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Abstract

The time behavior and frequency vari=tion are obtained o: the toral

current induced on a cylindrical post above a ground plane by a step-function

plane ~-ave traveling above the ground plene. The late time behavior of the

current is quite accurately determined b? ih~ resonant frequenc:~ and decay

time constant of the fundam~ntal mode of the post together with its associated

peak current. The resonant frequency, tke decay time constant and the field

enhancement factor, the latter quantity being defined as the razio of the

maximum induced, total charge to the late tiae induced total cha=ge on the

end caps of the post, ars calculated for various values of the ?ost-to-groucd

plate separation. The freque~cy variation znd time history of zhe totzl

charge induced on the ezd ca?s of the post are also graphed for several values

of the post-to-round plane separation.
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1. Introduction ‘“

.-
.

i I

This study is a continuation of previous studies
(1,2,3,4,5,6)

on the electro-

magnetic interaction of a parallel-plate simulator and a post inside it. In.a

previous note
(4)

we have studied in great detail the electrostatic interaction

of one post above a ground plane. Here, we will continue our investigation

into the response of the pose to a step-function incident plane wave traveling

above the ground plane. Particular attention will be paid to the effect of

the plate-to-post separation for one given value of the post’s diatmeter-to-

length ratio on the total current induced on the post. It is shown that the

late-time behavior of the current can be determined quiee accurately in terms ,,

of the resonant frequency and decay time constant of the fundamental mode of

the post together with its associated peak current amplitude. @other quantity

of interest is the total charge induced on each end cap of the post. Of
7

particular importance is the field enhancement factor, defined as the ratio

of the maximum induced total charge to the late-time induced total charge on

the end caps of the post, when the post is exposed to a step-fur.ction incident

wave.

In section 11 we derive an integral equation for the total current on

the post by applying Greenls theorem to axial symmetric bodies. This integral

equation is then solved numerically in section 111 by making use of numerical

quadrature formulas. The numerical results are presented in section IV in

graphical form for the variation of the post current (1) with frequency at

five different positions on the post and (2) along the post at resonant frequency.

For several post-co-plate separations we graph the time behavior of the total

current induced on the post at five different positions for a step-function

incident plane wave. In section IV we also tabulate the field enhancement
,-,, : factor and graph the frequency variation and time history of the total charge

.:
,... induced on the postts ends for several values of the post-to-place separation.
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II. Integral Equation for the Post Current

Following the procedure in reference 1 we have the following integral

equation for the $-symmetric part of the tangential component of the magnetic

field, H~(P,z), on the post

~

a

J

b

f(p,z)H$(p,z) + K@,z,p ’,d)H$(p’,d)P’dp’ -
0 dK2(p’z’a’z’)H@ (a’z’)dz’

-J
a

‘nc(p,z)xl(p,z,p ’,b)H$(p’,b)P’dp’ = H@ (1)

o

where

8

~
1./2,if (Ip-a) + lz-d~)(lp -al + \Z-bl)#O

f(p,z) =

(/34, if (lp-al+lz-dl)(lp -al+ \z-b\)=oj

K@,z,p’,z ’) =& [G(p,z,p ’,z’)],

K2(P,Z,P’,Z’) = -&jJG(P, z,p’, z’)]

and H~nc (P,z) is the incident field averaged with respect to ~. The Green’s

function, G(p,z,p’,z’), satisfies the

[

~2 ~ ~ ~ 22
—,

2
—-!—— +

ap
‘;G-P2 ~z2

for z > 0 and the boundary condition

aG_o
G– when

differential equation

1

6(o-q’) 6(Z - z’)k2G=- (2)
P

J

2=0.

From the theory of images it follows that G has the

ikR
2Tre+

ikR -

~[
G(p,z,p’,z’) =+ — R+

+~
R

‘0 -.

Following form

20S $d$ (3)

where
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%
R/~p2+p

,2
- Zpp’ Cos $ + (z t 2’)2].

For an incident harmonic plane wave given by

inc
g

ikx=. ~Hoe

we have

‘nc(p,z) = - iHoJl(kp),
‘4

(4)

Jl(x) being the Bessel function of the first kind and order one. In terms of

the current, I(p,z), defined by
\

equation (1) becomes

J

a

1

b
f(p,z)I(p,z) + PKI (P,z,p’,d)I(pt,d)dp’ - pK2(p,z,a,z ‘)I[a,z’)dz’

o d

-~

a

PK1(P,z,pl,b)I(p’,b)dpl = - 2mipJ1(kp),
o

(6)

In the next section-we will discuss the numerical solution of (6).
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III. Numerical Solution of the Integral Equation for the Current

The integrals on the left hand side of (6) can be approximated by the

following sums

~

a ‘1

PK1 (P,z,p ’,d)I(p’,d)dp’ s z z,p ,z.)I(p,,z,)w.,PK1(P) j g
o ‘j=l IJJ

(7)

