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Abstract

To determine how the early time behavior of a pulse radiated by an EMP antenna
depends on the geometry of that antenna, it is sufficient to concentrate on the high fre-
quency components of the spectrum and examine the manner in which each of the high
frequency waves emitted from the source is scattered by the geometrical features of
the antenna. In principal at least, this can be accomplished using the geometrical
theory of diffraction. A key requirement of this theory is a knowledge of the diffraction
matrix associated with any surface singularity present in the problem, and in order that
we may explore a variety of antenna configurations, the matrix is required for singu-
larities other than the wedge~type for which it is presently available.

A valid expression for the diffraction matrix for a discontinuity in curvature is
here derived. Using a model consisting of two parabolid cylinders of different latus
recta joined at the front, an asymptotic development of the surface field in the vicinity
of the join is first obtained, from which the elements of the complete diffraction matrix
are then obtained by integration. The results differ significantly from the physical
optics estimates, and some of the consequences of this are examined. The diffraction
matrix is cast in a form directly analogous to that for a wedge-type singularity, thereby
facilitating its incorporation within existing programs for analyzing the EMP problem,
but no explicit consideration of EMP antennas is here included.*-
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1. Introduction

A problem of some interest in EMP studies is the effect of the antenna
geometry on the temporal behavior of the field at times shortly after the onset
of the pulse. To achieve the rapid rise that is desirable, the feeding section of
the antenna is usually taken to be biconical, but since it is not practical that this
geometry persist to infinity, the most elementary model of an EMP antenna is a
circular cylinder with a biconical feed. The junction between each conical and
cylindrical section can now be the source of a diffracted field which, at any
point in space, will_change the character of the radiated pulse at those times when
both the direct and the diffracted contributions are present,

There are, of course, other possible transitions between sections which
are conical at the feed, but have finite diameter far away. It is not even neces-
sary that the generatdrs of either portion be straight lines, and since the nature of
the diffracted field is a function of the geometry, the choice of transition geometry
will affect the manner in which the pulse is perturbed. A geometry which is now of
interest to explore is one in which the antenna surface has no discontinuity in slope,
but has at most a discontinuity in curvature. It would appear that the removal of
any wedge-like surface discontinuity will reduce the diffracted field throughout
those portions of space which are directly illuminated by the feed, but no quantitative
estimate of this reduction is available at the moment.

The early time behavior of the radiated pulse is produced by the high fre-
quency components in the spectrum, and can be computed from a knowledge of the
high frequency CW solution. This method has been used by Sancer and Varvatsis
(1971) to analyze an antenna consisting of a bicone mated directly to the cylindrical
portions, and is clearly feasible only to the extent that it is possible to obtain a
high frequency solution of the required accuracy for the geometry in question.

When a metallic object is illuminated by an electromagnetic wave, a power-

ful method for estimating its high frequency scattering behavior is the geometrical
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theory of diffraction, originated by Keller (1962). The theory is basically an
extension of ray techniques to include the concept of diffracted rays which arise
from surface singularities of the body. The strength of each such ray contribution
to the scattering is proportional to a diffraction coefficient which is determined,

to the first order at least, by thé local surface gecometry at the point of diffraction,
In those cases where the diffraction coefficients are known, their expressions have
been obtained from exact solutions of selected canonical problems displaying the
geometry in question, and thus it is that the coefficients for an edge or wedge-like
singularity (slope discontinuity) are deduced from the solution of the two-dimensional
problem of scattering of a plane wave by a half-plane or wedge. In the problem
treated by Sancer and Varvatsis, the surface singularity was indeed wedge-like,
and the higher order contributions to the high frequency diffracted field could be
{and were) determined by GTD.

The diffraction coefficients are the key to the GTD method and one particular
but important case where they are not yet known is when the surface slope (first
derivative) is continuous, but the curvature (involving the second derivative) is
discontinuous. Their derivation for this geometrical feature is vital to an analysis
of the more general antenna configurations discussed above. It is also necessary
for an adequate treatment of scattering by bodies such as a cone-sphere or
hemispherically-cappéd cylinder, and in the absence of any exact canonical solution
from which to deduce the coefficients, it has been necessary to rely (see, for
example, Senior , 1965) on the crude estimates offered by physical optics.
Automatically, therefore, the polarization dependence has been suppressed (Knott
and Senior, 1971).

Although an exact canonical solution would be desirable, it is not, in fact,
essential to the determination of a diffraction coefficient, and an adeqﬁate des~-
cription of the surface field in a vicinity of the geometric feature can suffice. For

a discontinuity in curvature, we can obtain such a surface field description using



the model that was employed by Weston (1962, 1965) in studying the creeping
waves launched by the discontinuity. Weston considered only the case of a plane
wave incident with its magnetic vector parallel to the (line) discontinuity (H polari-
zation). This is treated in Section 3 and the initial part of the analysis follows
closely that which was given by Weston (1962), The analogous case of a plane wave
incident with its electric vector parallel to the discontinuity (E polarization) is
discussed in Section 4. The corresponding diffraction coefficients for H and E
polarized waves are derived in Sections 5 and 6 respectively, and the general
diffraction matrix is constructed in Section 7. The results differ from the phy-
sical optics estimates for almost all angles of incidence and diffraction, and some
of the consequences of these new and rigorous formulae are explored.

The form in which the diffraction matrix is expressed is directly analogous
to that for a discontinuity in slope, thereby facilitating the incorporation of our
results within a program such as that developed by Sancer and Varvatsis (1971)
for the bicone cylinder. However, the main focus of this present report is on the
determination of the diffraction matrix alone, and the application to the calculation
of the early time pulse behaviors for a variety of antenna geometries will be

treated in a subsequent report.

2, Preliminary Considerations

We consider a two-dimensional perfectly conducting surface consisting of
two half parabolic cylinders of different latus recta joined at the front. In terms
of the Cartesian coordinates (x, y, z ) with the z axis coincident with the join,

the surface is defined as:



X==-3ay, y>0, allz @
x=-éaly2, y<0, all z

so that the positive x axis is in the direction of the outward normal to the surface

at the join. For convenience we shall henceforth write (1) as

x:-%ay , all z (@)

where a = az( y>0), a= a, (y <0). Itis easily verified that the slope (first

derivative) of the surface is continuous at the join (it is infinite there) , but since

the radius of curvature is

3
pc(y>=-§<1+a2y2)/2 , (3)

the curvature is discontinuous at y =0 unless a9= 2, .

A plane electromagnetic wave is incident with its propagation vector lying
in the xy plane and making an angle o with the negative x axis, where *

T .
] | < 5 (see Fig. 1) If the wave has its magnetic vector in the z direction (H

polarization), we can write
e 2 e3'.k(--x cosa+ysina)
— > (4)

El_: 7 (Qsina:+§r‘cosa)e1k(-x cos @ +y sina) ,

>!]:n the derivation of the surface field about the join it is, in fact, necessary to
assume that 7/ 2- |@] is bounded away from zero to ensure that the shadow boundary
is sufficiently far removed from the z axis, but since the diffraction coefficients
(see Secs.5 and 6) remain finite as @ 3 X 7/2, our final results are valid even

for grazing incidence. This is vital for a treatment of the antenna problem.
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FIG. 1: Diffraction Coefficient Model



where Z = 1/Y is the intrinsic impedance of free space and a time factor e ot

has been assumed and suppressed. Due to the presence of the perfectly conducting
surface, a scattered field (E_s, _}_I_s) will be generated satisfying the boundary con-
dition

RA(E +E°) =0
at the surface, where f is a unit vector normal in the outwards direction. Our
task is to find the total (incident plus scattered) magnetic field at the surface,
with particular reference to a region in the immediate vicinity of the join.

Since the problem is two-dimensional (being independent of the coor-
dinate z ), it can be expressed as a scalar problem for the total magnetic field
compbnent, H 7~ W which is required to satisfy the Neumann boundary condition
(9u/dn) = 0 at the surface, with u=u  obeying the radiation condition, where
i_ eik(-x cos a+y sin a) - 5)
We now have a hard-body problem, and this is treated in Section 3.

