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Abstract

The radiated electric field is calculated for an infinite cylindrical antenna
‘ driven by a step-function voltage applied across a finite gap. Plots of the

time history of the radiated field for various gap sizes and observation

angles are presented, and both the early and late time asymptotic fields

are investigated.




I. Introduction

Much effort has been expended previously to predict the radiation
field for a cylindrical antenna designed to simulate the electromagnetic
pulse due to a nuclear explosion. 1,2 Results have been obtained for
the infinite cylindrical antenna driven by a step-function voltage applied
across an infinitesimal gap. In this note, an attempt is made to develop
a closer approximation to the real antenna by assuming a finite gap infinite
antenna. The gap is excited by an electric field which is a step-function of
time and is uniform over the gap.

In Section II, an analysis of the problem is given with a detailed
study of the antenna described above. Section III is concerned with the
numerical techniques used in calculating the results described in Section
V. In addition, an alternate method for treating this problem is described

in Section IV.



II. Theoretical Analysis

This section is concerned with the transient radiation field of
an infinite antenna excited by a step-function over a finite source gap.
We begih with the equation for fhe radiation fiéld of a similar antenna
excited by a step-function electric field of magnitude EO over an

infinitesimal gap of width é, which is given by Ref, (1) as

Eyd / e84 C5C O )y a

rEg = 5o 525 F U(g + sing) , (1)

K 2(E) + 7152 (E) .

Note that in this equation, g = (ct - r)/a where a is the radius of the
antenna and r is the distance from the antenna to the observer., 8 is the ”
angle of observation and Z[O and K.O are modified Bessel functions, This
note considers only the radiated fields at the far field observer. Figure 1
shows the geometry of the problem under consideration,

Assuming that in the finite gap region there are an infinite
number of infinitesimal gaps, the radiation field generated by the entire
finite gap can be obtained by integrating the results of the delta gap over
the finite source region. From Figure 1, it is seen that the following
can be assumed:

1. 6:90

2. r ~r, except for the r in the exponential

i

3. r /roz + 22 - 2ryz cos 8 = ro - z cos 6 for
the exponential r.

4, EO——DVO/A (for assumed uniform field distribution)

5, 6 e———p dz,
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Figure 1. Infinite Antenna With a Finite Gap



Integrating Equation (1) over the gap with the above assumptions

gives

¢t - ro+ z cos@
oE —%’( )csc 6

; 6 = 1‘7: dz ® e & Io(€) 3 (2)
Vo 24 sind K02(5) + ”2102(5) £
(e}

ct - Te + 2z cos @
‘U +-sin 6

a

Equation (2) can be simplified by defining T = c_té—__ro , and p = (T +2=05 0

csc 6. Equation (2) then becomes

al2 © St
VO ~ 24sing dz K2(5)+7r21 2(4:)_5— U(psin 6 + sin6) (3)
A/2 0 [} fe) 5
o _gp
Ip (8)
Let F(p) = / e2 S i 5 %ﬁ , and substituting in o
5 K, (&) +-771 7(§)

equation (3) gives

‘ Al2
i’ 1 dz F(p) U (p sin 6 + sin 6) 4)
= Sin S .
7 5Alsing | b P t (
O
-A/2

This equation defines the far field radiation from the infinite antenna with

a source gap of finite width, 4 , and a uniform field distribution.

Behavior of rE/V, for 6= 7/2:

When 6=m/2, the far field observer sees the contributions

from all of the infinitesimal gaps simultaneously, which leads to the



conclusion that for 6=m/2, the result for the finite gap is similar to that
for the infinitesimal gap. That is, the radiated field is infinite in magnitude
at the first instant the observer sees it and it then diminishes as time goes
on.

To see this effect, let #-m/2, Then U (p sinf + sing ) U (T+ sinf).
By assumption (2), U (T +sin6) =U (q +siné ). Also, F (p) =

F (1—.;. _%’_S_e_) —F(T)=F (Ct -r‘o)’ Equation (4) becomes

. Al 2 (5)
. 6  F(T) . ! .
Lim 5 % SAsing / dz U(q+sm€)—2sir18 F(T)U (g + 8in ),
6=m2 o - 3/2

Also note thatF( ct —ro) = F (Ct _r+ZCOSG)_* F(Ct; r): F(qg) as
a a

@—m/2. Thus, as expected,

rk

Lim Ve = F (q) U (g + 1). (6)
-7/ 2 o

SV e

Since the equation for 6= 7/2 in the finite gap case the same as
in the infinitesimal gap, it can be concluded that the early and late time

asymptotic forms are also identical to those of the infinitesimal gap.

