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NOTE195

The Effect of a Center Conductor on the Resonant
Modes of a Spherical Cavity with a Perfectly

Conducting Mall

May 1974

ABSTRACT .

The effect of a spherically shaped conductor on the resonant modes of
a spherical cavity is investigated. The cavity wall and center sphere
are considered to be perfectly conducting. A graphic solution technique
is used to solve the eigenvalue equations. For a small sphere at the
center, the frequency perturbation is seen to vary as the ratio of the
sphere volume to the cavity volume and, hence, be quite small. The re-
sults of this analysis can be applied to the problem of the effect of a
satellite on the resonance modes of a simulator chamber, (This note
was originally prepared as Tank Physics Memo #5, September 1972.)
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This memo considers the effect that a conducting body at the

center of the tank would have on the resonant mode frequencies of the

tank. Actually, what we want to show is that the presence of a

reasonably

This turns

sphere are

shifts are

sized body will only perturb the frequencies slightly.

out to be true. Since both the tank wall and the central

considered perfectly conducting, the frequencies and their

real and no absorption is experienced.

The solutions to the transcendental equations are obtained

rather simply through graphical methods for all ratios a/b, where a

is the radius of the central sphere and b is the radius of the tank

cavity. The variation

that the objects shape

cases.

for small a/b appears to be

would not be a considerable

a volume effect

factor in such

so

Considering the electric modes first, the electric field

inside of a spherical cavity is described by a summation of terms of

the following form (Stratton, 1941; p. 557):

where constants

$ [pjn(P)l (1)

in p are being neglected, and P = kr, where k is the

complex wave number and r is the radial distance from the center of

the cavity. The resonant modes are determined by setting E~n(p) equal

to zero at the cavity surface [r = b) and solving for the roots of

Equation 1 for all n, i.e., by solving for kb in
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(2)

The introduction of a perfectly conducting sphere at the

center, with radius r = a, complicate-sthe problem only to the extent

that the field must also equal zel-oat r = a. A second solution to the

radial equation is required in adclitionto jn(p). This could be any

of the remaining spherical Bessel functions (Abramowitz, 1964), i.e.,

Yn(P)~ h~)(p)) or h:)(p). We choc)sethe spherical Bessel function of

the second kind yn(p) because it has a sinusoidal type of behavior

and the solution for the concentric spheres is expected to resemble

that of two parallel plates as a + b.

With the addition of thj,slinearly independent solution,

Equation 1 becomes

fErie(P)=; + [pjn(P)] + K
I

I
;; [PYn(P)l

(

(3)

where K is a constant with respect to P.

r=a, b yield

The boundary conditions at

o =+ [Pjn(P)l

o =$ [Pjn(P)l

p=ka + K$ [PYn(P)]

p=kb ~ [PYn(P)l‘Kap

Eliminating K, we have

+ [pjn(P)llp.kb = & [Pjn(P)llD=ka
A

For simplicity, define

& [pyn(p)llp=ka

fn(P) =
~ [Pjn(p)l

$- [PYn(P)l

3

p=ka
(4a)

p=kb
(4b)

(5)

(6)



then Equation 5 becomes

fn(kb) = fn[ka) (7)

or, with x = kb,

()fn(x) = fn:x .

Equation 8 is

(8)

in a form which permits a graphical solution

once fn(x] is calculated. By plotting fn(x] on a graph with a

logarithmic x axis, one can find the solution by placing an identical

graph over it, displaced along the x axis by a/b, and reading the

values of x = kb corresponding to the points of intersection.

In order to calculate f(x], the functions jn[P) and Yn(P)

tiustbe known. They can be calculated from Rayleighfs formulas

(Abramowitz, 1964):

‘n(p) = ‘n(- %r%

()Yn(P) =-Pn-*$n&

In general, jn(p] will be of the

(9)

(10)

form

,n(~l = pn(-j)sinp- QJ})cos P

where P
n(j) and ~(;) ()

are polynomials of * and should not be confused

with Legendre polynomials. The function yn(p) can be found from jn(p)

by replacing sin P with -COS p and cos p with sin p . Then yn[p) is

of the form

()Yn(P) = -pn ; Cos p -
Qn( )

~ sin p (12)

Equation 9 can be used to generate jO[p) and jl(p). The higher order

functions can be generated from these through (Abramowitz; 1964)
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jnb)
j n+, (~) . (2n + 1) ~- jn-,(P)

