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Abstract

capacitance bounds obtained in this note are the capacitance values

surfaces that can be inscribed within or circumscribed about the .-.

actual surfaces corresponding to an advanced simulator design. This method
@=

of obtaining bounds allows one to compare the capacitance of certain geometries

without even making a numerical calculation; however, numerical calculations

can readily be performed for arbitrary geometries. To augment our method of

obtaining bounds, we determine the capacitance between two noncencentric

spheres. This capacitance is in the form of an infinite series and it is

numerically summed and plotted. A closed form approximation to this series

is also obtained and its accuracy is demonstrated by plotting it for the

same range of parameters that were used for the plots of the numerical sum.
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1. Introduction

In this note we present a method for obtaining upper and lower bounds on

the capacitance between two perfectly conducting closed surfaces with one of the

surfaces enclosing the other (see figure 1). The reason for considering this

geometry is that the inner surface represents a space system and the outer surface

represents a test chamber in an advanced simulator design. This type of simulator

as well as the significance of the capacitance is discussed in a note by Baurn[1],

The bounds that we obtain are interpreted as the capacitance between surfaces

that can be either inscribed within or circumscribed about the original surfaces.

These surfaces are quite general and can be chosen so that the capacitance between

them is either known or can be readily calculated. The fact that these bour~ds

can be obtained without specific regard to sharp edges that might exist on the

actual surfaces supports the effective radius approximation proposed by Baum [1].

Our results are also consistent with the recent study of Latham [21 concerning the

effective radius approximation. He obtains a criterionfor the validity of t:his

approximation that primarily depends on the relative size of the two actual surfaces.

>
_&” Our method of obtaining capacitance bounds is not necessarily the most:
_,:.

precise; however, this possible limitation is compensated for by the ease with

which bounds can be determined as well as the physical insight that one can obtain

without even making a numerical calculation. There is an extensive literature on

obtaining capacitance bounds. Two often quoted references which contain methods

for obtaining precise capacitance bounds are the book by P61ya and SzegU [3;]and

the paper by Parr [4].

We calculate the capacitance between one class of surfaces that can always

be inscribed within or circumscribed about the surfaces depicted in figure 1,.

This is the class of nonconcentric spheres, The capacitance between nonconcentric

spheres is well known [5] and it appears in the form of an infinite series. In ~

this note we numerically sum this series and analytically approximate this [jum. J

Our analytic approximation results from summing an upper bound for each tern in ~

the original series and a simple closed form algebraic expression is obtained.

This approximation to the actual capacitance is necessarily an upper bound; however,

it also turns out to be an excellent approximation. ~is is shown in plots of the

numerical summation and the approximate expression.
—
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II. Determination of Capacitance Bounds

Consider the three surfaces depicted in figure 2 and denote the capacitance

between Si and Sj as Cij. First we would like to prove the following inequ~ilities

and

In order to prove these

which will be proved in

,.

=%

C13 s C12

C13 < C23

inequalities we use the following

the appendix. The first is

J .) where G is the homogeneous dielectric permittivity of the
—

original surfaces in figure 1. R
ij

is the

satisfies the conditions

V21+(Q = o

volume between

~ER ij

and

‘$(Q= 1 ~Esi

The other relationship is the inequality

—
!

J where—

(:1)

(2)

two relationships

.

(3)

region between the

Si and Sj and $

(4)

(5a)

(6)
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(7b)

‘u

buc V does not have to satisfy Laplace’s equation in R
ij*

Let us now choose a

function $ so that $ = 1 on S1 and + = O on S3. We further require that

V*4(Q = 0 ‘0r~sR12
and that $(r) = O for rcR

-. 23*
The preceding requirements

cause V+ to be discontinuous at S2 so that VL$ z V“(V+) behaves like a delta.

function at this boundary. It should be noted that + conforms to the appropriate

class of functions discussed in the appendix since amang the other requirements

its first derivatives are piecewise continuous in R13. Physically this delta

function is the surface charge density induced on S2 so that in R13, 4 satisfies

a Poissonls equation rather than Laplacels equation, the source term being the

induced surface charge density on S9. Using (6) and (7) we have

C13 g

and because of the definition of +

Combining (8) and (9) we prove the

&

c I IV$12dr_ (8)

’13

and (3) thru (5)

=C
/

\V$12d~ = Clz (9)