Early Time Behavior of rE/V:

Since the integration of equation (1) is over a finite gap region, the

early time behavior of that equation must be considered. The asymptotic

early time form of equation (1) is given as!

rE = Eoé \.../__2-_ _._]l...__
0 2 siné T \fgecschT 1

U (g +sing). (7)




Using the earlier assumptions, and integrating over the finite source

region, this becomes

al2

e V2 1 . .
7 Vs " 2sinfp T Vor1 dz U (p sin 6 + sin 6 ). (8)
- T -4)2

It is obvious from equation (8), that a discontinuity exists at -
p = -1, If one thinks of the integration as a window which moves along the
p-axis, as shown in Figure 2, one clearly sees the discontinuity when
p = -1 is in the center of the window, As will be discussed more fully in
Section III, for p < -1, the step-function is not 'turned on', So when the
window straddles p = ~1, the only section considered is -1 < p < Py The
discontinuity in this section can be handled by subtracting the asymptotic

form, equation (8) from F(p). Equation (4) becomes

rE al2 '\/_
R 2 1 . .
= F -2 +
Vo 24sing [/ ( (p) T /b +71) dz U(p sin @ + sin )
-A /2 -
Al2
+ vz 1~ dz U(psin @+ sin @)
T Jp+1
-4a/2

Equation (9) determines the radiated field for the antenna under consideration.
Using this form, one avoids the numerical trouble arising from the dis-

continuity at p = -1.



F(p)

Figure 2. Imaginary Window Scanning F(p)



Liate Time Behavior:

The late time aéymptotic' form for the infinitesimal gap is given
1
by

E, = ————'Eoé . - (10)
59 T 3 sin g In 2(gt1)\ - ‘
. I'sin 6

Using the assumptions given earlier, the form for the fiﬁite gap is given by

A2
rE ’
6 _ __1 f 1 dz - U (&0 + gin g (11)
VO 2Asind 2< ct—rQ+l> < a )
£n a
- A2 —_
I'siné

But E%% T and equation (11) becomes

a/2 (12)

rE6 1 1 ct—ro+z cos @ >
VT 2Asing f srrepy 2 0 2 *sing
o £n Y:
-4/2

which reduces to

rEg 1 1 ct - ro +z cosé :
V_ 2 sinf 2 (2T U < +sin @) (13)
[e] n -
: I'sin®



III. Numerical Techniques

Vo o1

A time-saving technique was used in the evaluation of F(p) - —

Vi 1 7 JpTT
A table was set up such that f(p) = F(p) - — =T f(p) was calculated

at evenly spaced values of p denoted by p, with py = -1+ €. Since f(p)isa

smooth function, a linear interpolation was used to arrive at a point x, where
Pn< x< p, +1. Thus the function F(p) need not be calculated for every set
of gap sizes and angles.
In calculating F(p), the code developed for F(§), which in this note will
be called G(£), in Sensor and Simulation Note 110 was used with a slight change.

Where the G(&) code was used to calculate

eyl - 1)
G (&) [ © oly) gy, (14)
o arzloz(y)+K02(y) y
the expression )
® el () d
F(p) = =
P [ 72120y + KAy ¥ (15)

(o]

was needed. So a slight change was effected where § = p + 1 and thus the

[es} e'Y(g"l)Io (y) dy
F(p) = G(E) [ - 5 = (16)
n Io(y) + KO (Y)

code evaluates

o

By substituting f(p) into equation (9), this becomes

al2

rE, 1 )
= f dz U(p sin 6 + sin 8
Vo 2Asing (p) dz P
-4/2
2
V2 al 1
—_— i + si 17
- T dz U (p sin 6 + sin 0) (17)
-al2
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With

_ asiné
dz = cos 6 dp

Pl =(7 +—A— cos ) csc @
2a

P2 =(7-—A? cos f) csc 6

4

equation (7) becomes

P1
rEe o
Vo = S3coss / f(p) dp U(p sin 6 + sin 6)
P2
P1
V2 1 . .
+ -————— dp U(p sin 8§ + sin 0) (18)
m Vp+1
P2

It can easily be seen at this point that the field is symmetric
around § = 90°, For 90° < § < 180° it is noted that
P1=('r+—=4—"- cos ) cch=('r-——A— | cos 6]) csc 6

2a 2a (19)

P2=(7'-"'2%— cos 6) cs09=(7+—2% | cos 6]) csc @

This causes the value of the integral to be negative. But the constant,
-2%— cos @, is negative and so the result is the same for 90° + x as for
90° - x, Howéver, a treatment of the step-function must include the
ability to handle P1 and P2 properly. In other words, the code must

integrate from the lesser to the greater and not blindly from P2 or P1.

=11~



At this point, a more detailed discussion of the step-function should
be given for 0°< 6< 90°. It is noted that p sin # + sin § = 0 implies that
p = -1. By defining a variable, P3, as the maximum of P2 and -1,

(P3 = max{P3, —1} ), equation (18) is simplified as follows.

rEe
7 =0 for P1 < -1
o
- P1 P1
r V32 1
Ve ) 2Aiose f(p) dp + — dpr . (20)
0 vp+ 1
P3 P3

It is important to note that for P3 or P1 equal -1 a close-ended quadrature

would result in a discontinuity., Therefore, an open-ended quadrature

should be used. P1
Now, let I = \/——%_—T— dp and calculate I analytically. The
p
P3
result is
r=2(VPi+1 - /P3+1). (21)

Using this, eqguation (18) can be further simplified as

P1
rE
vE
ve _ _ a / f(p)dp+_272_(/P1+1—JP3+l). (22)
O

2Acos@
P3

The results given in this note were obtained by programming equation
(22), The window technique was used to scan along the F(p) curve between
the limits of integration within the turned on step-function. This technique
combined with the treatment of the singularity and an open-ended quadrature
will generate no numerical difficulties and will result in a fast running code.
The total CP time on the CDC 6600 at Kirtland AFB was approximately

2 minutes for 28 combinations of gap size and angles.