The first six functions are

jo(p) .+

jl(p)
= ($)- (ac”sp

j 2 (P) . ($- ~)sinp - ($)cosp

j3 (P) . (f- $)sinp - (~- *)cOSP

(105 45 1j~(p) = —- - + ~)sinp-($-~)cosp

P5 P3

(945j5(P) =
–-~+;)sinp-(yy+P6

Similarly, the corresponding yn(p] are given by

Cos p
ye(P) = -y

yl (P) = -
()
~ Cosp -

()
1
— sinp

“P2
P

Y2(P) = -
($ - :)cos” - (;)sinp

( )
(: )Y3(P) ‘- =- J&Jsp- ‘“- ~ sinp

P4 P2
3

‘( 105
Y4(P) = - ~ - ;+ ;)COSP - ($ - $)sinp

(
Y5(P) = - =-

P6
:+;% - (: -;+ :)s’np

(13)

(14)

(15)

[16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)



In order to calculate fn(x), we must have

+ [Pjn(P)l = pnsinp - ~cosp (26]

and

* [PYn(Pll = - pncosp - ~sinp (27]

where
ap

Pn ‘pn+*+p% (28)

[29)

Thusj ~/ilp[pjn(p)]has the same form as jn(p). The same is true for

8/8p [pyn(p)] Snd yn{p). Equations 14 through 25 show that Pn(l/p)

and Q#l/p) are polynomials of I/p, that the highest order term is

contained in ~(1/P) and the power is n + 1. The highest order term

in Pn(l/p) has the power n. ~(1/P) ~d pn(l/P) each have either odd

or even powers of (l/p). The lowest power is unity, i.e., l/P. The

same statements can be made for pn(l/p] and qn(l/p] with the exception

that the lowest power is zero, i.e., a constant.

By

fn(x) =

or

fn(x) =

By Equations

P1(l/x)

ql(~/x)

Equations 26 and 27

pn(l/x)sinx - qn(l/x]cosx

~

qn(l/x) - pn(l/x)tanx

qn(I/x)tanx + pn(l/x)

28 and 29 we have for n = 1 through 5:

=. (1/x)2 + 1

=.- (l/x)

(31)

●
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0

or

P2(l/x) = - 6(1/x)5 + 3(1/x)

q2,(l/x)= - 6(1/x)2 + 1

p3(l/x) = - 45(1/x)4 + 21(1/x)2 - 1

q3(l/x) = - 45(1/x)3 + 6(1/x)

pIt(l/x)= - 420(1/x)5 + 195(1/x)3 - lo(l/x)

q4(l/x) = - 420(1/x)4 + 55(1/x)2 - 1

p5(l/x) = - 4722(1/x)G + 1205(1/x)4 - 120(1/x)2 + 1

q5(l/x) = - 47Z2(l/x)5 + 630[1/x)3 - 15(1/x)

Using Equations 32 through 35, we have for n = 1 and 2,

fl(x) = -

fz(x) = -

fl(x) = -

(-l/x) - (-1/x2 + I)tanx
(-1/x)tanx + (-1/x:~

(-6/x2 + 1) - (-6/x3 + 3/x)
(-6/xz + l)tanx + (-6/x3 + S/x)

x - (1 - x2)tanx
xtanx + (1 - x2)

fz(x) = -
X(X2 - 6) - (3x2 - 6)tanx
x(X2 - 6)tanx + (3x2 - 6)

With x << 1, these functions become

fl(x) = - x3/3

fz(x) = x3/3

and, for x >> 1,

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)



Figure 1 is a plot 2/n arctan (fl(x)) for 1 s x < 20. Figure

2 is a plot of 2/n arctan (fz[x]) for the same range. Figure 3 shows

these functions for x < 1. These functions are plotted instead of

fn(x) since they are bounded between +1 and -1 instead of *. They

can be used more easily in the graphical solution of Equation 8 than

fl[x) and f~(x), Figures 4 and 5 show some of these roots as a

function of a/b for n = 1 and 2 respectively. The horizontal lines in-

dicate the values of the roots for a = O (no center sphere). The ‘

first six roots are shown.