If, on the other hand, the incident plane wave has its electric vector in

the z direction, then

i A ik(-xcosa+ysina
E =ze ¢ y )

’ (6)

E.i -y (}?sina“!-? 08 a)eik(-x cos o +ysina)

Our task is again to find the total (incident plus scattered) magnetic field at the sur-
face, and since the problem is two~dimensional, it can be expressed as a scalar

one for the total electric field component E,=u. This is required to satisfy the
Dirichlet boundary condition u=Q at the surface, with u-u  obeying the radiation
condition, where

> 3 - + ’ -
uo=E;=elk(xcosa y sin o) . 7)

The resulting soft-body problem is treated in Section 4.
8



3. H Polarization

3.1 The Integral Equation
Maue's integral equation for the field on an acoustically hard surface

is

_ 1 3G
u(P) = ZuO(P)+-§; f_a_l-l-Q u(Q) dSQ (8)
where eikR
with
R ={(x_-x )2+ Vor g~z )2 T2 - (10)
*{%p~%g) *UpYg tlpmig :

and because of the two-dimensional nature of the present problem, the z

integration can be carried out immediately using

0 SR W
f x5 dZQ= i7rHo (kr) (11)
-0
where 1/
2
r ={(xp-xQ) +(VP-yQ)2} 2, (12)

Thus, Eq.(8) reduces to

w(P =2, (P)+ f o ( Hgl)(kr)) a@ds (13)
Q

If we regard y as the variable of integration and denote it by t, then



1
- 1+322) f2 4 (14)

with t running from -m to o, where a = 2, (t>0), a= al(t < 0). Also

-1
ho? @+atd) araZd) 2 (15)
so that
-1
0 1 - -
'ETrTé == {(XQ-XP)+ at(yQ-yP)}(l + a2t2 ) 2
o =1
= % {- é Eitz-xp+§.t (t-yP) }(1 +§2t‘! ) f2
Hence
(1)
H, (kr)
%—- Hil)(kr)=- ‘;‘{at (t-y)- % (a 1;2-ay2 ) —
and the integral equation now takes the form
fos}
aly)= 2ug (-5 f a®) )(kr){at(t-y) -3 GtPay)) } S (16)
-0
with
Y
r —{(y-t) +5 (ay®-3 2) } 2 . (17

This is in agreement with the result obtained by Weston (1962; Eq. 9), and our

task is to find an asymptotic development of uly) for large k/ a, with particular

reference to a vicinity of the join (y = 0) .




It is easily verified (as Weston does) that u and 8u/ dy are continuous
aty = 0. 82‘~1/ dy2 is, however, discontinuous, and the limits from left and
right are infinite. These facts are evident from the asymptotic expansion,

3.2 Asymptotic Solution

If the incident field (5) were to impinge on the complete and uniform

parabolic surface

=-%ay2, ally, z

an asymptotic expansion of the surface field could be obtained by the Luneberg-

Kline method, and as shown in Appendix A, Eq. (A.22), we would then have

uly) = Uly, a) o X0 2) (18)
with

U(v,a)=z-£;-‘ (cos @ - aysina) > +0k2) | (19)

f(y,a)=ysina+% ay2 cos a . (20)

Though it is a relatively straightforward task to derive the actual term of order

k=2 in the expression for U(y,a), this proves to be unnecessary for our purposes.
Following Weston (1962), we now write the field on the conjoint surface

of Eq.(2) as the sum of two parts: that which would exist on that particular section

were the whole surface a continuation of it, plus a perturbation created by the join.

Thus,

u(y)=Uly, a)e 0 @ +216,2) olks@. ) 21)



where

lyl 1o
s(y,a) =f (1+ a2 72 Yy 4dar-r (22)
0

with U (y,a) and f(y,a) as given in Eqs. (19) and (20) respectively. The only
unknown quantity in (21) is I (y,a ), and since the discontinuity in U(y,a) is of
order k=1 at y=0, it is clear that I(y,a) must be O(k°) for small y.

If we now substitute the expression (21) for u(y) into the integral

equation (16) and, for convenience, write

Hgl)(kr)

Bt (tp) -5 (8t%-ay?) } =K (,y,2,3) (23)
we have

U (y,a) eikfw’ a) +§ Iy, a)eiks(y’ . 2u0®)

(s o]
ik eikf(t, a)

- f U(t,-a-.) K(t:y:a:-a.') dt

=0

®
-% f I, 8) eikS(t’a) K(t,y,a,8) dt

-0

10



which can be recast in the form
Uly, a)eikf(v’ 2, l%: Iy, a)eiks(y’ a)_, uo(y)

(0 0]
_ %{ f {U(t, aeikf(t: E)K(t, y, a, 3)-Ult, a_)eﬂd(t’ a)K(t, y.a, a) }dt

-0
0 Q0

X f U(t,a)eﬂd(t’a)x(t,y,a,a)dt-% f 1t DeX% Ve, y, o, Dat
-0 -

(24)

ikf(y,a)

But U(y,a)e is, by definition, the field on a single parabolic cylinder

formed by continuing that portion on which the observation point lies, and hence

0
vy, e Y20 -5 | v e ke y a0, (@9
-0
implying
© 2
Iy, ae!M502) Ik f D5 ry,0,00 - X g (26)
-0
where
[0 o]
Q- f U, D% ¢y 0 U, 0e X E Pkt g0 bat . @1

(0 0]

11



Let us now examine the quantity Q. Since the integrand is a known function
we could, in principle at least, evaluate the integral precisely, but for our purposes
an asymptotic evaluation will suffice. We take first the case y <0, Then a=a,

and since a = az(al) for t >0 (<0), as always, the integrand in (27) is identically
zero for t <0, so that

00

ikf(t, az) ikf(t, 31)
Q= f utt, az)e Kft,y, ay, az)-U(t, al)e Kft,y, 81’9‘1) dt
0
(28)

From Eq. (23), using the expression (17) for r,

2
a,t -ay
H{D k Jy-t]f1+ ;( a)l_
1 y-t 2 2
K,y 2, az)- 5 - az(v-t) -i-(al-az)y .
2
azt -ay
ly=tl 1+ 21
2(y-t)
Write
kt=¢ , <ky=¢

Clearly, ¢, ¢, > 0, and

12



2
2 2
§ -af
(1 1 39 a'lo}
H €+¢) |1+
. 1 o 4k2{ §+§o
K(t, y’ala)_?l'{ >
a_f -af
1 2 a] o)
(§+§O) 1+4—k-2- TTT
c,2

1

which also implies

Kit.y, 2, al)- 5 il)(§+§ )a1(§‘+~§’ ){l+0(k )}
Moreover,
Ult,a)=2+0 )= U, a)
and
eild(t, a2) - eif sina exp (i :Ti §2 cos @)
¥y o)
_ iKE, )

Hence, from Egs.(28) through (32),

o) 2

a.~a t
.21 if sine (1) _ -1 }
Q _k2 f e €+ )<§+§o —§+§ > {1+o(k )¢ d

0

13
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{az(C"'{O) Hara,)e }

- (1) -2
g5 H] €+ ){a (€4 )+ -2) oo Huo(k )} R

(30)

(31)

(32)



for y < 0, and by a simple shift of the variable of integration, this becomes

2

-a. PP i(¢-¢ )sina ¢
Q=a221f e ° an(s‘) (c- §—°> {1+O(k'l)}d§ (33)
k

¢

o
where

¢ =-ky>0.

For y > 0 we return to Eq.(27), and noting that now a=a;, we have

0 ikf(t, al) ikE(t, az)
Q= U, ggle Kt,y, 2, al)-U(t, az)e K,y, 2, a2) dt

-0

ikf(-t!, a
K(-t', y, 8, az) dt'
(34)

© ikf(-t!, a)
= U(=t', al)e K(~t',y, 8. al)-U(-t', a2)e

0

Fortunately it is not necessary to repeat the entire derivation that was carried

out for y < 0. If we now define

ktt ==kt = ¢, ky=§o

so that €, §’o> 0, the expression for K{(-~t', y, 2., al) follows immediately from

Eq.(29) on interchanging 2y and a Eq.(30) similarly yields K(-t', y, 89 a2) s

1
and whereas (31} applies directly, Eq. (32) shows

ikf(-t', a.)

- ikf(~t?,
. 2 _ gsine {1+O(k‘1)} .t (-t',a1)

Hence, fory> 0,

14



® 2

! -i¢sinay (1) So -1}
Q-=- % (§+§) §+§o- T {1+O(k Y} de

0

and by a simple shift in the variable of integration, this becomes

© 2
a -a i€ Jsina ¢S
i > 1 f e (l)(t) <§- 'T> {l+0(k‘l)} (35)
%
where now
¢ = ky> 0.

Eqgs. (33) and (34) can be combined into the following single expression:

Ao~ @ rie- ¢ )sine §2
Q=% Zk:l f e HO @) <§ -Z.‘l> {1+0(k'1)} & (30
%o
and with the upper (lower) sign for y> 0 < 0), and §0 =kly] .

Examination of (36) shows that we still have to treat the integral involving

I. This is a trivial matter to the order in k that we require. Using (29), we

have
fw I, E)eiks . E)K(t, v, a,a)dt
0 ©
iks ( )
1 ¢ ! (1)
--2:2 I (1—{ , az)e (§’+§ ) {a2(§’+§0)
0 2
+a=a,) = } {1+O(k’2)}d§
2 TR

= O(k~2) (37)

15



since I is O(k®). Similarly for the integral over the negative range of t, and hence

(03] 2
s i -ik{s(y, a)-ysina Fitsine (1 %o
Iy) == 5 (az-al)e } f e H () (K- T) d¢
gO
+ok™h (38)

with the upper (lower) sign as before and £ = klyl . This is in agreement with
Eq. (46) of Weston (1962).

