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Abstract

To determine how the early time behavior of a pulse radiated by sn EMP sntenna
depends on the geometry of that antenna, it is sufficient to concentrate on the high fre-
quency components of the spectrum and examine the manner in which each of the high
frequency waves emitted from the source is scattered by the geometrical features of
the antenna. In principal at least, this can be accomplished using the geometrical
theory of diffraction. A key requirement of this theory is a knowledge of the diffraction

:3 matrix associated with any surface singularity present in the problem, and in order that
we may explore a variety of antenna configurations, the matrix is required for singu-
larities other than the Wedge-wpe for which it is presently available.

A valid expression for the diffraction matrix for a discontinti~ in curvature is
here derived. Using a model consisting of two parabolid cylinders of dtierent latus
recta joined at the front, an asymptotic development of the surface field in the vicinity
of the join is first obtsined, from which the elements of the complete diffraction matrix
are then obtained by integration. The results differ significantly from the physical
optics estimates, snd some of the consequences of this are examined. The diffraction
matrix is cast in a form directIy analogous to that for a wedge-type singularity, thereby
facilitating its incorporation within existing programs for analyzing the EMP problem,
but no explicit consideration of E NIP antennas is here included.’-
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1. Introduction

A problem of some interest in EMP studies is the effect of the antenna

geometry on the temtmral behavior of the field at times shortly after the onset

of the pulse. To achieve the rapid rise that is desirable, the feeding section of

the antenna is usually taken to be biconical, but since it is not practical that this

geometry Wrsist to infinity, the most elementary model of an E MP antenna is a

circular cylinder with a biconical feed. The junction between each conical and

cylindrical section can now be the source of a diffracted field which, at any

point in space, will-change the character of the radiated puIse at those times when

both the direct and the diffracted contributions are present.

There are, of course, other possible transitions between sections which

are conical at the feed, but have finite diameter far away. It is not even neces-

sary that the generators of either portion be straight lines, and since the nature of

the diffracted field is a function of the geometry, the choice of trmsition geometry

wiIl affect the manner in which the pulse is perturbed. A geometry which is now of

interest to explore is one in which the antenna surface has no discontinuity in slope,

but has at most a discontinuity in curvature. It would appear that the removal of

any wedge-like surface discontinuity will reduce the diffracted fieId throughout

those portions of space which are directly illuminated by the feed, but no quantitative

estimate of this reduction is available at the moment.

The earIy time behatior of the radiated pulse is produced by the high fre-

quency components in the spectrum, and can be computed from a knowledge of the

high frequency CW solution. This method has been used by Sancer and Varvatsis

(1W 1) to analyze an ~te~a consisting of a bicone mated directly to the cylindrical

portions, and is clearly feasible only to the extent that it is possible to obtain a

high frequency solution of the required accuracy for the geometry in question.

When a metallic object is illuminated by an electromagnetic wave, a power-

ful method for estimating its Mgh frequency scattering behavior is the geometrical
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theory of diffraction, originated by Keller (1962). The theory is basically an

extension of ray tecmques to include the conce~ of diffracted rays which arise

from surface singularities of the body. The strength of each such ray contribution

to

to

In

the scattering is proportional to a diffraction coefficient which is determined,

the first order at Ieast, by the loc~ surf=e geometry at the point of diffraction.

those cases where the diffraction coefficients are known, their expressions have

been obtained from exact SOlUtiOIMof selected camtical problems displaying the

geometry in question, and thus it is that the coefficients for an edge or wedge-like

singulari~ (slope discotiinuity) =e deduced from the solution of the two-dimensional

problem of scattering of a plane wave by a half-plane or wedge. In the problem

treated by Saucer =d Varvatsis, the surface singularity was indeed wedge-like,

and the higher order contributions to the high frequency diffracted field cou~d be

{and were) determined by GTD.

The diffraction coefficients are the key to the GTD method and one particular

but important case where they are not yet known is when the surface slope (first

derivative) is continuous, but the cuxvature (involving the second derivative) is

discontinuous. Their derivation for this geometrical feature is vitaI to an analysis

of the more general ante~a configurations discussed above. It is also necessary

for an adequate treatment of scattering by bodies such as a cone-sphere or

hemispherically-capped cytider, and in the absence of any exact cmonical solution

from which to deduce the coefficients, it has been necessary to rely (see, for

examples senior s 1965) on the crude estimates offered by physicaI optics.