’12

relation given in (1). The relation given
rl

in (2) is proved in exactly the same manner. We choose $ so that VL4 = O

in R*3, ~=OinR12, J=lon S3, and$=OonS2t We omit the details and

assume that (2) has now been proved. I

/
We will now interpret (1) and (2) so as to obtain a procedure to calculate

bounds when one of the physical surfaces depicted in figure 1 has a simple i

geometric shape that is amenable to a capacitance calculation of the type now

to be described, Let us assume, for now, that the outer surface in figure 1

has a simple geometric shape, for example consider it to be a sphere, Consider

that the inner surface is irregular and imagine a sphere inscribed within it as well

as a sphere circumscribed about it. The capacitance between two spheres, no~~

necessarily concentric, is known and will be treated numerically in this note.
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Considering S2 to be the actual inner surface and S1 the inscribed shpere, it

follows from (1) that the readily calculated capacitance C13 is a lower bound

on the actual capacitance C12. Now consider SI to be the actual inner surface

and S to be the circumscribed sphere.
2 From (2) we see that the readily

calculated capacitance C23 is an upper bound on the actual capacitance C13,

We have shown how bounds on the capacitance between S3 and an interior

surface can be found by calculating the capacitance between S
3
and two other

geometrically simple interior surfaces, The upper bound is the capacitance

between S3 and the surface that circumscribed the inner surface and the lower

bound is the capacitance between S3 and the surface inscribed within the act:ual

inner surface. There.is no requirement that either the inscribed or circumscribed

surface be spheres. The only requirement for this procedure to be useful if;

that the bounding ,capacitancesbe either known or readily calculated. There

is also no requirement that S3 be finite, By considering S3 to become infinite

(1) and (2) can be used to provide bounds on the capacitance to infinity of a

.4? single surface. The lower bound is the capacitance to infinity of an itiscribed
_~#’

surface and the upper bound is the capacitance to infinity of a circumscribed

surface. When it is convenient to consider ellipsoidal shapes as the ifiscribing

and circumscribing

contains numerical

surfaces.

It should be

surfaces, a note by Shumpert [6] should prove useful sinc:eit

values for the capacitance to infinity for this class of

noted that (1) and (2) are also directly useful when the

inner surface depicted in figure 1 has a simple geometric shape. For this case

we consider convenient surfaces inscribed within and circumscribed about the

outer surface, An upper bound on the actual capacitance is the capacitance

between the actual inner surface and the inscribed surface while a lower bound ,

is the capacitance between the actual inner surface

We now consider the case where neither of the

simple or convenient geometric shape. The analysis

considering the four surfaces depicted in figure 3.

and the circumscribing surfacei

surfaces in figure 1 have a ~

of this is facilitated by

We consider only three

surfaces at a time and use (1) and (2) to obtain our bounds. Eliminating S,,
d,

we obtain

C14 s C13
(10)



Eliminating S4 we obtain

C13 < C23

Combining (10) and (11) we obtain our desired result. It is

.

C14 s C23

(:11)

(12)

This relationship is used to provide both

original two surfaces are both irregular.

capacitance we consider that the original

upper and lower bounds when the

To obtain an upper bound on the

surfaces correspond to S1 and S4 and

we consider specific S1 and S3 for which C13 is known. To obtain our lower

bound we consider that the original surfaces correspond to S2 and S3 and we

consider specific surfaces S1 and S for which C14 is known.
4

For a large class

of irregular surfaces the specific surfaces used to calculate the bounds can.be

?

_~z spheres which are not necessarily concentric. The capacitance between non-

I’ concentric spheres will be treated in the next section, It should again be
—

mentioned that the choice of spheres is only one possibility for using (12) to

obtain upper and lower bounds.

‘-J
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111. Capacitance of Nonconcentric Spheres

In this section we will derive an approximate expression for the capacitance

between the two spheres depicted in figure 4. The radius of the outer sphere is

b, the radius of the inner sphere is a, and the separation between the centers

of the two spheres is c. An infinite series is given for this capacitance in

the bookby Smythe [S]. It is

where

:2+b2 C2
cosh a =

2ab ‘
a>()

We now introduce the normalizedquantities

so that

y = c/b

x +y e 1>

and the capacitance of concentric spheres

~ ,= 47ca
o l-x

so that (13) can be written as

c ,, COF

J
where

—,$,-

(13)

(14)

(15a)

(15b)

(.16)

(18)
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with

F-(l- x)sinh a .~ (hn)-l
n=1

hn = sinh ~ - x sinh(n - I)a

22
cosha=~?!=r

2x Y a>o

(L9)