The perturbation field I(y) is all that we require to specify the total
surface field u(y), and from Eq.(21), we have

¢
. Hlm(t)(c- -gﬂ)dr +Ok-2)} . (39)

This proves adequate for the determination of the @iifﬁ'action coefficient fo the
leading order in k.

3.3 Surface Field Behavior

Although Eq. (39) constitutes our main result for H polarization, it is of
interest to examine the behavior of the total surface field u(y) in the immediate

vicinity of the join, i.e. for § = kfyl <<1.

16



Consider

© 2
f *ilsina “’(g)(-’ig—) at = L, )=£2L (¢ ) (40)
g0
where
(o0]
L1<§)=f e F1tenay e ¢ ar (41)
(o]
gO
(s 0]
L&) f Tiieme (1)«:) , (42)
g
0

Since the integral expression for Ll(go) is convergent even for §0=0, we can write

§0
L, (€ )=L,0)- f e Fiosine Dy ¢ g
0
But
Q0

L,(0) = f g Filsine ‘”(t) ¢ dt
0

=secacz{li 77_(sinafcosaf+oz)} (43)
as shown in Appendix B (Eq. B.3). Moreover
(1)<§)---2—1+<1+ —log g)J (§)
® _pym s 2m
-2 D (2) Wm) + Y(m+1) (44)
27 m! (m+l)

m=o

17



(see Watson, 1948, p.62), so that

1@ -2 (I fogerro, gt . (45)

Hence
§0
oFilsine (1) 2i 2 .3
f € df = -= §o+ o (§o, §’0 log §O) R

0
giving

L1(§O)=sec3a {1 i; (sinacos a+a)} +-i—i ¢, 10 (!;’i, Eilog §o) . (46)

The treatment of the integral expression for L_j({,) is a little more complex

due to the failure of the integral to converge when €,=0. Let us therefore write

a

®

L.(¢ )= oFifsine (1)(§)+ af _ 2i o Filsina &

=170 ¢ T g2
9

N o

As evident from Eq. (45), the first integral now converges even for §'0= 0, implying

$o 0
_ Fifsinaf (1) ¢ 2i Fi¢sina d¢
L_I(fo)- o(1) -f e {Hl )+ < - ?f e =
0 4 ¢
0
But

%o
Fifsino (1) dag _
f e { (§)+ } 'g— =0 (fo, §010g §'o )
0

and from integration by parts

18




Fif sine

Tisina df _ 1 + *

f e e (g,0 Zisinalogf,) e
¢
)

®

+sin2af e+i§sina log € d¢
go

Since this last integral converges even for §0=0 , it is O(1), and we now have

%9 1 7i §o sina
= oo — + . .
L_l(fo) = ( gl i sinalogf ) e +0(1, Colog §o)

— (7 = isin alog¢ ) +0 (1, ¢, log ¢ ) . (47)

Hence, on substituting the expressions for Ll(go) and L_1<§o) into Eq. (40), we
obtain

© 2
- ¢
f o 71 $ sina Hil)(g) (§- -g,g) d¢ = secsa {1 x ?r (sinacosa+a )}
¢

(o}

4
=t

1IN

- 2 2 3 (
48)
o + sina§010g§o+0 (§o, §o log §0 ) .
It is evident that the integral and its first derivative with respect to CO are finite
at the join (§O =0 ), but the second derivative is infinite there. The same is there-
fore true of I(y).
To provide the analogous results for the total surface field u(y), it is

necessary to examine the leading term on the right hand side of Eq. (39) for small §o.

19



From Eq.(19), 5
5
ia = cosa

Uy, a)e 2k = 2= 1{3 (sec3a-§c2)cos a)+O(k~2)

=9 '12—k {(a2+31) i(az-al)} (secsa-§c2)cos &) +0®&k™?) (49)

where the upper (lower) sign again refersto y>0(<0) . Hence, to the first

two orders in k,

_ ikysine i 3 i 3 .
uly)=e 2 5 (a2+a.l)sec a+1rk (az al)sec a (sinacosa +q)

2 i 2 2.3
F = (a2-al)§o- = (az-al)sin a§olog le+ O(§°, §0 log §O)} {50}
and since

%
+—l'{"y

it is apparent that u(y) is continuous at y=0,i.e.
w@+)=u(0-) (51)
as is u'{y) , i.e.

u'(0+)=u (0-) , (52)
but u'*(y) is infinite at y = 0, unless @ = 0. Indeed
2i ;
u'"(0)= - 2k (az-al)sin o im loglyl,
T y-> 0
and thus a discontinuity in curvature is, for this polarization, characterized by

a surface field 'singularity’ of the form y2 logly! .

20



4, E Polarization

We now turn to the case in which the incident field is the E polarized plane
wave of Eq.(6). As previously remarked, the problem of determining the surface

field can be expressed as a soft body one.

4.1 The Integral Equation

Maue's integral equation for an acoustically soft surface is

2 9 1 0 oG
u(P): 2 — 11 (P)-—_ c— u(Q) —dS (53)
)

anp 8nP 27 anQ anP Q

where G is as defined in Eq. (9), and since the two-dimensional nature of the
problem again enables us to carry out the z integration directly, Eq. (53)

can be reduced to

9 o 0 i 9 9 (1)
8_% u(P)-Z -a—r;;uo(P)- §fanQ\1(Q) anP HO (kr) dSQ (54)

where r is as given in Eq. (12).
With the variable of integration t defined as before, Eqs.(14) and (15)
again apply. Also,

-1
ﬁP=(§+ay§)(l+a2t2) /2

and hence

(85

Q

r _1 2.2 -]7/2
o =z {(xp-xQ ) +ay @P-yQ)}(1+a <) ,

21



giving

on

a
—PH‘?) (k)= - i—f{ay(y-t) + %

The integral equation is now

[2.0]

) 3 ik 9
s, 2P =2 5w, (P 5 f 5

4 P
-

and if we define

1
{kr)
(3 tz-ayz)} H‘I

(1+a2y2) 72

Q

1
1+a2y2

(1-&-3,2372)]7/2 % w(P) = v (y),

P
o
(1+a12y2)]7/2 8TP uo(P) = vo(y) ,
so that
oo 1
(1+3212)72 2 wQ =v ),
then Q

@

u(Q) {ay (Y-t)'*'% (a tz-ayz)

dt
r

}

H{ID (kr)

v =2y @) - % f VOR (kr) {ay(t-y)-% (Etz-ayz)} X

-

cf Eq.(16), where r is as given in Eq. (17).

Egs. (7) and (57) imply

vo(y)= ~ik(cos a-ay sina)e

il«:y(sincx-%—%l y cosc)

22

(55)

(56)

(57)

(58)

(59)

For future reference we note that

(60)




)
4,2 Asymptotic Solution

We again postulate a representation of the field v(y) as the sum of that

which would exist on a complete parabolic cylinder and a perturbation term

originating at the discontinuity, viz.

viy) =-ik {V(y, RN é 3, e (61)

The first term on the right hand side is that associated with a complete cylinder,
and as shown in Appendix A, Eq. (A. 15),

V(y, a)=(cos a=ay sin a){z +ik?- (cos a-ay ssinczr)-3 + O(k™2) } , (62)
- 1.2
f(y,a)-ysina+§ay cos a . (63)

The second term in (61) is that due to the join. Since

Iyl y
s(y,a)=f (1+a2 72) 2 g7 (64)
0

the only unknown quantity is J(y,a), and this is evidently O(k°) for small y.
If we now substitute the expression (61) for v(y) into the integral equation

(59) and, for convenience, write

1

H. (kr)

{ay(t-y)-% (itz-ayz)} =K t,y,a,a), (65)
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we obtain

ikf(y, iks(y, a)

kv (g, e D 10 ade -2y @)

o

s Ve, 5)eikf(t,ﬁ) ~

K(,y,a,3) dt

3 a)em
- 36,3063 Fo o a5yt

which can be recast in the form

-ik V(y, a) eﬂ‘:f(y ' a)-iJ {y, a)eiks(y’

®
2 . -
k - ~
-3 f vit, a)elkf(t’ 2) E(t, y,a,a) =V, a)eikf(t’ a) Klt,y,a,a))dt

-

a)_
-2v0(y)

(v 0]

_ Eg ikf(t, a)e

v{t, a)e K (t,y,a,8)dt - k f I, E)eiks(t’ 2 E(t,y, a,a)dt.