Automatically, therefore, the polarization dependence has been suppressed (lWott

and Senior, 1971).

Although an exact canonical solution would be desirable, it is not, in fact,

essential to the determination of a diffraction coefficient, and an adequate des-

cription of the surface field in a Vicinim of the geometric feature can suffice. For

a discontinuity in curvature, we can obtain such a surface field description using

2
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the model that was employed by Weston (1962, 1965) in studying the creeping

waves launched by the discontinuity. Weston considered only the case of a plane

wave incident with its magnetic vector parallel to the (line) discontinuity (H pokri-

zation). This is treated in Section 3 and the initial part of the analysis follows

closely that which was given by Weston (1962). The snalogous csse of a plane wave

incident with its electric vector parallel to the discontinuity (E pol.ariz stion) is

discussed in Section 4. The corresponding diffraction coefficients for H and E

polarized waves are derived in Sections 5 and 6 respectively, and the general

diffraction matrix is constructed in Section 7. The results differ from the phy-

sical optics estimates for almost all angles of incidence and diffraction, and some

of the consequences of these new snd rigorous formulae are explored.

The form in which the diffraction matrix is expressed is directly analogous

to that for a discontinui~ in slope, thereby facilitating the incorporation of our

results within a program such as that developed by Saneer and Varvatsis (1971)

for the bicone cylinder. However, the main focus of this present report is on the

determination of the diffraction matrix alone, and the application to the calculation

of the early time @se behaviors for a variety of antenna geometries will be

treated in a subsequent report.

2. Prelimina ry Considerations

We consider a two-dimensional perfectly conducting surface consisting of

two hslf parabolic cylinders of different latus recta joined at the front. In terms

of the Cartesian coordinates ( x, y, z ) with the z axis coincident with the join,

the surface is defined as:



.

2
x= --a

;%
y>o, SUz

x .- ~ alyz, y<o, allz

(1)

so that the positive x axis is in the direction of the outward normal to the surface

at the join. For convenience we shall henceforth write (1) ss

12
x= --a2Y9 all z (2)

where a = a2(y>O), a=al(y< O). It is easily verified that the slope (first

derivative) of the surface is continuous at the join (it is infinite there) , but since

the radius of curvature is

3/2
PC(Y) = - ~ (l+a2y2) , (3)

the curvature is discontinuous at y = O unless az= al .

A plane electromagnetic wave is incident with its propagation vector lying

in the xy plane snd msking sn angIe a with the negative x axis, where

]@l~~(seeFig

*

. 1) If the wave has its magnetic vector in the z direction ( H

polarization), we can write

~= ; eik(-X coS a + y sin a )
a

,
gl= -Z (Qsina+~cosa)e

ik(-x Cos c?+ y sin a )
>

(4)

$<
In the derivation of the surface field about the join it is, in fact, necessary to

assume that ~/2- la I is bounded away from zero to ensure that the shadow boundary
is sufficiently far removed from the z sxis, but since the diffraction coefficients
(see Sees. 5 and 6) remain finite as a’> ~ r/ 2, our finsl results are valid even
for grazing incidence. This is vital for a treatment of the antenna problem.
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FIG. 1: Dif&aotion Coefficient Model
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where Z =
-tit

l/Y is the intrinsic impedance of free space and a time factor e

has been assumed and suppressed. Due to the presence of the perfectly conducting

surface, a scattered field (IJs, Es) will be generated satisfying the boundary con-

dition
●

:A(gl +&) =

at the surface, where

o

G is a unit vector normaI in the outwards direction. Our

task is to find the total (incident plus scattered) magnetic field at the surface,

with particular reference to a region in the immediate vicinity of the join.

Since the problem is two-dimensional (being independent of the coor-

dinate z), it can be expressed as a scalar problem for the totsl magnetic fieM

component, H ~= u, which is required to satisfy the Neumann boundary condition

( i3u/ an ) = O at the surface, with U-u. obeying the radiation condition, where

,
=H~=e

ik(-x cos a + y sin a )
u .

0 (5)

We now have a hard-body problem, and this is treated in Section 3.

E, on the other hand, the incident plane

the z direction, then

.
gl

= ~ eik(-x cos a + y sin a )
>

E1=Y($sina+$cosa)e
ik(-x cos a + y sin CY)

.

wave has its electric vector in

(6)

Our task is again to find the total (incident plus scattered) magnetic fieId at the sur-

face, and since the problem is two-dimensional, it can be expressed as a scalar

one for the total electric field component Ez m. T’his is rewired to satisfy the

Dirichlet boundary condition U=Oat the surface, with U-u. obeying the radiation

condition, where
. ik(-x cos a + y sin a )

UO=E1 = e
z

.