D. = a[l + tj(N1)l/2) Zj = d, Wj = =j(N1)/2
J

b
~L

~

PK2(P>z,a,z’)I(a,z’)dz’ N ~ L(O>z>~j>zj)I(Pj >z:),
d j=Ml .:

‘j = a, z. = 2(j
J

- M1)A

J
a N

PK1(P,Z,P ‘,b)I(p’,b)dp’ w z pK1(p,z>pj,zj)I(pj,zj)wj >
0 j =&f3

(8)

(9)

‘j = a[l + Lj_M3 @j)l/2, z = b, W (N3)/2
j j

= arj-M3

In equations (7) and (9) we have made use of the Gaussian integ~ation formula.

The abscissas, &j(n), and weight factors, rj(n), in the Gaussian integration

formula using n sample points on the interval (-1,1) are given “oy
(6)

Pn[Cj(n)l = O

{
rj(n) = 2/ [1 - @P;(~j)12}

where Pn(~) is the Legendre polynomial of degree n. Dividing the cylindrical

surface into Nz zones (see figure 2) and assuming that the current is constant

on each zone we arrive at (8) where

5
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A= (b- d)/C2(N2 - 1)],

. I

A,

I

J

‘(p’z’pj ’zj) = -d pK2(p’z’pj’zj ‘V)dv’
j

.

{

A, MISjSM2-1
A. =
J 0,j=M2

/

\

O,j=Ml
6
j= A, M1+lsj<M2.

Moreover,

M2=N1+N2

Mn =Mq+l
J

N=

Approximating the left hand

equating the sum thus obtained to

(pL,zL) we can form the following

equation (6)

&

N1+N2+N3

side of (6) by the sums (7) through (9) and

the right hand side of (6) at N poin~s

system of algebraic equations for the integral

where

ffi= f(pL,zL)

For !2# j we hzve



/

[P(O ,p.,z. + Zi) + P(p ,p.,z - Zk)lwj,
RJJ ~Jj

l<j<Nl

A.

J

J
K= [Q(PL,Pj ,ZjLj

+ ZL +V) + Q(p ,~. ,Z. - 21 +v)]dv,
~JJ

Ml<j SM2
4
j

# -[P(QL,pj,zj + 21) + P(p ,p,,z. - zL)]wj,
LJJ

M3Sj SN

and

where

-1 I
7/2

P(p,p ’,g) = T p -3 ikR
;(1 - ikR)R e COS 2$d$ ,

0

~

Tr/2
Q(p,p’,<) ‘IT-lp (p ‘p’ COS 24)(1 -3 ikR

- ikR)R e d~ ,
0

b
R= (p2+p’2- 2pp’ Cos 2+ + /)2,

H= 2a2T-1 “2 A
ikRa

‘1
[(1 - ikRa)e -1 - k2R~/2]R-3 2sin ~d~dv,

00 a

-1

‘2
= A[2m(A2 + 4a2)+] K(2a(A2 + 4a2)-%] ,

(n/2
= .25 k2a2~-.5 + In(A/a) + (4/Tr)~

‘3
) 1

ln[l + (1 + 4a2A-2 sin23)%~sin2@d$ ,
0
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Ra = (V2 +4a2 sin2@)~

K(x) is the complete elliptic integral of the first kind

1
T/2

K(x) = (1 -x2 si.n2@)-%d$,
a

The system of equations (10) was solved numerically on an electronic

computer (CDC 6600) and the results of these calculations will be discussed

in the next section.
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IV. Numerical Results

A. The Induced Current on the Post

The system of equations (10), which approximates the integral equation

(6) for the induced post current, was solved numerically for a/h = .1 and

several values of dlh. Figures 3 through 7 are plots of the post current

with d/h as a parameter at different points on the cylindrical surface. A

normalized quac.tity,u, defined by

u= (z-d - h)/h

(see figure 2) has been used in the graphes of the normalized current, Il(u,k),

so that Il(u,k) = lI(a,z~/(hHo). From these curves we see that the resonant

frequency of the dominant mode decreases as the distance between the post and

the ground plane decreases. The variation with dl’nof the resonant frequency,

f~, of the dominant mode normalized with respect to its value, flm, for

d/h = ccis given in table 1 and figure 8. In figure 9 the magnitude of the

p-ostcurrent at resonant frequency is plotted versus the normalized position

u,

For a step-function incident plane wave with the magnetic field vector

H‘nc(x,t) = - ~HolJ[t- (x + a)/c]—

the time history of the normalized post current, il(u,t), is plotted in

figures 10 through 14 for u = -1, --.5,0, .5, 1 and with d/h as parameter,

where il(u,t) = i(u,t)/(hHo) and i(u,t) is the total post current. For late

times the induced post current can be described by means of the resonant

frequency, fl, and the time decay constant, Tl, of the dominant mode. These

two quantities, normalized with respect to their values for d/h = ~ are

graphed in figure 8 and tabulated in table 1.

