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Abstract

The radiated electric field is calculated for an infinite cylindrical antenna

driven by a step-function voltage applied across a finite gap. Plots of the

time history of the radiated field for various gap sizes and observation

angles are presented, and both the early and late time asymptotic fields

are investigated.



1. Introduction

Much effort has been expended previously to predict the radiation

field for a cylindrical antenna designed to simulate the ele ctrornagnetic
1,2

pulse due to a nuclear explosion. Results have been obtained for

the infinite cylindrical antenna driven by a step-function voltage applied

across an infinitesimal gap. In this note, an attempt is made to develop

a closer approximation to the real antenna by assuming a finite gap infinite

antenna. The gap is excited by an electric field which is a step-function of

time and is uniform over the gap.

In Section H, an analysis of the problem is given with a detailed

study of the antenna described above. Section 111is concerned with the

numerical techniques used in calculating the results described in Section

V. In addition, an alternate method for treating this problem is described

in Section IV.
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II. Theoretical Analysis

This section is concerned with the transient radiation field of

an infinite antenna excited by a step-function over a finite source gap.

We begin with the equation for the radiation field of a similar antenna

excited by a step-function electric field of magnitude E. over an

infinitesimal gap of width d , which is given by Ref. (1) as

/

EO?J m ~-gq Csc e
10(E) * U(q + sine) .

‘EO = 2sin0 (1)
o Ko2(~) + ~2102(~)

Note that in this equation, q = (ct - r)/a where a is the radius of the

antenna and r is the distance from the antenna to the observer. 6 is the

angle of observation and I and K.. are modified Bessel functions. This
o

note considers only the radiated fields at the far field observer. Figure 1—

shows the geometry of the problem under consideration.

Assuming-that in the finite gap region there are an infinite

number of infinitesimal gaps, the radiation field generated by the entire

finite gap can be

the finite source

can be assumed:

obtained by integrating the results of the delta gap over

region. From Figure 1, it is seen that the following

1. e=eo

2. r-r. except for the r in the exponential

3. r= Jro2+z2- 2rozcos0~ro -zcos @for

the exponential r.

4. E. ~ V. / L (for assumed uniform field distribution)

(_
-.
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Figure 1. Infinite Antenna With a Finite Gap
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Integrating Equation (1) over the gap with the above assumptions

gives

rE
e

V.

-E(ct-ro+zcose
A/2 ~ ) Csc e

1

H

a
dz .e 10(~) d:= -. ~A~ino

Ko2(~) + T2102 (~) F

-A/2 o

(

ct-ro+zcose
. . u

)

+-sin 6
a

(2)

et-rEquation (2) can be simplified by defining T = ~ 0, and p = ( T +—————z Cc)s @
)a

Csc e . Equation (2) then becomes

A/2 a
rE

11

e-<P1 (/)
o 1 0 d$—= dz — U(psin6+sin6) (3)v

2Asin8
o

A/2 0
K:(&) +7f2102($) f

/

m

‘~pIo (~)
Let F(p) =

e

o Ko2(~) +-~2102(~)

equation (3) gives

\

A/2
‘Ee .
F & ‘zo

This equation defines

a source gap of finite

‘A/2

d~
T’

and substituting in

the far field radiation from the infinite antenna with

width, A , and a uniform field distribution.

F(p) U (p sin 6 + sin 6). (4)

Behavior of rE/Vn for 8= r/2:

When 9 = 7d2, the far field observer sees the contributions

from all of the infinitesimal gaps simultaneously, which leads to the

(..-–
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conclusion that for @= 7r/2, the result for the finite gap is similar to that

for the infinitesimal gap. That is, the radiated field is infinite in magnitude

at the first instant the observer sees it and it then diminishes as time goes

on.

To see this effect, let 0-+~/2. Then U (p sint? + sine ) ~U (~+ sine).

By assumption (2), U (7+ sin 6 ) =U (q + sine ). AIso, F (P) =
z cos e

F (~+ a ) -F ( T) = F (’~). Equation (4) becomes

A/2
(5)

rE
lim Q =

F(T)

/
dz U (q + sinO ) = 21sti0 F(T) U(q+sin O},

O-+TJ2 ‘o 2 A sine
- A12

Also note that F
( ct-ro)= F(c’-r:zcos6)+ F(ct:r)=F’q)as

0-’7r/2. Thus, as e~pected,

‘Ee _ 1Zim —-— F (q) U (q + 1),
&wr/2 ‘o 2

Since the equation for 0” TT/2 in the finite gap case the same as

in the infinitesimal gap, it can be concluded that the early and late time

asymptotic forms are also identical to those of the infinitesimal gap.