The resulting soft-body probIem is treated in Section 4.

6
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3.

3.1

is

H Polarization

The Integral Equation

Maue% integral equation for the field on an acoustically hard surfaoe

u(P) = 2 UO(P) ++
J

8G
~ U(Q)dS

Q
(8)

Q
where

ikR
G=eY (9)

with

{ }

2 1/2
(lo)R = (Xp-XQ)2+@p-yQ) 2+(Zp- zQ) )

ad because of the two-dimensional nature of the present problem, the z

integration can be carried out immediately using

m

1’
ikR

e
~dz

Q
= irH~)(kr)

d -m

where

{ }

2 1/2
r= kp-xQ)2+ (yP- yQ) .

Thus, Eq. (8) reduces to

2 f+(H:)+u(Q)dsQ .
u(P) =2 UO(P)+L

(11)

(12)

(13)

If we regard y as the variable of integration and denote it by t, then



.

.

22 v2&
dsQ= (1+5 t ) (14)

with t running from -m to CO, where 5 = a2 (t> O), 5 = al(t < O). Also

A
&

-1,2
+at$) (l+52t2)

‘Q=
(15)

SO that

t)r

{ )
—’: (x Q-xp)+5t(yQ-yp) (l+?i2t2)

-1/2
an

Q

1

{ 1

- 1/2
=- - @xp+at (t-yp) (1 +52t2 ) .

r

Hence

H(l)(kr)
(1) “k

{

+Ho (kr)=- ; at (t-y)- ; (=t2-ay2 )

}

1

Q (1+# tz) Y2 ‘

and the integral equation now takes the form

“fu(t)H~)(kr){-+’2-‘1’)u(y) = 2uo(y)- ~+

with

{ }

1/222
r = (y-t )2++ (ay2- at ) . (17)

This is in agreement with the result obtained by Weston (19S2; Eq. 9), and our

task is to find an asymptotic development of u(y) for large k/a, with particular

reference to a vicinity of the join (y = O ) .



.

It is easily verified (as Weston does) that u and ‘/ 8y are continuous

8%/ *2 is, however,aty=O. discontinuous, and the limits from left and

right are infinite. These facts are evident from the asymptotic expansion.

3,2 Asym ptotic Solution

If the incident field (5)

parabolic surface

12
x =-say ,

an asymptotic expansion of the

Kline method, and as shown in

u(y) = U(y, a) e
ikf(y, a)

with

1were to impinge on the complete snd uniform

ally, z

surface field could be obtained by the Luneberg-

Appendix A, Eq. (A. 22), we would then have

(18)

U(y, a)=2 -~(cosa -aysina)-3+O(k-4 , (19)

f(y, ~=ysina+~ay2 Cos Q .

Though it is a relatively straightforward

(20)

task to derive the actual term of order

k-2 in the expression for U(y, a ), this proves to be unnecessa~ for our purposes.

Following Weston (1962), we now write the field on the conjoint surface

of Eq. (2) as the sum of two parts: that which would exist on that particular section

were the whole surf ace a continuation of it, plus a perturbation created by the join.

Thus ,

(21)

9
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where

I YI

s(l+a2#)Y2d~s(y, a) =

o

(22)

with U ( y, a ) and f ( y, a ) as given in Eqs. (19) and (20) respectively. ‘l%e only

unlmown quantity in (21) is I (y, a ), and since the discontinuity in U( y, a) is of

order k“~ at y=O, it is clear that I(y, a) must be C@} for smaIl y.

If we now substitute the expression (21) for U(y) into the integral

equation (16) and, for convenience, write

Jl)k)
1

{

‘z-d)?tt(t-y)-~ (at

I

=K(t, y,a, ~),
r

we have

ikf(y,a) iksk$a) = 2U (y)
U(y, a)e +~I(y, a)e

o

J
m

ik
U (t,~) e

ikf(t, a).-
2

K(t, y, a,~) dt

-co

J
m

i iks(~,~) K(t, y,a,3) dt--
2

I(t, E) e

-w

a
(23)

10
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which can be recast in the form

co
ik

J{

ikE(t, a)ikf(t, ~K(t, ~, a, ?&u(t, de.-
2

U(t, ~e

1

K(t, y, a, a) dt

-m

03

J /
m

ik ikf(t, a)
K(t, y, a, a)dt - ~

iks(t, q-- U(t, a)e I(t, =)e
2

K(t, y, a, ~ dt .