3
-0 -0
(66)

But -ikV(y,a)eka(Y’a) is, by definition, the solution for a single parabolic cylinder

formed by continuing the portion on which the observation point lies. Hence

: 2 % e N
-ikV{y, a)elkfw’ a‘)=2v0(y)-- 152- f vit, a)elkf(t’ a) Kt,y,a,3) dt (67)
-0
implying
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Iy, ae®0 0B X g6 0 BB Ry, mar - 11‘2-2 g
~00
where
(e 0]
Q- f { v, Do AR v 0 9-v, 206X VR0t v, o, a)}dt . (69
=00

-~y
The asymptotic evaluation of Q is directly analogous to that for the quantity
Q given in Section 3.2, Iy <0, then

U ikttt ag) ikilt, ay)
Q =f Vit ayle K, Y8y, az) -Vi(t, al)e K(t,y,al, a.l) dt
0

v (70)
and writing

kt =¢>0, -ky=go>o

we have

2
Ktt,y, 8, 80" = = HO@E+E ){a1<§+§ MHaga) e }{ 1+0(k'2)} ,

~ _ (1) -2
K(t,y,al, ”1)' 2k ) (€ +¢ )a1(§+§){1+o(k )}
Also

Vit, az) = 2 cos @ + O(k™1)

= Vit, al)

and since
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ikf(t,aq) . ikf(t,a,)
. 2 =ei§sma {1+O(k 1)} 1

it follows that, for y<0,
o)
a.~a

~_ 271 i¢sina (1) ¢2 -1 }
Q=- ) cos af e H, (§+§o)§+§o {1+0(k )} dS
0

which, by a change of variable of integration, becomes

~ 25 fm i(¢-¢ )Sina'
Q=- cos e
K2
$o

& i {1+o(k"1)} @ (71

where §O = «ky > 0.

The procedure for y > 0 is rather similar. The integration in the ex~

pression for Q now extends from t=-oo tot =0, and writing

t=-¢ <0, ky=¢ >0,

the expression can be reduced to

~ 258 hd -1(§’ ¢ )sma (1) €- §)
Q = —5-cosa e () —— { 1+0(k=1) } d¢ . (72)

$

(o]

Equations (71) and (72) can be combined into the single result

0
~ ara Fi(¢-¢ )sina - § )
Q=12 2 21 cos af e © (D {1-!-0(1{'1)} d¢  (73)
e

o
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with the upper (lower) sign for y> 0 (<0 ), and §° =kjyl.
Examination of Eq. (68) shows that we still have to estimate the
integral involving J(t,d). However, it is trivial to prove that

s 0]
76,30 P % v a.3) at = 02

~®
using the fact that J(t,3) = O(k®), and hence

® (g-¢ )2
Jy) = % -21- (az-al)cosoz o ik sy a)-y sina}j‘ e H{sina Hl(l)(’;) O d¢ + oYy,
%o

g
(74)
The perturbation field J(y) is all that is required to specify the total field
quantity v(y), and from Eq. (61) we now have

v(y)= -ikelkysma{V(y, ae 2k I 12—1-{ (az-al) cosa

(0 0]

2
- (€-¢ )
) f ot 18 sina H(ll)@) 2 d¢+o(k~2) : (75)
g

§

(o)

This is our main result for E polarization, and the form is strikingly similar
to that given in Eq. (39).

4.3 Surface Field Behavior

It is convenient to proceed as we did in the case of H polarization, and
to examine the behavior of the surface field in the immediate vicinity of the

join, i.e. for §° << 1.
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Consider

® -5 )2
f o Hoa Dy 0 ar - 120 1 P L ) (76)
g0
“;here‘
- m -
L, (€ )= f g FHESIn (1)(§)§d§ (77)
L @ )= f +1§smaH(1)(§) de | (79)
‘. |
Ly = e ple & % (79)
§0

Since the expansions of L ({_) and L_ 1{8,) have already been determined (see
Eqgs. (43) and (47) ), it is only necessary to examine L,(€), and though the

integral does not converge when { =0, we have

(s

L (€)= - f e HEsma x4y gt
S
‘ o) ©
.. E.'[. 114 sinch()I)(g)] =i sin Qf + i¢sina (1)@) at
gC)' §0
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on integrating by parts. This new integral is convergent when ¢ °=0 and writing

So

® 0
0

£ 0

(o]

we can use Eq. (B.2) of Appendix B to show

®
il sino
f e+ m(!)d{‘seca(l-z ).
0

(s

Moreover,
2m

™)
HO ()= {1+2 1og§}.: ©-2 E Y@+
(m")

m=o

¢

-1+ 2 (a10g])+06%, P02 ¢)

and therefore

o
Titsina (1) _
f e H0 (€) d¢ -O(S‘o,!o log §o).
0

Hence

g,
L(§) 1+ (7+-—) il ig;)tana+0(§o,§olog§o)

and on inserting the results of Eqgs. (43), (47) and (80) into Eq. (76), we find
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(s 0]

€=t ) |
f o Filsina (I)«) de- secSa {1 + 2 (sinc cosa +a )}
¢

o]

)

21y +q 4 20 3
=2¢ {1+ - +i( X 1+ )tana-!- log ¢ }+0(§ § Iogfo) 81)

It is evident that the integral is finite at the join (§0=0), but that its first derivative
with respect to §_ is infinite there. The same is therefore trué of J(y).

To provide the analogous results for the total field viy), it is necessary to
examine the leading term on the right hand side of Eq. (75) for small { .. From
Eq. (62), |

2
$

0
ia = cosa
2k

Viy,a)e = 2 cos cz/+-1ri=l (seczaf +21§’osina/+ §c2)cosza)+‘0(k‘2)

'_ +(a o 2 .
2cosa+ =— 2k {(az-i-al)— (at2 al)} (sec”a + 2i Cosmaf

+ 2:3 cos’a) +0(2)  (82)

where the upper (lower) sign again refers to y> 0 (<0 ). Hence, to the first

two orders in k,

viy)= - ikeikysina

2cosa+ = o (az-al)sec o= = (a.z—al)seczav

+ (sinacosa+a) 3 7?21'<(a2'al)°°sa €o108 §, 1O, §§10g g) } .

(83)
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It is obvious that v(y) is continuous at y = 0, i.e.

vo+)=v(0-), (84)

but v'(y) is infinite at y = O unless || = 79, which values have been

excluded. In fact, since

-§0_
+—§"‘Y:

we have
2ik Ilim
1 S
v1(0) - (agay) cos @ 40 log lyl,
so that a discontinuity in curvature is, for this polarization, characterized by
a field 'singularity' of the form y log{y| . This should be compared with the

behavior y2logly| found for H polarization.

5. Diffraction Coefficient for H Polarization

5.1 General Expression

For a two dimensional geometry such as that shown in Fig. 1, the scat-

tered magnetic field is

HO@)=3 f H () Bk 2=’ |)as (85)
S

denotes the point of observation, and

£=x£+y3'r‘

31



represents a variable point of integration .
IR =[x-r'| , then

o x-x! y=y! b} .y O
—— = —-—+ —— —— - + t——
on Gx Ry R )8R~ (ny cos 6 +n, sin) -

at large distances, where x' =r' cos § and y'=r'sin6. Hence

5 () 7 dkR-i7
e H0 (kR)~ -ik(nxcos ] -i-ny sin 6) ‘/% e
. 5 ket Dkt p
~-ik(nxcos ] +ny sin 6) /w—kr“ e
implying that in the far zone
@
_ et T
'HZ(Er).; 7%1‘! e1kr K g f(nx cos 9+nysiné?)Hz(g)e-ik%t "Lds.
S
In the notation of Keller (1962), the diffraction coefficient DH for H polarization
is
ﬁ.—'ue-ikr' Hz(r_t) ,
so that
T
2! 77k ik P oy
D= \/;-; e i f (nx cos 6+nysin G)Hz(g)e =ds,

S

but it proves more convenient to work with the far field amplitude P as defined

by Bowman et al (1970}, namely

P =

kR,
- f (nx cos (9-f-ny sinG)Hz(g) e ikt x ds, (86)

S .
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in terms of which

2 4
=2 _ 7
DH e PH (87)

For the specific geometry of Fig. 1,

-2
n= (:?-i-ay:?) {1 -l-(ay)z}

e 2] Y2
ds = {1 +ay) } dy ,
so that
/ . y2
K -iky sinf +ika ] cosf
PH= 1 f (cos O +aysin6) k(y)e dy, (88)
-1

where we have introduced the symbol uly) of Section 3 to denote the surface

field component H, (r), and where the integration has been limited to some region
about the join because our concern is only with the scattering that originates
there. If we now introduce a new variable of integration, t = ky, the range of
integration extends from t = -k£ to t = kf , and since k is, by assumption, large,

the limits can be replaced by Yo . Hence

2
. @© . . -itsine+ia-g-&cose
PH=Z f (cose-*-E at sin6) u(]-;) e dt , (89)
=00

and this is the expression that must be evaluated.