(20)

(21)

The normalized capacitance F was determined from the form given in (19) with

the infinite sum terminated in the following manner.
The n

th
term was compared

to the sum of the preceding n - 1 terms and when it was less than 10-8 of that
sum, the series was terminated. The Y obtained in this manner is plotted versus
y for various x’s,

“J
~. We will now obtain a closed form analytic approxtiation to F. We write

Fas’-..Y

F=(~-x)s

where

with

bn = sinh a
sinh na-x sinh(n-l)a

.bn=
a -a“e -e

na
e -e (n-l)a‘na-x[e -e-(n-l)al

We now introduce a function d(x,y) through the definition

-,
d

6(X,Y) = e-a -x

(:22)

{:23)

(26)

8



@9...
and use the fact

or equivalently

thae

-a
e = cosh a - sinh a

-a
e = cosh a - ((cosha)2- 1)%

~ r- (r2 - 1)%

with I’”givenin (21). Combining (21), (26), and (28) we find

6(X,0) = o

and

~c5(x,y)=y e- ~ ~
ay x sinh a

(27)

(29)

(30)

From (29) and (30) we conclude, considering x as a parameter, that

d(x,yj~ o s (:31)

for arbitrary y, Solving for x in (26) and substituting it into (25) we obtain

In view of (31) we have

-2U
bn = ea(l-e )

(32)
ena(l-e-2a)+26 sinh(n-l)a 1

bn<cn,

where

n-1
cn = (ew)

(33)

(34)
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L and the equality in (33) applies when y = 0, Returning to (22) and (23) we have

‘.SFB~ (35)

where

J

FB - (1 -~)sB

and

SB=;C
nn=1

(36)

(37)

From (34) we see that SB is a geometric series which is readily summed to

-1
SB = (1 - e%) (38)

Using (28) and (21) to obtain an explicit representation of e-, we obtain

after some simplifying algebra

Perhaps the

and (39) to

A form of F.

most convenient representation of F~ is found by combining (36)

obtain

~ that more readily exhibits the appropriate

zero is readily obtained from (40). It is

FB=~[B+l,]+~[B-l]

where

( )B= ~j/k-)2*
l-(y/bx)2

(39)

(40)

t

j
limit as y approaches

/

(41)

(42)

1(-)



Q?’)
When y approaches O, B approaches 1, and FB approaches 1 as it should.

It is found that FB is not only an upper bound on F, it is also a very

good approximation to F over an appreciable range of x and y. This can be

seen in the plots that we present of F and FB.

—

-d
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Iv. Discussion of Results

The explicit capacitance bounds obtained in this note are presented in (l),

(2), and (12), while a procedure for utilizing these bounds can be found in

Section II. They are applied to the system of surfaces depicted in figure 1. as

well as to bounding the capacitance to infinity of a single closed surface.

The numerical results for the normalized capacitance of the nonconcentric

spheres are presented in figures 5 through 9. The quantity F represents (19),

numerically summed, and the quantity FB is a closed form approximation to F

given in (40). The capacitance for the nonconcentric spheres is obtained by

using (17) to calculate the capacitance as though the spheres were concentr:~c

and then, according to (18), multiplying that quantity by F to obtain the actual

capacitance. Thus, F is a measure of the increase in capacitance due to

displacing the central sphere.

It should be noted that the scale of the ordinate

is quite extended so that even though the curves appear

actual deviation of the capacitance from the concentric

as the displacement of the central sphere is increased.

in figures 5 through 9

to rise rapidly, th~~

case increases slowly

This effect of the .

displacement is increased as the ratio of the ewo spheres becomes larger.

Finally, it should be noted that another result is somewhat obscured by this

extended scale. This is the degree to which FB approximates F. The maximum

error that would rekult from using F rather than F for the range of parameters
B

depicted in these figures is as follc)ws: 1.2%, 1,8%, 2,5%, 3.3%,and 4.2%

for figures 5 through 9, respectively.