-m -m

(24)

But U(y,a)e
ikf(y,a)

is, by deff nition, the field on a single parabolic cylinder

formed by continuing that portion on which the observation point lies, and hence

co

U(y, a)e
ikf(y, ~= 2~o&)- ~

J
U(t, a)e

ikf(t, a)
K(t, y, a, a) dt , (25)

-co

implying

I(y,s)e ilw(y,a)= ik--
2 1

m

~(t ..reiks (t ,5)
K(t,yja,~)dt

ik2
> -~ Q

-CD

where
a)

Q=
/{

}

U(t,aeW(t’a)K(t,y,a,?i)-U(t,a)eM(t’a)K(t,y,a,a) dt .

m

(26)

(27)

11
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z

Let us now examine the quantity Q. Since the integrand is a known function

we could, in principle at least, evaluate the integral precisely, but for our purposes

an asymptotic evaluation will suffice. We take first the case y C O . Then a=al

andsince li=~(al) for t>O (<0), as always, the integrand in (27) is identicality

zero for t C 0, so that

m

S( ikF(t, a2) ikf(t, ~)

Q= U(t, ~)e K(t, y, ~, a#U(t, :~)e
1

K(t, y, ~,al ) dt .

0

(28)

From Eq. (23), using the expression (17) for r,

K(t, y, ~, a2)= ~

Write

kt=c,

.,)[kly.t{w~

/’”22

/y-tt 1+
a2~2-5y

2(y-t)

12

{

a2(y-t)2+t~-a2)y2

/

a



H

K(t, y, ~, a2) =&

which also implies

K(tJY, =j~~)=~ +)(K-&O)+ H ) {1 +O(k-2) .0 1

Moreover,

U(t, a,)= 2 + O (k-l)= U(t, al)

and

eikf(t, a,) = ei~ sin a a, 2
exp (i z~ ~ cos a)

icsincz
=e {1+@k-l))

. eikf(t, al)
.

Hence, from Eqs. (28) through (32),

(30)

(31)

(32)

\

13
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for y < 0, and by a simple shift of the variable of integration, this becomes

‘o

where

50 = .ky>o.

For y >0 we return to Eq. (27), md nottig +h* now a=%, we have

o

J{ ikf(t, al) ikf(t, a2)

Q= U(t, al)e K(t, Y, ~, al)-U(t, a2)e
}

K(t, y, ~, az) dt

-m

03s{ ‘M(-t”%) M-t f,a
U(-tf, )e K(-t’, Y, a,, ~)-U(-t’, ~)e

d=
% 2}

K(-t’, y, az, a dt~ .

0
(34)

a

Fortunately it is not necessary to repeat the entire derivation that was carried

out for y< O. If we now define

SO that ~, ?.> O , the expression for K (-tr, y, a,), al) foIlows immediately from
La

Eq. (29) on interchanging a2 and al . Eq. (30) similarly yields K{-t’, y, ~, a2) ,

and whereas (31) applies directly, Eq. (32) shows

ikf(-t t, a2)
-itsin a ikf(-t~,al)

e =e {l+O(k-l)] “ e

Hence, for y >0,

14
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and by a simple shift in the variable of integration, this becomes

where now

co = Ig’>o.

Eqs. (33) and (34) can be combined into the following single expression:

and with the upper (lower) sign for y >0 (< O ), and E = k I yl .0
Examination of (36) shows that we still have to treat the integral involving

I. This is a trivial matter to the order in k that we require. Using (29), we

have

= 0(k-2) (37)

15
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“

8

since I is o(P). Similarly for the intee~ over th~~negative r%e Of t>

-f- O(k-+

and hence

t:

)T ‘g

(38)

with the upper (lowed sign as before and K. = k \ YI . This is in agreement with

Eq. (46) of Weston (1962).

The perturbation field I(y) is all that we require to specify the total

surface field u(y), and from Eq. (21), we have

This proves adequate for the determination of the diffraction coefficient to thei.-

leading order in k .

3.3 Surface Field Behavior

Although Eq. (39) constitutes our main result for H @arization, it is of

interest to examine the behavior of the total surface fieId u(y) in the immediate

vicini~ of the join, i. e. for t O=klyj<<l.