5.2 Physical Optics
According to the physical optics approximation, the surface field

throughout the illuminated region is

iky(sina+ g y cos @)
u(v) = 2 e )
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and the restriction (later relaxed) that g - |@ ] is bounded away from zero is
sufficient to ensure that a region about the join is directly illuminated. The

corresponding value of P _ is therefore

H
©
p.o._1 it(sin @~sin 6) 1 ..
PH =3 e (cosB-&-E at sin 6)
- exp ia-é-!-{(cos a+cosB) p dt , (90)

which is equivalent to retaining only the leading term in Uy, a) in the general
expression (39) for u(y).

If we are to identify the join contribution, it is necessary that the specular
point be away from the join, i.e. lahel bounded away from zero, and this res-

triction applies throughout the subsequent analysis. With
p=sina-s8in @, (91)

Eq. (90) becomes

o._1 ” ipt a it2
PPO = L coso e 1+4= {t tané+ — (cos a+cos 9)}+0(k"2) at .
H 2 k 2
-0

But
®
i +
f tnelptdt = (E)n 1 n'!
P
0
and ) (92)
0
i i n+l
f tnelptdt T - (3 )n n!
p
-0
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for n> 0. Hence

®
f eipt dt=0,
-®
and since a = a, t>0), a= 2, t<o),
a~a
p.o. 271 i2 i, i3 -1
= - dw (=
PH > cosé [(p) tand 5 (p) 2(cos a+cos 6) +O(k™ %)
a~a
+
- 21 lrcoslath 542 (93)
2k p3

As we shall later see, this approximation to P_. is in error even in the leading

H
term and is inadequate for many purposes.

5.3 Precise Evaluation

An expression for the total surface field u(y) that is correct through two
orders in k was given in Eq. (39), and on expanding the leading term on the

right hand side of this equation, we obtain

“(1':)= Zeitsma 1-32% (sec3a-tzcosla)i i—l-{(az-al) Lt)+0k2)Y, (94)
where
° 2
L) = f QHesimayll e ¢- %) dt (95)
t

with the upper (lower) sign according as t> 0 (< 0 ). The first term on the right
hand side of Eq, (94) is, of course, the physical optics approximation,
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On substituting the expression for u(‘-z) into Eq. (89) and again expanding

the quadratic factor in powers of k, we have

@
P (."3.;_6 it ). —(sec o+2it tan §-t2(cos a+cos 9))
-0

- +O (=2
4k(a2 a JL({t) +O(k™<) ¥ dt
and using now the results (92), the expression for PH becomes

3 . 2
P =c5-—(- )(a -3 ) - secSa+(2) Zitatne-.:z(E )3(cosa+cos 6)
H 2 p p P

*i%?cse 2572y < f f ) P ()t + Ok=2)

2584 1+cos(a+6) 25721 cos Bsec @
2k 3 4k P

+i§§59 < f f )eimut) dt+0(k~2) .

Since the first term on the right hand side is simply PI?I'O' , it follows that

p.o 2 1 _a ipt -2
PH PH - cose{ sec a+<f f ) L{t)dt $+0(k™4).

(986)

The only remaining task is to evaluate (precisely) the integrals containing
L{t). We have
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w 0 2
( f - )elptL(t)dt lpt jw igsm"’H(l)(i;’) (L‘--gs-)dt dt
0

pled) t
0 2

o'Pt f siney ey - terag at
-t

-0

& 2 ° 2
- f {ei f sy D - has ip"f eigsmaHla)(C)(C-t—g)dE}dt
0 ¢
(s o]
= f {eiptL(-)( t)me Pt L(+)(t)} dt
0

where

v 2
S f o8 sinaHil) ©) (e~ t_{ e |
t
2 2
® )= f By e .
t
But
0
L( ;)(0)=j +ilsina (l)(§) ¢ d¢=sec® a{l I - (sma/cosa+a)}
0
as shown in Appendix B, and
L{ = -thm o HEsina —-(;—(g—) &€

t
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where the prime denotes differentiation with respect to t. Hence, on integration

by parts, _

Joe) 0 w
( f - f )eiptL(t)ng E“’%"’(ﬂ +e‘“”‘L‘+’<t)]
0 -0

0
©

-i-i-) f {eiptL(')'(t) + e'iptL“')'(t)} dt
0

g {L"’ (0)+L(+)(0)} +

r—*’—ns

{i oIPL () () 4o 1P, '(t)} a
0
[s 8]

‘ o
H," ()
- Esecsa- 2 f {eipt f ! {sine 1 a
p p ¢
0 t

® (1
. HT®
+e-iptf ei§s1na —1-—§-—d§}t dt
t

8

and when this is substituted into (96), the expression for PH becomes

® ® 1)
ar=a H, " (¢)
p._=pP 04 -2—-1-cos E)f {eiptf e-'i (siha 1 das

H H 4kp $
0 t
@© M
. H ()
+ e Pt f (lS sine —lge—- dg} t dt+0k=2) . (o7
t

We now define 'y_'*_( t) such that

yi) =t o't
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with 'y+(0)=0 . Thus,

t
‘Y+(t)=f ePar = —{(1 ipt)e ‘pt-l} , (98)
P
0
and we note, that for small t, v, (t)= % t2+06%). We likewise define
v ) == {(l-hpt) } , (99)
P
so that
vy )=t et
Hence
® ® 03] ® ® )]
. o H, ' (%) H(€)
f elptf e-1§'s1n o lg' d§tdt=f 'Y-'q-(t)f e-iC sina 1§’ de at
0 t 0 t
® )] ® o) (1)
®) . (t)
i} [7+(t)f Csma ng d§] +f e-ltsma'y_l_(t) i—-dt,
t 0 0 (100)

using integration by parts again. But
® 4y
co o )
f o isinx Hl de = O(t'l)
t
for small t, implying

© ) )

11m -i{ sin @ H‘l -
LR (R
t

Thus, the lower limit, t=0, provides no contribution to the leading term on the
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right hand side of (100), and since the upper limit also contributes zero,
® oo (4] © (I)
. R H () (t)
f elptf R i sina -IT— de tdt =f o -it sina (t)-l—— dt . (101)
0 t 0
@ (1) 00 (1)
®) ()
f -1ptf 1§ sina 1 L ge sat f eitsina v ) _lt_ at. (102)
0 t 0
giving
p.o., 222 ” it sina it sina H? )
=pr* - -2
PPy * T 008t f {e 7 (t)te -y_(t)} ——dt+0(k™?) .

H H
0 ' (103)

®

We have now reached the last step. From the expressions for 'y+(t) and
p given in Eqs. (98) and (91) respectively,

e-1t sina (t)‘ {(l- ptle -it sme_e-xt sina } .
P

A similar result holds for elt sin a‘y_(t), and hence
f { e-xt sma_m(t) to it sma'v- (t)} 11: dt= éi f (e1t smG_e-u: sinf )Hl(l) @t
0 0
® 1
o e e e b (t)
+ 1 ‘ (elt siné e it smB)_ (elt sino +e-1t sma') H1 at
p2 t
0
-2 tan 6 + —:-3- (cos 0-cos @)= —= 2 1_'_2-03_(_0_"_9_) s (104)
p pz pz coS 6
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where we have used the fact that

@
f sin (t sin v )H{l)(t)dt =tan v , [v] < g (105)
0
(see Eq.(B.1) in the limit v ¥ 1) and
H{l)(t)
f {sin(t sin'yl)-sin(t sin 72)} . dt=1i (cos YqCOS 71) (106)

0
(which follows, formally at least, on multiplying Eq. (105) through by i cos v
and integrating with respect to v ).

The final expression for PH is therefore
a3
- pPo- 271 l-cos{a-6)

H H 2k 3
p

+0k™2) . (107)

The difference from the physical optics result is quite apparent, but we postpone
exploration of this solution until after consideration of the analogous problem of

E polarization,

6. Diffraction Coefficient for E Polarization

6.1 General Expression

The derivation of the general expression for the diffraction coefficient so
closely parallels that in Section 5. 1 that only the briefest of comments are
required.

In place of Eq. (85) we now have

Ez(g')= - é f —aa—n Ez(g) H(()l)(klg-g'l )ds. (108)
S
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On proceeding to the far field and defining the diffraction coefficient DE for

E polarization as

—ilent

r! eikr Es(r'),

2L

it is found that
T

- T 9
D=-—2e14-1- fﬁ-ikét Z4s
E y7k i) ¢ ,

i 8Ez -ik . L4s
E 4 o © , (109)
S

in terms of which

i7 :
_J2' T g
DE=J;}: e PE . (110)

For the specific geometry of Fig. 1,
2
£

oo < tilen Y
E . iky sinf +ika 5 cosg i )2}1/2 5
oo ay y
-

and on introducing a new variable of integration t = ky, together with the

quantity v{y) defined in Section 4, the above equation becomes
2

0 -it sinf+ia & cos@
S | (Se 2k dt
= " I v(z ) (111)
=00
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This is the expression that must be evaluated.