-%)
, J
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Appendix

In the region between the two surfaces depicted in figure 1 we satisfy

and

(A,2)

Integrating the identity

V*[I$V!+J=I$V2$+ IV$12 (A03)

over this region and using (A.2) as well as the divergence theorem> we obtain

(A.4)

We now consider the inner surface grounded and the outer surface to be at a

potential $2 = V, We also introduce the surface charge density u as

Equation (A,4) now becopes

(lfc)v ~s2IdSu = d~lV$12

’12

Using the fact that the total charge on S2, q, is given by

~“
\

dSu

‘2

as well as the definition of capacitance

(A05)

(A.7)

(A.8)

13



(@?-..
we obtain

C12
= (c/v2)

J’
d~lV$12

’12

(A.9)

Let us now define a new solution to laplacels equations, $t, given by

$ = v+’ (A,1O)

It follows that $’ = O on S1 and $’ = 1 on S2. Substituting (A.1O) into (A,9)

and dropping the prime for convenience we have

(A,ll)

where $ satisfies

(Ao12)

(A,13)

One can see from this derivation that the choice of which surface to consicler

grounded does not effect C12.

The following portion of this appendix is essentially

some material contained in a book by Dettman [7]. Consider

quadratic functional

Q(f) =
~

d~\Vf12

’12

‘here ’12
is as before, The class of functions

to minimize Q(f) are those functions continuous

an elaboration

the following

of

{f} over which we would like

‘n ‘12
as well as on S1 and S2,

with piecewise continuous first derivatives in R12, and satisfying the boundary

{.1
4

conditions f = O on S and f = 1 on S .
1 2

First we prove chat Q(f) is positive-

1

14



L,0!).—
definite. Assume that it is not, then Q(f) = O implies Vf = O in R12. ThiElin

turn implies that f is a constant in?~~and on S1 and S70 This is not possible
L&

since f is required to assume different

be continuous ‘n ’12 and ‘n ‘1 and ‘2*
definite. Therefore,

& &

values on S1 and S and at the same time
2

Thus, we conclude that Q(f) is positive-

min Q(f) = A > 0 I(A.15)

Next we want to prove that the function f = $ which minimizes Q(f) is

the one that satisfies Laplacefs equation in R12 as well as the conditions that

the $ belongsto the class of admissible functions”{f}. Assume a solution $

exists, then

Q(+) = ~ (A*16)

!!!(;’
and

Q($I+Er)) 2A (A.17)

where C is an arbitrary constant and n is an arbitrary function that satisfies

the same continuity

boundary conditions

requirements as do the members of”{f}) but ~ satisfies the

that it vanish on both S1 and S2. We now expand

Q(I$+5TI) = Q($) + 2GQ(0,n) + G2Q(n) (A,18)

where

Q(I$,n) = ~
dr_V@● VrI

’12

)
(A,19)

Substituting (A.18)

@ J

into (A.17) and using (A.16) to cancel the,A, we obtain

C2Q(n)& -2&Q($,n) (A.20)

with & being an arbitrary constant. We will now show that (A.20) implies that

15



and this cannot be

then define G = -6

assume Q($,n) < 0, then

E2Q(nh 2&lQ(+,rI)l
.

(A.21)

satisfied for arbitrarily small 5. Finally assume Q(4,n) > 0,

with 6 > 0 and we have

62Q(v) & 26Q(I$,n) (A.22)

which also cannot be satisfied for arbitrarily small 6. Thus we are left with

the only possibility

Q(I$,n) = o tA,23)

\

We now integrate the vector identity

over R
12’

and use the

(A.19) to obtain

Q(I+,TI)

Using the fact that q

(A.23), we obtain

v“(nv$) = nv2+ + Vn”vl+l (A.24)

divergence theorem and the definition of Q(O,n) given in

vanishes on S, and S. as well as our derived result
1 L

I d,~~V2@= O

’12

Since (A.26) must be satisfied by an arbitrary function

the $ which minimizes Q(f) and which is a member of’{f}

(A,25)

(A.26) ‘
J

;
n, we conclude that:

must also satisfy

(A.27 )

16



(o‘f)
It should be noted that the proof would be unchanged if we considered the class

of functions which had the same continuity properties as those-in’{f} but which

vanished on S and took the value one on S .
2 1

To summarize we have proved

~ Id~lV$12 s ~d~lVf12 (A028)

’12 ’12

where both $ and f belong to”{f} and $ in addition satisfies Laplacels equation

‘n ’12”
Multiplying

(A.13) we obtain

!!!)i-
[0...—

both sides of (A.28) by e and recalling (All) through

C12S c ~
(i~[vf]2 f’c{f} (A.29)

’12

/’
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Figure 1. Arbitrary surface enclosing an arbitrary surface.

Figure 2, Three arbitrary surfaces.

- J

.

18



*

Figure 3. Four arbitrary surfaces

I

_ ‘d
Figure 4. Nonconcentric spheres,
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