16
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Consider

where

(40)

(41)

(42)

Since the integral expression for L1(EO) is convergent even for ~o=O, we csn write

But

do
3

= sec a
{

1+2
- #JnacosQ+a)

1

as shown in Appendix B (Eq. B. 3). Moreover

H(l)(& 2i + (l+2i
1

-#og ~ )J#)
-z

(43)

(44)



,

.

(see Watson, 1948, p. 62), so that

#)(E) ’-:(~-; Iog E)+o(c, t~Iog E).

giwtng

(45)

(46)

The treatment of the integral expression for L.l(co) is a Iittle more complex

due to the failure of the integral to converge when KO=O.Let us therefore write

As evident from Eq. (45), the first integral now converges even for $.=
O, impIying

~’(’o)=O(’){oe’i’sti@{+)(’)+*}$”-~(eTi’sti” ; ●

o
But

and from integration by parts



“

Since this last integral converges even for CO=O, it is O(1), and we now have

~i Cosine?
‘i 1 +i sinalog~o) eL#o)= -~ & - + 0(1, Kolog to)

o

=Zi (l+-— — -isinalogto) +0(1, to log go) .
~ go

(47)

Hence, on substituting the expressions for <(~~ SIId L ~c~ Mto Eq. (4o), we

a obtain
,

(48)

integral and its first derivatiw with respect to co are finite

but the second derivative is infinite there. The same is there-

It is evident that the

at the join (K. ‘O),

fore true of I(y).

To provide the analogous results for the total surface field u(y), it is

necessary to examine the leading term on the right hand side of Eq. (39) for small ~
0°

19
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From Eq. (19),
.2
‘o

U(y, de
‘a~k Cos a= ~ ia

k (sec3a-fcos a)~(k-z)--

=2 -~ {(a2+a./4~-ij)} (sec3a-f~cosd + O&-? (49)

where the upper

two orders in k,

(lower) sign again refers to y> O (<O ) . Hence, to fie first

1ikysina z i .
u~}=e - ~ (a2h./sec3a+ $k (a2-~)sec3a (sin Qcos a +a)

it is apparent that u(y) is continuous at y=O, i.e.

U(o+)=u (o-)

as is u*(y) , i.e.

U’(oi-)=u’ (o-) ,

but u“(y) is infinite at y = 0, unless CY= O. Indeed

(51)

(52)

and thus a discontinuity in curvature is, for this poISrization, characterized by

a surface field ‘singularityf of the form y2 log\ y I .

20
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4. E Polarization

We now turn to the case in which the incident field is the E polarized plane

wave of Eq. (6). As previously remarked, the problem of determining the surface

field can be expressed as a soft body one.

4.1 The Integral Equation

Mauers integral equation for an acoustically soft surface is

a
q

u(P) = 2 +

J

UO(P)” + &.-
P Q

‘(Q ~ ‘SQ
(53)

where G is as defined in Eq. (9), snd since the two-dimensional nature of the

problem again ensbles us to carry out the z inte~ation directly, Eq. (53)

can be reduced to

a
u(P)= 2 +

“J
UO(P)- ; + a H(l)(kr) ds

~ u(Q) ~ o
P Q P Q

(54)

where r is as given in Eq. (12).

With the variable of integration t defined as before, Eqs. (14) snd (15)

again apply. Also,

A
np’&+ay $)(l+a~2 )-1/2

and hence

ar

{ 1 2 2 -V2
~

=: (xp-xQ)+ay(yp-yQ) (l+ay ) ,

21
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.

giving

(1)&-H. (kr)=- ~

{

ay(y-t) +; (Et
22

P
-ay )

The integral equation is now

a)

&- U(P)=2 —

~{

8
;PUO(P)+ ~ — u(Q) ay(y-t)+~ Git2-aY2)

P j+
l)(kr)

‘Q

and if we define

(l+a~2)v2a—u(P)= V(y),
‘P

(l+a~2)Y2 a~ U$P) = Vo(y) ,
P

SO that

H Y2 dt, l+a@

1 +dy~ i? (55)

(56)

(57)

(1+~2t2 )Y2 ~ u(Q) = v (t) J
‘Q

(58)
then

v(y) = 2 Vo(y) -$

Jmv(t)+’(h’{ay(t-y)-~ ~’2-ay2))$J ‘5”-a)

cf Eq. (16), where r is as given in Eq. (17). For future reference we note that

Eqs. (7) and (57) imply

iky(sina+~ y COSQ)
Vo(y)= -ik(cos iz-ay sina)e . (60)

22
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4,2 Asymptotic Solution
I

We again postulate a representation of the field v(y) as the sum of that

which would exist on a complete parabolic cylinder and a perturbation term

originating at the discontinuity, viz.