=12~



IV. An Alternate Approach

Instead of obtaining the solution to the problem in question by inte=—
grating the function F(p) over the finite source gap, it has been pointed out
by Baum that the response for any gap size can be obtained from the
response of an antenna with a semi-infinite-gap as shown in Figure 3.

The eaquation for the radiated field from this equation is given by

“tp

- . e IO(E) s ' .

m - 2 Sig,e, dz 5 5 ; U (p sing+ sind ) (23)
tan Ko(£)+7rlo2(£),

1
8
O

where Etan is the tangential electric field specified on the surtface of the

semi-infinite gap. Using the change in variables described in Section II, this

becomes Pl
rEe 1
i Y f Flp) dp U (p sin 8 + sing ) (24)
tan
)
where Pl=<‘r + 2§6—> . csc
Thus
rE6
=0 _ when 7<-1
E
tan
and (25)
P1
rE6 1
i Y / F(p) dp when 7 >-1,
tan -
-0

-13-
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Figure 3.  Infinite Antenna with Semi~Infinite Gap
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rE

Using equation 25, one can set up a table of -= 8
Etan

and time. This was done for several angles and the results are shown in

for specific 8's

graphic form in Figures 24 to 26.
Assuming the table has been created, the results for a finite gap can
be obtained by two simple time shifts and a subtraction. Let TS (8, t) be

the function represented in the table. For a finite gap, 4, the result is

given by -

rE
= TS (9, t +48/2cos8)-TS(6, t-A8/2coss). (28)
tan

Note that for a finite gap E, _ =,,VO/A and equation (26) becomes

tan

7 = = <TS(6, t+ 4/2 cosre)-TS(e, t - A/2 cos 9))

Results using this method were the same as those obtained using the

previous method.

-15-



V. Numerical Results

Using the code developed from Section II and III, results were ob-
tained for the radiation field response for a finite gap antenna. It was
noted that the wave first reached the far field observation point when

Pi >-1; in other words, when

T=-ginf - —g— lcos Bl, (27}

This value of 7 was called Tg and a new variable for time, T, is defined

as

T:‘r+’rﬂ‘ {28)

The variable a was always set to 1 since results were desired for A4/a.

Also, all of the results in this note are J%:ivelrl for a radiation field normal-
"

Vo

given in Figures 4 through 19 of this guantity with regard to T,

Parameter studies are

ized with respect to sin 6§, i.e., sin

The radiation fields for various angles, 6 for particular 4/a's, are
presented in Figures 4 through 9 with _?i_ﬁ_ as a parameter. It is noted
that as the angle increases, the peak value increases, but the peak occurs
earlier in time.

Figures 10 through 19 are graphs of the far field for a particular 8
and with A/a as a parameter, Again, a generalization of the results can
be made, As A/a increases, the peak occurs later in time, but the peak

value decreases. It was noted that the peak occurred at
T =( Ala) cos 8. (29)

Using this as the peak time, calculations were done to create the graph
in Figure 20. This graph illustrates the behavior of the peak for various
A/a's with respect to 8.

It should also be noted that after the peak occurs,' the behavior is
similar to the behavior of an infinitesimal gap as described in Sensor and

Simulation Note 73,

-16-



Comparison graphs of the early time asymptotic form and actual
results are given in Figure 21. A summary curve of the time when the
early time asymptotic form, given by equation (6), is within 1% of the actual

result versus gap size is given in Figure 22.

The graphs of the late time asymptotic forms are given in Figure
23. It should be noted that agreement between the asymptotic form and
the actual result is within the same accuracy range as those given for the

infinitesimal gap.

C-17-
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Figure 5. Radiation Field for &/a = 10
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Figure 6. Radiation Field for Ala = 1.0

X

sin @
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Figure 2la. Radiation Fields (solid) and asymptotic forms for
early times (dotted) for 4A/a = .1 and two values of § .
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Figuré 721b. Radiation Fields (solid) and asymptotic forms for
early times (dotted) for Afa = 1,0 and two values of 6.,
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Figure 2lc. Radiation Field (solid) and asymptotic
form for early times (dotted) for afa = 10.
and two values of 6.

Figure 21d. Radiation Field (solid) and asymptotic form for
early time (dotted) for Afa = 100 and two values
of .
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Figure 22. Plots of the time T; when the early time asymptotic
value of the radiated field deviates from the actual
value by 1%, as a function of A/a.
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Figure 23b. Plots of the radiated field (solid} and the asymptotic
field (dotted) for Afa = 1.0 and two values of 8.
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Figure 23c. Plots of the late time radiated field (solid) and the asymptotic
fivld (dotted) for 4fa = 1@ and two values of 6.
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