU~ION

This report has presented an extensive parameter study of the spher -

ically shaped damping structure within a perfectly conducting spherical
1

chamber. The major effort here has been identifying, indexing, tracking, t

and describing the behavior of the resonant frequencies in this spherical

chamber. Ample information is given to gain insight into these resonant

frequencies, where they originate, and how and by what degree they can

be damped. It is hoped that this report in the future will also shed light on

pole /zero behavior in more complex structured models.

The concentration in this report has been on examining pole position

in the normalized complex frequency plane for various parameters to de-

t ermine the resulting damping. In the future, however, an idea that seems
o

to hold promise is reversing the process in that some desired response is

selected and then a determination in a least square

impedance that will produce this response.

If multiple activity pole and/or zero charting

sense of the complex

is to be pursued as a

viable approach to understanding theoretical EMP problems for a wide

variety of parameters, a more dynamic approach also seems to be war-

ranted. The approach of motion pictures with changing parameters in

time or some interactively produced plots (points, contours, 3-D projec -

tions, etc. ) on a terminal CRT would certainly enhance comprehension.
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