[

My, a) 1 M(Y$a)v(y) =-* V(y, s)e + ~ J(.Y, a)e
\

. (61)

The first term on the right hand side is that associated with a complete cylinder,

and as shown in Appendix A, Eq. (A. 15),

{

.

V(y, a)=(cosa-aysina) 2+; (cos a-aysina)

}
‘3 i= O(lc-z) ,

f(y, a) ’ysincz+~ay2cosa.

The second term in (61) is that due to the join. Since

sIyl

S(y, a)= (l+a2 T2)Y2d~ /

o

(62)

(63)

(64)

the only unknown quantity is J(y, a), and this is evidently O(kO) for small y.

If we now substitute the expression (61) for v(y) into the integral equation

(59) ~d, for convenience, write

FP(kr)
1

r
ay(t-y)- ~ (at- 2-ay2)

-
=K(t, y,a, ~), (65)
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we obtain

J
al

~2
V(t -#w a -

--

2 s K(t, y, a, Z ) dt

-m

1

m
k

J(t, ~ )e
iks(t, a) --.

2
K (t, y, a, = )dt

-m

which can be recast in the form

~

co 02
kz

V(t a)eikf(t,a)- k
K (t, y, a, 5)dt - ~

f

J(t .&)eMt, a --—
2 J > K(t, y,a,5) dt .

-m
(66)

But -ikV(y,a)e
ikf(y,a)

is, by definition, the solution for a singIe parabolic cylinder

formed by continuing the portion on which the observation point Iies. Hence

k’
m

J

~(t ~eikf(t, s) -ikf(y, a)= ’vo(y). ~ ,
-ikV(y, a)e K(t, y, a, 3 dt (67)

-m

implying
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J(y,

where

G=

The

~eiks(y,a)=-g J“J(t ~ eiks(t,a - ~2#
2 J K(t, y, a, 3)dt - —2Q (68)

-co

a)

J{

V(t,~ew(t’~- K(t, y, a, ~-V(t, a)e
ikf(t,a)-

1

K(t, y, a, a) dt . (69)

-03

mymptotic evaluation of a is directly snalogous to that for the quantity

Q given in Section 3.2. Ify<O, then

CD

J{ ikf(t,az)x ikf(t, al)e

3= V(t, a$e K(t, Y, %, a2)-V(t, ~)e 1K(t, y, ~, ~) dt

o
00)

and writing “

IKt=t>o, -&=to>o ,

we have

Also

V(t, a~ = 2 COS CY+ O(k-l)

= V(t, ~)

and since
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ikf(t,a2)
e

‘ei’stia{’+o(k-’’} =~ti(a’)’) $

it follows that, for y <0 ,

which, by a change of variable of integration, becomes

50’

where K. ❑ -ky >0.

The procedure for y >0 is rather similar. The integration in the ex-

pression for Q now extends from t =-m to t = O, and writing

kt =-g <o, ky=go>o,

the expression can be reduced to

so

Equations (71) and (72) cm be combined into the sirigIe result

26



,9,. ?

,

.

with the upper (lower) sign for y> O (<0 ), and K = kly[ .
0

Examination of Eq. (68) shows that we still have to estimate the

integral involving J(t, 5 ). However, it is trivial to prove that

1’
m

J(t, 5 )e
iks(t, 5) ~

K(t, y, a, 5 ) dt = o (@ )
d-CD

using the fact that J(t, 5) = O(kO), and hence

@ The perturbation field J(y) is all that is required to specify the total field
\“-

quantity v(y), and from Eq. (61) we now have

{

s

ik ysina ‘a %Cosa
v(y) = -ike V(y, a)e ~ ‘~ (a2-al) cos a ●

I

co
e~i K sins ~(l)(g) (~-fo)2.

1
I

— d~ +O(k-2) .
t

(75)

to

This is our main result for E polarization, and the form is strikingly similar

to that given in Eq. (39).