Early Time Behavior of rE /Vn:

(6)

Since the integration of equation (1) is over a finite gap region, the

early time behavior of that equation must be considered. The asymptotic

early time form of equation (1) is given asl

(7)

-6-



Using the earlier assumptions, and integrating over the finite source

region, this becomes

A/2

.=rEe _ 1 E
._= / +1- dzU(psin O+sin O).

V. 2 sint? ~
-Af2

(8)

It is obvious from equation (8), that a discontinuity exists at

p = -1, If one thinks of the integration as a window which moves along the

p-axis, as shown in Figure 2, one clearly- sees the discontinuity when

p = -1 is in the center of the winclow, As will be discussed more fully in

Section III, for p < -1, the step-function is not “turned on”. So when the

window straddles p = -1, the only section considered is -l< P< PI. The

discontinuity in this section can be handled by subtracting the asymptotic

form, equation (8) from F(p). Equation (4) becomes

Al 2
rE e 1

[/(
<Z-—= F(p) - –—

V. ~~ ) ‘z U(p sin 6 + sin 19)
2Asin6 T

-Aj2
(9)

vz-

/

A/2
+— dz U(p sin 0 + sin 6)

r & 1
-A/2

Equation (9) determines the radiated field for the antenna under consideration.

Using this form, one avoids the numerical trouble arising from the dis -

continuity at p = -1.
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Figure 2. Imaginary Window Scanning F(p)



Late Time Behavior:

The late time asymptotic form for the infinitesimal gap is given

byl

E06 1

‘Ef3 = 2 sin ~

T7

2(q+l) “
J?n –—

I’sin o

(lo)

Using the assumptions given earlier, the form for the finite gap is given by

A/2
rE

e 1—=
V. 2Asin6 /

-A/2
Zn;~*+l)\dz ● u ‘+ + ‘ho)” ’11)

ct=ro
But — = T and equation (11) becomes

a

rE
e 1

V. ‘2 Asine

A[2

-A/2

(et-r +zcOse
o

*

‘z U
a

(12)

)
+ sin @

which reduces to

rE
6

‘= “ ‘* ‘(et-ro:zcose ‘sine)” ’13)

v 2 sin(?
o
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HI. Numerical Techniques

Atime-saving technique was used in the evaluation of F(p) -—
al :+”

A table was set up such that f(p) = F(p) - ~
F“

f(p) was calculated

at evenly spaced values of p denoted by pn with pl =-l+E. Since f(p) is a

smooth function, a linear interpolation was used to arrive at a point x, where

pn<x<pn+l. Thus the function F(p) need not be calculated for every set

of gap sizes and angles.

In calculating F(p),

be called G(g), in Sensor

the

and

code developed for F(g), which in this note will

Simulation Note 110 was used with a slight change.

Where the G(E) code was used to calculate

/

G(g) =
m e-y(~ - l) Io(y)

*,

2“ 2(y) +K02(Y)0710 Y

the expression

/

~ e-y(p}Io (y)
F(p) =

dy
A Tmz Io2(y) + K. (y)

o

(14)

(15)

was needed. So a slight change was effected where ~ = p + 1 and thus the

code evaluates

/

m
e

-Y(HIO (y)

dy
F(p) =G(~)=

-Y
T 210(y) + K02(Y)

o

By substituting f(p) into equation ( 9), this becomes

[/

A/2
rE

e 1—= f(p) dz U (p sin 0 + sin 6)
V. 2 Asin6

-h/2

c

/

A/2
+—

*
dz U (p sin 6’ + sin 0)

T

-A/2

(16)

(17)
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With

equation (7)

It can

(jZ= “;~;neo dp

PI’ (T++ Cos e) Csc e.

p2= (T._&
2a

Cos (9) Csc e

becomes

PIrE
e a—=

V. 2Acos@
[/

f(p) dp U(p sin O + sin 6)

P2

/

PI
~fl

dp U(p sin @ + sin 6)7 Jp:l 1 (18)

P2

easily be seen at this point that the field is symmetric

around o = 90° . For 90° < 9 < 180° it is noted that

PI’ (7+* Cos e) Csc 6 =(7 -*lcosel)csce
(19)

P2= (T-& cose)csce= (T+* j Cos el) Csc e

This causes the value of the integral to be negative. But the constant,

* Cos e, is negative and so the result is the same for 90° + x as for

90° - x. However, a treatment of the step-function must include the

ability to handle PI and P2 properly. In other words, the code must

integrate from the lesser to the greater and not blindly from P2 or Pi.
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At this point, a more detailed

be given for 0°< 13<90°. It is noted

p .-1. By defining a variable, P3,

discussion of the step-function

that p sin 6’ + sin 0 = O implies

as the maximum of P2 and -1,

(P3 = max{P3, - 1} ), equation ( 18) is simplified as follows.

rE
!9

—=0
V.

for PI < -1

[/

PI PI
rE e a VZ-—=
V. 2ACOS$

f(p) dp + —
T

\ 1& dP .