B, The Induced Surface Charge on the Ends of the Post

To estimate the field s?rength near the ezds of the post we will calculate



the total charge induced on the end caps of the post. Integrating the

continuity equation

v 3CI ~
:K+rt= ‘—

where K is the surface current density and a is the surface charge density—

over each end cap of the post we immediately get

J
t

q(-l,t] = - i(-l,t’)dt’
o

I
t

q(l,t) = i(l,t’)dt’
o

where q(kl,t) is the total charge induced on the upper and lower end cap of

the post, respectively. In the frequency domain we have

Q(tl,k) = f(ick)-l I(tl,k),

where c is the velocity of light. Figures 15 and 16 i?regraphes of the frequency

variation of the normalized induced surface charge,

Ql(fl,k) = lQ(il,k)l/(coEoh2),

on the ends of the post and figures 17 and 18 display the time history of the

same quantities,

q~(tl,t) = q(~l,t)/(&oEoh2).

In table 2 we give the variation with d/h of

q~(il) = lim[Q(tI,k)l/(coEoh2),
k+()



+1) = \Q(tWm) &Eoh2q~(t0],

Cr(tl) = qr(O/qrm(O ,

Cm(tl) = q#m’qJtl)

where k
1
= 21rf1/c,t~ is the first zero crossing in the time-history curves

of the current, E. is the magnitude of the electric field of the incident

plane wave and a quantity with subscript ~ denotes the value of this quantity

for d/h = CO. The normalized quantities c~(tl), Cr(tl) and Cm(fl) are graphed

in figures 19 and 20. Notice that qr and ~ correspond to Cr/Cs and Cm/Cs in

reference 2, respectively, and that one can call qr the field enhancement

factor at the first resonant frequency and ~ the maximum enhancement factor.

Moreover, cs(fl) corresponds to Cs/Co in reference 3.
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Table 1. The resonant frequency and time decay constant of the dominant mode.

d/h koh ko/k c~I/h T1/TlmOm

o .65 .50 11.2 2.38

.02 .95 .73 5.6 1.19

.05 1.05 .81 4.5 .96

.10 1.10 .85 4.0 .85

.25 1.25 .96 3*5 .74

.50 1.30 1.00 3.2 .68

1.00 1.30 1.00 4.5 .98

2.00 1.30 1.00 4.9 1.04

5.00 1.30 1.00 4.8 1.02

10.00 1.30 1.00 4.7 1.00

m 1.30 1.00 4.7 1,00



Table 2. The induced surface charge on the ends of the post.

dfh qs(l) Cs(l) qs(-1) CJ-1) qr(l) Cr(l) qr(-l) Cr(-l) qJl) cm(l) qm(-l) C&l) tm

0 .390 1.36 -- --- 3.66 1.36 ‘- ‘- 1.91 1.27 ‘- ‘- 4.3

.02 .352 1.23 1.182 4.12 2.32 .86 2.85 1.06 1.39 .92 1.61 1.07 3.2

.05 .327 1.14 .651 2.27 2.17 .80 2.60 .96 1.39 .92 1.58 1.05 2.6

.10 .309 1.08 .441 1.54 2.08 .77 2.42 .90 1.40 .93 1.55 1.03 2.5

.25 .297 1.04 .330 1.15 2.07 .77 2.27 .84 1.45 .96 .1.50 .99 2.3

.50 .292 1.02 .301 1.05 2.20 .82 2.27 .84 1.48 .98 1.48 .98 2.3

1.00 .289 1.01 .291 1.01 2.61 .97 2.53 .94 1.49 .99 1.49 .98 2.3

2.00 .288 1.00 .288 1.00 2.79 1.03 2.77 1.03 1.50 .99 1.50 .99 2.3

5.00 .287 1.00 .287 1.00 2.70 1.00 2.71 1.01 1.51 1.00 1.51 1.00 2.3

10.00 .287 1.00 .287 1.00 2.70 1.00 2.70 1.00 1.51 1.00 1.51 1.00 2.3

co .287 1.00 .287 1.00 2.70 1.00 2.70 1.00 1.51 1.00 1.51 1.00 2.3
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Figure 1. Electromagnetic interaction of one cylindrical post and
a perfectly conducting plane CA) and electromagnetic
interaction of two cylindrical posts (B): tvo equivalent
situations,
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Figure 2. The zones a~d sample points used in the numerical
quadrature of the integral equation.
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Figure 19. The field enhancement factors at the upper end of the post.
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Figure 20. The field enhancement factors at the lower end of the post.
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