4.3 Surface Field Behavior

It is convenient to proceed as we did in the case of H polarization, and

to examine the behavior of the surface field in the immediate vicinity of the

join, i.e. for to <<1.
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Consider

.
.

where

(77)

(78)

Since the expansions of L1 ( ~o) and L-l(FO) have already been determined (see

Eqs. (43) and (47) ), it is only necessary to examine Lo(~), and though the

integral does not converge when K. =0, we have
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on integrating by parts. This new integral is convergent when !.=O and writing

we can use Eq. (B. 2) of Appendix B to show

a)

J ;iKsina (1)
e

+ 2Q
Ho(?) dE=seca (l-~).

o

= 1+; (Y+log; )+O(K 2, g210g K )

.-

Hence

. t
.LO(KO)=1 +% (?+:) ti(l+2a - y)tancl +O(!., golog Ko)

and on inserting the results of Eqs. (43), (47) and (60) into Eq. (’76), we find
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It is evident that the integraI is finite at the join (tO=O), but that its first derivative

wfth respect to go is infinite there. The same is therefore true of J(y).

To protide the analogous results for the totti field v(y), it is necessary to

examine the leading term on the right hahd side of Eq. (75) for small Ko. From

Eq. (62),

i
= ‘cos@+x

(secza ~2itoSin@+~~cos2a)+.o(k-2)

t }
(az+al)2 (a2-al) (seczcz + 2i ~osin*

+ K:cosza)+(-J(k-z ) (82)

where the upper (lower) sign again refers to y >0 (<: O ) . &mce, to the first

two orders in k,

{

~b)= -kei~sin~ z Cos ~+ & (a a
2k ~ l~secz ‘- ~ (~aI)sec2~

/

● (SiIl~cosa+a) ~ ~k(~-al)cos a ~o~og ~o+o(~o, ~~log ~ ) .
0

(83)

30



.

It is obvious that v(y) is continuous at y = O, i.e.

V(o+)=v (o-), (84)

but Vt(y) is infinite

excluded. In fact,

Eo
7 ~=- Y

we have

2ik
v?(o) =y

aty=Ounlesstc21= 7/2,which values have been

since

so that a discontinuity in curvature is, for this polarization, characterized by

a field ‘singularity’ of the form y log [ y I . This should be compared with the

behavior y210g Iy I found for H polarization.

5. Diffraction Coefficient for H Polarization

5.1 General Expression

For a two dimensional geometry such as that shown in Fig. 1, the scat-

tered magnetic field is

where

denotes the point of observation, and

(85)
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✎

represents a variable point of integration .

IfR =[r-r’l , then.-

8

(
n x-x’—= )_+n Y~ ~

an XR —A-(~coS6+nysin)&yRi3R

at large distsnces, where X1 = r~ COS $ and yt =rmsin 0. Hence

implying that in the far zone

In the notation of Keller (1962), the diffraction coefficient DH for H polarization

is
rf e-ikrt s

r Hz(&) ,

SO that

but it proves more convenient to work with the far fieId amplitude P as defined

by Bowman et al (1970), namely

k
P ‘-

H4
J

(nx COS@+IIySine)~z(g)e-ik:’“z ds ,

s
(86)
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in terms of which

r -i;
DH= ~e PH.

For the specific geometry of Fig. 1,

(} -1/’2
~ = (l+ay$) l+(ay)z

and

dS =
{}

1 +(ay)
.2 1/2

dy ,

SO that
.4 2

k

J

-iky sine +ika’~ cose
P=-

H4
(COS13+ay sin 9) k(y)e dy ,

-1

(87)

(88)

where we have” introduced the symbol u(y) of Section 3 to denote the surface

field component Hz(~), and where the integration has been limited to some region

about the join because our concern is only with the scattering that originates

there. If we now introduce a new variable of integration, t = ky, the range of

integration extends from t = -kl to t = kl , and since k is, by assumption, large,

the limits can be replaced by ~ co . Hence

m tz

1

J

(cosO+# at sin6) u~ ) e
‘it ‘tie +ia~k Coso dt

‘H=~ >

-m

and this is the expression that must be evaluated.

5.2 PhysicaI Optics

According to the physical optics approximation, the surface field

throughout the illuminated region is

(89)

il@sina+ ~ y cos a )
u(y) =20 J
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and the restriction (later relsxed) that ~ - Ia ~ is bounded away from zero fS

sufficient to ensure that a region about the join is directly illuminated. The

corresponding value of PH is therefore

03
~p.o. .:

[

it(sin a-sin ~)
H2

e (COSf3+; at sine)
d-al

{

2

)

. exp ia~k(cos a+cos 6) dt , (90)

which is equivalent to retaining only the leading term in U(y, a) in the general

expression (39) for u(y).