P3 P3

should

that

(20)

It is important to note that for P3 or P1 equal -1 a close-ended quadrature

would result in a discontinuity. Therefore, an open- ended quadrature

should be used. PI

Now, let I =
/
P3

result is

I=

Using this, equation ( 18)

&- dp and calculate I analytically. The

2(J=Y- - J==).
can be further simplified as

(21)

[/

PI
rE

e a—=
V. 2ACOS6 f(p) dp + 1‘y-(J’---J=).(2.2)

P3

The results given in this note were obtained by programming equation

(22). The window technique was used to scan along the F(p) curve between

the limits of integration within the turned on step-function. This technique

combined with the treatment of the singularity and an open-ended quadrature

will generate no numerical difficulties and will result in a fast running code.

The tota~ CP time on the CDC 6600 at Kirtland AFB was approximately

2 minutes for 28 combinations of gap size and angles.
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IV. An Alternate Approach

Inste-ad of obtaining the solution to the problem in question by i:nte=

grating the function F(p) over the finite source gap, it has been pointed out

by Baum that the response for any gap size can be obtained from the

;esponse of an antenna with a semi-infinite-gap as shown in Figure

The eauation for the radiated field from this equation is given by

3.

rE z CO”
‘$PI (<)0

~ = j ;lni..
M

e
dz o d<

— U (psin6+sintl ) (23)
K02(L) i- 7r2102(&) t

-w o

where E
tan

is the tangential electric

semi-infinite gap. Using the change

becomes

rE
e

E
tan

PI

field specified on the surface of the

in variables described in Section II, this

1
—

2 sine
J

F(p) dp U (p sin 6 + sine )

-03

(24)

z Cos 0 \
/

\
where PI= 7 +

a )
. Csc

Thus

rE
e—= o

E
when_ r s -1

tan

and

rE e 1
Etan = 2sin6

PI

\

F(p) dp when 7 >-1.

(25)

(’.’.
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Figure 3. Infinite Antenna with Semi- Infinite Gap
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rE.
Using equation 25, one can set up a table of -–~

‘tan
for specific 91s

and time, This was done for several angles and the results are shown in

graphic form in Figures 24 to 26.

Assuming the table has been created, the-results for a finite gap can

be obtained by two simple time shifts and a subtraction. Let TS ( 6, t) be

the function represented in the table. For a finite gap, A , the result is

given by

rE
8

E = TS(8, t+ A/2cos O)- TS (8, t- A/2cos 6). (26)
tan

Note that for a finite gap Etan =.Vo/A and equation (26) becomes

rE
0 1—= —

V. A (
TS(O, t+ A/2cos 6)- TS (O, t- A/2cos O))

Results using this method were the same as those obtained using the

previous method,

(L
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V. Numerical Results

Using the code developed from Section 11 and III, results were ob-

tained for the radiation field response for a finite gap antenna, It was

noted that the wave first reached the far field observation point when

PI > -1; in other words, when

r= A-sin 6 - -j-- Icos e , (27)

This value of ~ was called 79 and a new variable for time, T, is defined

as

T.T+T
6“

(28)

The variable a was always set to 1 since results were desired for A/a.

Also, all of the results in this note are iven
s

ized with respect to sin d, i. e. , sin ‘d
V. “

given in Figures 4 through 19 of this quantity

for a radiation field normal-

Parameter studies are

with regard to T.

The radiation fields for various angles, 6 for particular A/a’s, are
26

presented in Figures 4 through 9 with ~ as a parameter, It is noted

that as the angle increases, the peak value increases, but the peak occurs

earlier in time,

Figures 10 through 19 are graphs of the far field for a particular 6

and with A/a as a parameter, Again, a generalization of the results can

be made. As A/a increases, the peak occurs later in time, but the peak

value decreases. It was noted that the peak occurred at

T=(A/a)cos6. (29)

Using this as the peak time, calculations were done to create the graph

in Figure 20. This graph illustrates the behavior of the peak for various

A/a’s with respect to 0.

It should also be noted that after the peak occurs, the behavior is

similar to the behavior of an infinitesimal gap as described in Sensor and

Simulation Note 73.
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Comparison graphs of the early time asymptotic form and actual.

results are given in Figure 21, A summary curve of the time when the

early time asymptotic form, given by equation (6), is within 17’o of the actual

result versus gap size is given in Figure 22.

The graphs of the late time asymptotic forms are given in Figure

23, It should be noted that agreement between the asymptotic form and

the actual result is within the same accuracy range as those given for the

infinitesimal gap.
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