It can be seen that as the inner spherets radius increases

from small values, the magnitude of kb and, hence, k decreases for

each root. Except for the first root, further enlargening of the ratio

a/b causes the roots to pass through a minimum and approach infinity

asa+b. The first root, however, continues to decrease in magnitude

and has a finite limit at a = b. We will show that this limit is

kb =~ri[n + 1), where n is the order of the spherical Bessel functions

involved. Before doing so, we will make some more observations. First,

note that for n = 2, the magnitudes of the roots change more slowly

with a/b than for n = 1. This property can probably be extended to

higher values of n since the properties of the spherical Bessel functions

of higher order n do not make any drastic changes. Then= 1 mode is

then the most sensitive of the electric modes. For a given n, the higher

roots are initially more sensitive to increasing a/b. The behavior of

the roots for small a/b will be investigated in more detail in a later

paragraph. The important thing to note is that the variations are

small for small a/b and that the introduction of a sphere into the

center of the cavity does not greatly change the mode frequencies un-

less a/b is on the order of 0.3.
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Figure 1. 2/ITARCTAN (fI(x)) vs x for x > 1.
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Figure 2. 2/TrARCTAN (fZ(x)) vs x for x > 1.
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Figure 3. 2/TrARCTAN (fn(x)) vs x for n = 1, 2 and x< 1.
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We will now investigate the sensitivity of the roots of

Equation 8 to the variation of a/b for small values of a/b. For

(a/bx] << 1, Equation 8 reduces to

x- (1 - x2)tanx ~ ~ a ‘3

()xtanx + (1 - xz) – 3 Gx
(s0)

The smallest value of x is about 2.7. Assuming X2 >> 1, this equation

reduces to

-La 3

()
–x (tanx - x)

l+xtanx–3b

Let xo denote the roots of

l+xtanx=o

These roots are approximately the solutions

a= o. Since the roots are not expected to

a/b, define

x= Xo+y

(52)

for the radial modes when

vary greatly for small

[53]

where y << XO. Then, using a Taylor expansion

tanx = tanxo + yseczxo , (54]

we find

1 + [xo + y)(tanxo + ysec2xO)=

la3

--()3 Gxo
[1 + 3y/xO)(tanxO - 1 + yseczxo)

or, ignoring powers of y greater than one, and y/xo,

(55)

la3

--()

1 - tanxo
Y=-J~xo la

(Y
tanxo + sec2xO[x0 - ~~xo ]

But

tanxo ~ - l/xrJ (57)



. .

4B and

sec2x0 = 1 - tan2x0 = 1 + l/x~ m 1

so that

la3

( )[

1yE.TF~o
-1/xll+ Xo1

(58)

(59)

This equation shows that, for the first electric mode (n = 1), the

variation of the resonance frequency is a volume effect, i.e.,

Akb = y

(60)

where Au is the change in mode frequency and c is the velocity of light.

The frequency change is quadratic in XO, i.e., the higher roots change

more quickly. This volume effect can be shown for the second electric

mode (n = 2) and probably hold true for larger n.

We now proceed to show that the first root has a finite value

in the limit that a = b. The wave equation for the radial part of the

solution is (Stratton, 1941; p. 400).

# &
+ 2r~+ [k’r* - n(n + l)]E = O

dr2
(61)

As a + b, the radial field becomes rather uniform, as between two

parallel plates, and the derivative terms become negligible, leaving

kr =~- (62)

Thus, for n = 1, 2, we expect the roots kb =#li_,%%to appear as a

limit in Figures 4 and 5, which they do,

15



. .

is, in

Bessel

E

The magnetic mode can be analyzed in the same manner, and

fact, much simpler because no derivatives of the spherical

functions are involved. The modes, kb, are defined by

“n6
= jn(kr) + ‘Kyn(kr]= O

at r = a and b, leading to

jn(kb) jn(ka]

~= yn(ka)

(63)

[64)

Defining gn(x) in a manner analogous to fn(x] for the electric modes,

Equation 64 becomes

gn(x) = &!n(;x)

For n = 1 and 2, we have

(65)

(66)

gz[x) s - (3 - x2)tanx - 3X (67)
[3 - Xz) + 3xtarix

Figure 6 shows Z/n arctan [g~(x)) for 1 s x < 20. Figure 7 shows the

same for x < 1. Figure 8 shows 2/Trarctan (gz(x]]. The roots of

Equation 65 are shown in Figures 9 and 10 for n = 1 and 2 respectively,

as a function of a/b, All of the roots asymptotically approach

infinity as a + b. An analysis similar to that performed for fl(x)

shows that the roots vary as (a/b)3 for small (a/b). The higher roots

and functions with lower n are most sensitive, as with the electric

mode.
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Figure 6. 2/mARCTAN (gI(x)) vs x for x > 1.
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