6.2 Physical Optics

The physical optics approximation postulates that over the illuminated
portion of the surface

3E 9E"

__Z = 2 __E.

on on
and hence, for the incident field of Eq. (7),

iky(sina+ 5y cos @ )

v(y)= =2ik(cos a-ay sina)e ,
which is equivalent to retaining only the leading term in V(y, a) in the general
expression (61) for v(y). It follows that

: o
2
p.o. 1 it(sina =-sin 9) t . .t
S - -G an | — +
PE 5 f e (cos @ az sin o) exp {laZk (cosa+cos 9)} dt

(112)

and with p defined as before, Eq.(112) can be written as

©
. .2
pPO-. -.1. cosa elpt 1-2 ttana-i(cosa/%-cos 8)} +o(k=2)| dt
E 2 k 2
-

292 i2 i i3 1
= [ OO (i -+ =
5 Cos @ (p) tane- (p) 2(cos a+cos B+ O™ ")
25721 1+cos(a+6) -2
= +0O(k™4) , (113)
2k 3
p
so that
p.o. _ _ op.0.
PE PH

as expected. This is consistent with the known fact (Knott and Senior, 1971) that the

physical optics approximation is intrinsically polarization independent.
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6.3 Precise Evaluation

An expression for v(y) that is correct through two orders in k was
given in Eq. (61) and if we expand the leading term on the right hand side of this

equation in powers of k, we obtain

v (I-E )= =2ik cos aelt sina {1—1- 5 (secsa-i-tzcos a+2ittana)

I :Ll-l-{ (az-al)M(t)-*'O(k'z)} s (114)
where
° 2
M(t)= f of sina H§1’<§) @-Igl dt (115)
t :

with the upper (lower) sign according ast =ky >0 (<0) .
When this is substituted into Eq. (111) and the quadratic factor also

expanded in powers of k,

(0]
_ cosa 1pt 3 . 2
pE_ -._2_f {1+ o (sec a+2ittana+t” (cos a+cos 99

T plge )M(t)+0(k"‘)} at

cosaf (i

sec a+(-) 2itane 5-2(-) (cos a+cose)}

ey a)<f f )eiptM(t)dt+O(k'2)~
0

-Q0

(continued)



3573 1+cos(a+6) +a2_ 3 seca

2k p3 4k p

4Loosa °°SQ f f Phr@)dt +0k=2),

and since the first term on the right hand side is simply Pp.o. , it follows that

PE Pgo gk lcoscz - -—1 sec a/+ f f M(t)dt +0(k=2) .
(118)

Equation (114) is very similar to the analogous equation (96) for H polari~
zation and the steps that are taken to evaluate (precisely) the integrals containing

M(t) are likewise similar. Thus

( f f M(t)dt j f
O t

j’ i f‘ 1§smaH(l)(§,) <§’+¢) i &
-t

§s1noz (1) (§' t)

(§) ———— d¢ dt

-0
oo ©
{ 1§ s1naH(1)(§) € t) _e-lptf 1§ s1naH(1)<§,) (§’ t) }dt
t
00
f{lpt )y -t ()(t)}dt
0

where

..)(t)=f -i¢ stH(I)(g) (§’_f:')_ g
t
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@

- f o iEsinay (c N dt |
t

But

q

©
M(;)(O) =f +i§’sinaH(l)(§)§, d¢=sec a{ + 2 (sinacosa+a)}
0 .

as shown in Appendix B, and
0

™= -2 f *“smaalm(g) £t ge
t

where the prime denotes differentiation with respect to t,
by parts ,

@ 0 (o)
( f - f )eiptM(t)dvi% EiptMH(t) +e-iptM.H(t£]
0 - _ 0
Q0
- 1lpf { 1Pty )" 4. 1PE (9 '(t)}dt
0

(2

p{ ”(o)+m‘+’<0)}+§ f {eiptM<-)’(t)+e-iptMH'(t)}dt

0

and since the first term is simply % secd o, we now have

Hence, on integration

0 e

ara
pPoO., 271 ipt -ilsine (1), 8-t
B =P T+ T cosaf {e f H Q) 7 d¢
0 t

Q0

+e-iptf i§ sina Hfl)(g) ng} dt +0(k (117)
t



As shown in Section 5.3,
™ ® 4)) © ®
. H () . o e~ Ho (€)
f {eiptf e-i§ sina "1 : d§+e-1ptf ei? sino 1§ d§} tdt
0 t

2 l=-cos(a-6)

p2 cos 6
Also
© @ 0
f {eiptf e-i§ SinaH.l(l)({)dC +e-iptf ei§ sinaHfl)(g)dg} dt
0 t t
@ ® ©

=2f {cos ptf cos(¢ sina)HfI)(E)d§+sinptf sin(¢ sina)Hfl)@)dC}dt
0 t t

Q o o
Ein ptf cos(¢ sina)Hla) (§)d§=cos ptf sin(¢ sina)Hl(l)(g)dg]
t t

®
+§f {sin pt cos(tsina)=cos pt sin(t sin a)} Hl(l) (t)dt

0
Q0 ()

=§ f sin(¢ sina)H{l) (’:)dc-g f sin(t sin G)H,la)(t)dt
0 0

(o0}

TN

0

=§ (tano -tan 6 )

as follows on using Eq. (105) and the expression (91) for p. Hence

a-~a
p =pP-0-_ 2 10080{1-cos(a-6)+ta.n6-tana } +O(k’2)

E E 2k 305 0 02
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which reduces to

858 1 -cos{a=60)

2k pf

As in the case of H polarization, the difference from the physical optics result

+0(™% . (118)

= O,
Py P% +

is quite apparent.
7. General Considerations

7.1 The Nature of the Diffraction Coefficients

It is convenient to start by summarizing the results obtained for the
diffraction coefficients. Using a specific model consisting of two parabolic
cylinders of different latus recta joined so as to create a two-dimensional (line)
discontinuity in curvature at the front (see Fig. 1), it has been shown that if

i 4 eik(-x cos a+ysina) (119)

i(kr-2)

3 A 2 4
_E_Z_szﬂrr e PE , (120)
P_= F-G; (121)

- +
1_4 eik(xeoscr ysina) (122)

L]

implying

k(= +ysin
E = -Z &sma+§cosa) olk(-x cosa+ysina) )
then

T
HSMA/z i(kr-Z)P
L 7kr e H
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implying

T
i(kr- - )
s _ A 2 4
E'=-2 &sine-ycosm};k-r e P, (123)
with
PH =F+G, (124)
where
a_-ga
(sin o= sin )
a=-a
+ + -
G = ;k 1 l4cos(o 6?3 +Olk 2) ) (126)

(sin @= sin 6)

As demanded by the reciprocity condition concerning the interchange of receiver
and transmitter, the expressions for F and G are unaffected if 0 is replaced by
- and o by -6 .

The terms shown on the right hand sides of Egs. (125) and (126) are the
leading terms in a high frequency asymptotic development of F and G, and are
valid provided that le-a/l is bounded away from zero (to separate the contribution

“of the specular point from that of the discontinuity). In the expansion of the sur-
face field it was found necessary to assume that g -‘a‘ is bounded away from
zero (to ensure that the discontinuity is fully illuminated), and on physical
grounds it would also appear necessary that g - ‘6‘ be bounded from zero so
that the discontinuity will be directly visible to the field point. However, the
expressions for F and G are finite and continuous in the limit o, 6 = i 32.’ ,
|sina- sine' #0, allowing us to replace the conditions on « and 6 individually
by the less restrictive ones la} , ‘ 6! < g . This extension is vital to the
application of our results to the problem of an EMP generator.

Equations (121) and (124) can be written more compactly as
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P, y~FIC (127)

and since the physical optics approximation is simply

P.0O. - -
PE,H + G, (128)

the differences from the physical optics estimates are obvious. Under most cir-
cumstances, F is small compared with G: for example, in the particular case

of backscattering (6 = =& ),

a~a 5
= + =
F = coseca ok™¢)
a.-a
G = 1 cosec3 o +0k™2)

8k

and F is less than G by a factor 10 or more if @ is less than 18,4 degrees.
Nevertheless, F is the sole source of the polarization dependence of the scattering.
Its inclusion is therefore important in any analysis which seeks to reproduce

the polarization characteristics, and is vital in any study aimed at the cross
polarized component of the backscattered field.

7.2 Complete Diffraction Matrix

A derivation of the diffraction matrix associated with a discontinuity in cur-
vature is essential for the incorporation of our results within the general frame=-
work of the geometrical theory of diffraction (see, for example, Keller, 1962).

In order to obtain this, it is helpful to proceed in two steps, drawing first the
analogy between a discontinuity in curvature (involving the second derivative)
and a discontinuity in slope (or first derivative), i.e., a wedge-like singularity.

Consider a perfectly conducting wedge of half angle 2 on which a plane
electromagnetic wave is incident as shown in Fig.2. Following Keller (1957),

A A

A A
we introduce a set of base vectors, T, N, B, where T is a unit vector parallel

to the edge, f\? is a unit vector 'normal! to the edge, and ﬁ is the unit vector
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FIG.2: Geometry for First Derivative (wedge) Discontinuity.
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'hinormal' to the edge and pointing into the shadowed half space. The direction
A A A A A A A
of T is chosen to make T, N, B a right handed system, i.e. T=NAB.
With the coordinate system of Fig. 2, it is known that an incident electric
field

. A
El ='éi eik N (129)
having
A A A T T
i==Nsina+Bcosa (-§+Qsa§§) (130)

produces a diffracted electric field whose expression at points far from the edge

and away from 2all geometrical optics boundaries is

15\ .4
d _ad e ) iks-.r
E =e (- e = (131)
< V2rkr
with
A A
4 = Nsin 6-B cos 6 (-’.2f+szgegf’21’-sz). (132)

In particular (see, for example, Senior and Uslenghi, 1971), if

'l A
at=T (133)
then
A
Ad . P x-1) . (134)
and if
AL _ A A
e =Ncosa+Bsina (135)
then
A
4d . R cos9+Bsin0) (X+Y), (136)
where )
1 -
X = E sin = {cos Z -cos = (a-e)} s (137)
n n n n
-1
Y= E sin = {cos T +cos E (w-a-e)} (138)
n n n n
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with
n=2(1-%) . (139)

Let us now adopt a similar coordinate system for a discontinuity in curvature.
This is shown in Fig. 3 and necessitates the following coordinate transformations

of our earlier results in order that we may employ them:

A A A
Q—-N, §->-B,'z‘---T,a->a-g, 6#22-7-6. (140)
Equations (129) through (132) now apply as for a wedge~like discontinuity but

under the conditions that
T
1ol , 16l < 5
with ™
[sin o~ sin 6| bounded away from zero .

Moreover, from Eqs. (119) through (126) we have that if

i A
8

=T (141)
then

49 . T 2i(r-) (142)
whereas if

Aei = I(}cosoz+]3sinoz (143)
then

29 - (R cos 6 + B sin O2(F+0) , (144)

where the expressions for F and G in terms of the new angles @ and 6 are

x
Observe that this last condition excludes backscattering at grazing incidence

as well as the specular direction.
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FIG. 3: Modified Coordinate System for a Second Derivative
Discontinuity.



|l '

a-a
F 22kl 1+cos(a+6) +O(k'2), (145)
(cos a+cos 6)
25721 1 + cos(a=6) -2
G=- +0(k™°) . (146)

(cos a+cos 6)

On comparing Eqgs. (141) through (144) with (133) through (136), it is seen that
the diffracted field produced by a discontinuity in the second derivative is
obtainable from that created by a discontinuity in the first derivative by

replacing - se02 a=6
X b UF = 2
y ! 2ik cosa+cos@

and o2 &
Y b 2iG= 2 T 2 (148)
Y - 2ik cosa+cos 8

(147)

This analogy between the diffracted fields produced by the two types of
surface discontinuity is rather interesting. In a physical sense, a discontinuity
in the second derivative is like a very 'subdued! version of a first derivative
discontinuity, and the latter may occur (in the form of a surface kink) if insuf-
ficient care is taken in the fabrication of a model. From an examination of the
surface in the immediate vicinity of the discontinuity, it could be hard to tell
whether the discontinuity was in the second derivative (as, perhaps, intended)
or was instead in the first derivative, Consider, therefore, the expressions for

X and Y for small € (> 0) where

n=1+¢,
implying
= I
Q= 3 ( l-e‘) .

We now have
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€
X=ws= secz-a—-f— +0(€2) ,

2 2
Y=-§sec2 3;—'6+O(€2),

and from Eqgs. (147) and (148) it then follows that a second derivative discontinuity

is equivalent (as regards the diffracted field) to a kink having
a~a

ik

(cos a+cos6)~1,

that is , to a wedge of half angle

T a2-al -l}
Q= 3 1= o {cos a + cos 6) . (149)

In addition to the expected dependence on k, we observe that 2 isalso a function
of the angles of incidence and diffraction.

A further consequence of the analogy between the two types of surface
discontinuity is that we can write down immediately the complete diffraction
matrix for a discontinuity in curvature by making the substitutions (147) and
(148) in the known matrix for a wedge-like discontinuity. With the base vectors
A

A A
T, N, B and the angles « and 6 as shown in Fig. 3, we consider an incident

plane wave having an electric field

. . A
§1=‘31eik1'£ (150)
where
A A A A
i=TcosB-NsinBsina+ B sinf cos a (151)

with 0 <3< 7 . At points far from the discontinuity and in directions satisfying
the previously-mentioned restrictions on « and 6, the diffracted electric field

can be written as
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i A
gl ad (_ e ) JkSx (152)

sinf \‘27rkr

(see Keller, 1957), where

A A A A

s = TcosB3+NsinBsinf-BsinBcos 6 (153)
and

4d._ aM ‘ (154)

in which Ais a 3 x 3 matrix (or dyadic) provided 2 i is treated as a column
vector in the base ’f‘, f\\I, ﬁ . An adequate expression for A now follows by
making the substitutions (147) and (148) in Eq. (A. 13) of Senior and Uslenghi
(1971), and is

<2i(F=g) 0 0
A= 2i(F=G) cot B siné 2i(F+G)cos fcose  2i(F+G)cosHsina (155)
=2i{F-G)cot B cosh 2i(F+G)sinfcosa 2i(F+G)sinfsina

where F and G are as given in Egs. (145) and (146) respectively.

8. Conclusions

The rigorous derivation of the diffraction matrix for a discontinuity in
curvature significantly enlarges the scope of the geometrical theory of diffraction,
and permits application of this technique to surface singularities other than the
wedge-type to which it has been restricted heretofore. Since the form of the
matrix is so similar to that for a discontinuity in surface slope, it would be
relatively simple to extend existing programs for calculating the diffracted
fields produced by discontinuities in slope to include this new and more suppressed

form of discontinuity. In the context of EMP generators, for example, it is now
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possible to investigate the short time radiated field associated with near-source
geometries which are more general than the bicone-cylinder configurations that
have been considered so far (Sancer and Varvatsis, 1971), and this application

of ths matrix will be examined in a subsequent report.
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Appendix A — Luneburg-Kline Expansion for a Parabolic Cylinder

When an electromagnetic wave is incident on a smooth convex body, the
reflected field at high frequencies can be expanded in a series of negative powers
of the wave number k. The procedures for exploiting this fact were originally
developed by Luneburg (1944), and because of their subsequent extension by
Kline (1951), the resulting expansion is now known as the Luneburg-Kline
expansion, A variety of specific applications to both two~ and three-dimensional

problems has been given by Keller (1956) ,

The particular problem of concern to us here is the determination of
the first two terms in the asymptotic expansion of the surface field for a plane
electromagnetic wave at oblique incidence on a parabolic cylinder., The

equation of the cylinder is taken as

yé=-=, -0 <z<ow (A1)

(see Fig. A.1), where a is the reciprocal of the latus rectum and the origin
of coordinates is at the front of the cylinder. The propagation vector of the

incident field is assumed to be

A A A

k=-xcosa+ysineg,
and by treating in succession the cases in which the field has its electric or mag=
netic vector in the z direction, we are led to two scalar problems satisfying

Dirichlet and Neumann boundary conditions respectively at the surface. We

therefore write

ui - eik(-x cos a+ysina) ’ (A.2)
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e

Fig. A.1l: Geometry

where ui=Ei for an E-polarized wave and ul= le for H-polarization, and seek the

scattered (or reflected) field uS satisfying the boundary condition

d+u=0 (E-polarization) (A.3)
or

aul  8uS .

— i e— [ i i

= o 0 (H-polarization) (A.4)

at the surface, where n is in the direction of the outward normal to the cylinder.
In both cases it is assumed that uS is capable of asymptotic expansion in the

form

vV &.y)
uSx ) e o EHEY m (A.5)

&= ™

and we seek the first two terms in the expansion of the surface field.

60



It is convenient to reverse the order adopted in the main body of this
Report by treating the case of E polarization first. This is followed by H polari-
zation, and certain of the purely mathematical operations involved are presented
in the third and final section.

In addition to the Cartesian coordinates (x,y,z), we also employ eylindrical

polar coordinates (p, §, z) referred to an origin at the focus, in terms of which

x=pcos¢-‘-2l-a, y=psinf

On the surface,

_ _ 1
P =Py~ 2l +oos o °
implying
_ 1 l=cos _1 sin
X = == ; y=z ;
2a 1+cos a 1l+cos
so that
x = -—1- -
2a po

3
The radius of curvature of the cylinder is 2a(1-%/,) /2

E-Polarization

The scalar quantity u now represents the component E,, and on appli-

cation of the boundary condition (A.3), we obtain

e ~0 ,

-ikp cos(+a)  iky(p ,P) L v P ¢)
re Z
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Hence

Ulpg, B)= =pycos (P +a),

Vo(Po:p) =-1
and
Vm(p0,¢)=0 , m>1.

(A.6)

(A.7)

(A.8)

At any point P=P(p,f) off the surface, the field is attributable to a

ray which is reflected at the appropriate point P0 of the surface according to

the laws of geometrical optics. Following Keller et al (1956, pp. 249 et seq.),

we introduce new (ray) coordinates s, where s is the distance along the

reflected ray at P measured from the caustic, and B is the angle which this

ray makes with the positive x axis., Thus
B=0+a

and if 8, is the value of s at Po, then

21 B+a
so—ipocos—z—
Hence, at P,

v(s,B)=¢(s,B) ts-s,

s=so+[-PoI;_] .

The expression for V _(s,f8) is

s 1
Vo(s,B)=Vo(so,B)(-?0)/2 :

with

as follows from the conservation of power.

s 1
V(5,8 9)?
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Hence, using (A.7),



! !

®

implying

s 1/2 ik w(s ,B)'*‘S"S _

- (2) e { ° °l{1+o(k HY. (A. 10)
s

Since

ﬁ=§cosg+§smg, (A.11)

i ~-ikp _cos(f +a)
é-u—l = =ik cos (g-*-a)e © (A.12)
P’po

Also

ou® 3 S V6.8 = 19 ikyls, B)
'az'=ilk-a-a v (s,B) z =+ 2 — g-an(s,B)}e ’

2 gk £ (k)

and because V=0, m2> 1, on the surface, with V= -1,

S v

ou o, O ) -1 iky(s, B)
—— =4 - — o —m——
| { kK =+ = 0 &k )} e ]

p=p, p=p,

On inserting the results of Eqs. (A.29) and (A. 30), this becomes
3¢ ,

5 g acos 5 ~ikp cos(f +a)
Y = -ikcos(a+-2- ) + 5 +0 k™1)} e °

P=p, cos”(a+5 ) (A.13)

which can be combined with Eq. (A. 12) to give
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i cos3 g -ik pocos(¢+oz)
a—( 1y %) = -2ikcos(a+g) 1+ e 7 +0(k~2)Y e
p=p, cos (a+ ) (A. 14)
In terms of Cartesian coordinates,
Ban (ui+uS) =2k (cosa=aysina) {1+ (cose-aysinad)~
P=Pg Jl-Zax
+0 (k..z) }eik(-x cos @ +y sin o) (A. 15)

which is the result required. For o =0 it is equivalent to the solution obtained

by Keller et al (1956) for the special case of axial incidence.

H-Polarization

The procedure is rather similar to the above. The scalar u now rep-
resents the field component H,, and on application of the boundary condition

(A.4), we obtain

-ikp cos(f +ar)
-ik cos(ae-g)e °

%’Ig

fos)
Z m eik§0~ 0
(i)™

m=¢

forp~= Pye Hence
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¥ (pg. B)==p cos (p+a)

as before, and

0
cos(a- g)-VO(po,ﬂ) 3%/:- =0, (A. 16)
A%
-1 e
V(0. 8) =0, m21. (4.17)

Introducing the ray coordinates (s, ) once again, ¥ (s,3) assumes the
form (A.9). Hence

-1
V(50 B)=(2H " cos(a+ )

and on inserting the expression for 8;/// dn given in Eq. (A.30), this becomes

Volsg:B) =1, (A, 18)
implying
1
S
v (s (A. 19)

Equation (A. 17) serves to specify V, on the surface as

_ 0yl aVo
Vl(SO,B)'-(—a-n) = s=s
o
and using (A, 29) in conjunction with (A. 30), we have

39
acos 5

v ,B)= = . A.20
(50,87 - ——5 (A. 20)

2
Combining (A.2), (A.6), (A.18) and (A. 20), the surface field is found to be
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39
i C98 3 -ikp cos (P+c)

(ui+us) =241~ Tk —T-T;— + O(kmz) e ° (A.21)

p=p, cos (a-+§

in agreement with the result given by Keller et al (1956) for the special case

of axial incidence {(@=0). In terms of Cartesian coordinates,

-1-'1 (cosa-aysin a)"3+o(k-2) } eik(-x cosa+ysina ’

=281~
p=p,

(u+a®)

2
(A.22)

which is the result required.

Mathematical Relations

We present here a derivation of the two formulae that have been em-
ployed in the preceding sections.
From Eq. (A.11), we have

8 _ B 2. Bad
735-0082 8x+sm23y

and since s=s(x,y), B=B(x,y), it follows that

o _ B-a 0Os . B=a 0s, 0 @%@E@_i
E-(cos—z—-g—x-!' Ts—y)-ég-*-(cosz ax-t-:s.m2 5y 5B - (A.23)

) 9
To determine E33/  , as/ay, P /0x and B/ dy , we first observe that

x=- 513 +(8-84) cos B+p, cos (B-2) (A.24)
y=(s--so)sinB-i—p0 sin (B~-or) (A. 25)
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where

o L 2 B-o - 3B-a pBio
po—-z-ésec 5 and §,"Po5€c -2—cos-—2- .

On eliminating s from (A.24) and (A.25), we obtain

1 1 92 B-a
o — - = enm— —
(x Za)sinB ycos B o sina sec ) (A. 26)

and differentiation with respect to x keeping y constant then shows that

o8 _ sinf
ey (A, 27)

Likewise, on differentiating (A.26) with respect to y keeping x constant,

we have

ds
To find ~ /8x , it is convenient to express x in the form

. 3p-a .
sin sin «
X = gcos B+ 2 -1
2a 3 p=a
cos T

as follows by eliminating s, and p, from Eq.(A.24). If we now differentiate
with respect to x allowing s and B to vary, and then use Eq. (A.27), we find

3sinBsin o

ds
- =c08S+ .
ox B cosB-!-cosaf

Similarly, from Eq. (A.25),

. 3B-a .

sin 5 sino
y-ssmf-g =

COSS-—Z—
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and differentiation with respect to y gives

9s _ sinf - 3cos Bsina
dy cosptcosa

On substituting the above results into Eq. (A.23), the normal derivative

becomes
' sina'sinsm
9 B+a 2\ @8 B« 3 B-a 3
— ——— 3 ane——— — - — — —
on <°°s 5 ¥ sosBroosa ) 5g -2 tan'- cos® == 7% . (A.28)
. . . (So/g) 72
We first apply this operation to ("©/s) ’® . Since
) sin a-E sinf
o 1 2
BB 2a 0054 B-CZ
2
it follows that
B+ B+
L (3)1/2 -1 (?3)1/2 L - 2 (sinc:s-l sinB)—}(cos@j—a+3 Bin&sin-g— )
dn s 2 s So cos E_-_—_g_ 2 s 2 cosE-i-cosce
2

and when $=8, this reduces to

3 (S_o)l/z _ 1
on ‘s _ 9 B+o
8S=8 SOCOS -2—
Hence
3¢
5 .S Y, cos” 5
5 (3) -a ———— .
nos s=8 s{a+%)
o co 2
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Our final task is to apply the operation (A.28) to ¥(s,B). Since

v(s,B) = ¢(s,,B)+s-s,
it is obvious that

3y _
55 1.

Using the known expressions for ¥(s,,B) and s, it can also be shown that

aglj_i 4 B-
58 4asinasec 5

and on substituting these into Eq. (A.28), we find

oY _ B+«
gﬁ cosS T .

In terms of the oridinal coordinate ¢ ,

g-g = cos (a+g) . (A. 30)
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Appendix B — Some Integral Expressions

The results that we require can be deduced from the discontinuous in-
tegral of Weber and Schafheitlin (Watson, 1948, pp. 398 et seq.). From
forraulae (4) and (5) on p. 405,

" it sin vy +
Jv(t)e dt=sec-ye-1v'y, Rev >-1,

0

and since

H(D (t) ={ie-iwr J ®)-id (t)} cosec vV T,
v v -V

we have T
sinv{(s3ivy)
M, Fitsiny, _ -y 2 5
f H {t) e dt =2secye “mr (B.1)
0
valid for {Re. v} < 1. In particular, for v =0,
m +‘t 3
1 +itsiny
f,H(())(t)e dt=secy(1;27"’) . (B.2)

0
Differentiation of Eq. (B. 1) with respect to v yields

0 m
0 Ht sin vy 3 -iy / 2 .
H (t) te dt = 2isec ycosecvme v COS YCOS V (5 Fv)
0

.';'.sin-ysinv(zz--r -T-'y)} .
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e

The integral converges when v =1 and hence, on taking the limit as v = 1,

+
' Hfl)(i:)te"it 810 Yyt = secsv{l 17% (sin v cos v + 'Y)} ’ (B.3)
0

which is the other result that is needed.
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