If we are to identify the join contribution, it is necessary that the specular

point be away from the join, i.e. I*61 bounded away from zero, and this res-

triction applies throughout the subsequent analysis. With

p=sina-sin@j (91)

Eq. (90) becomes

But

and (92)

o

s in+l~neixdt = - (;) n!

-co
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for n ~ O. Hence

m

J

ei@dt=O,

-a)

andsince a=a2(t>O), a=a1(t <0),

~poo. . az-al
H [ 1

~ Cose (;)2 t~e +; (; )3 2(COSCY+cos e) +O(k-l)

= a2;:l 1+ COS(Q+6)
9 +O(k-2) . (93)

AK

P“

As we shall later see, this approximation to

term and is inadequate for many purposes.

5.3 Precise Evaluation

PH is in error even in the leading

An expression for the totaI surface field u(y) that is correct through two

orders in k was given in Eq. (39), and on expanding the leading term on the

right hand side of this equation, we obtain

it sin a
u(;)= 2e

\ I

1-& (sec3 a-t2 cos a) ~ & (a2-al) L(t)+ O(k-2) , (94)

where

m

J
e Ti g sins (1)

t2
L(t) = Hl (E) (g- ~) d~

t

with the upper (lower) sign according as t >0 ( <0 ). The first term on

(95)

the right

hand side of Eq. (w) is, of course, the physical OPtiCS approximmiom
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On substituting

the quadratic factor in

m

d-w

the expression for u ~) into Eq. (89) and again expanding
k

powers of k, we have

eipt

(

1- ~(sec3 a+2it tsm &t2(cos a+cos 6) )

}

+ i (a -a )L(t) +O(k-2) dt
-7E21

and using now the results (92), the expression for I?H becomes

PH=

{

C*6(-4) (a2-a/ ~ “sec3@+(~)22itsn&2 (~ )3(cos a+cos e)

}
m o

+icos~

(f 0
~ (a2-al) - e ‘@L(t) dt+O(k-2)

. a2-al 1 +~~s (a+@) : a2-;Y cos (3sec3 a

2k 3 4k P’

m o
+icos~

‘u s)
~ kj-al) - e ‘@L(t) dt +O(k-2) .

0 -m

Since the first term on the right hand side is simpIy P~O” , it follows that

PH=P~O”+i -cose {-~sec3a+([-]~)eiptL(t)dt]+;~-2).

The only remaining task is to evaluate (precisely) the integrals containing

L(t), We have
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(f’-/)ei@t’dt=(=eifie’i-sin”Hf)
-m

o m

-J J
‘ipt “it sin aH(l)(K) (g t2

1
- ~)dtdt

-m -t
m

J

~-i~ ‘haH(l)(~)(~ ‘2

m
eipt

J

- ~ )’&;ipt ‘it sinclH(l)(K)(t ‘2
1 1

I

- ~ )dg dt

t t

where

But

as shown in Appendix B, and

m

J
H(l)(E)

L( z)’ (t)= -2’
e~csina 1 dg

c
t
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.

where the prime denotes differentiation with respect to t. Hence, on integration

by p@S ,
m o 00

(/-/) [ 1

eiptL(t)dt= J eiptL(-)(t) + e-iptL(+)(t)
ip

o -m o
m

[{

eiPtL(-)*.- .
}

(t) + e-i@L(+)’(t) dt

o
m

=; 1 s{

~(-)(o)+L(+)(o) ~j

}

ei@L(-)r(t) +e-i@L(+)t(t) dt
P

o

snd when this is substituted into (96), the expression for PH becomes

(9’0

We now define y~( t) such th~

~:(t) = t eim
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,.

with Y+(0)=O . Thus,

t

J
-.#{(wem},~~ipTd7 . 1

y+(t) =

o

and we note, that for smaH t, y+(t)= ~ t2 +O(t3). We likewise define

7-(t)=${(’ti@)e-i@-1}s

(98)

(99)

SO that
.

y: (t)”= t e-km .

Hence

m a)

H
H(l)(C)

m m

!J

H(l)(g)
ipt

e
-i~sin a 1

e — d~t dt=
e-i~ sin a I

c
?’:(t) — de dt

c
o t o t

a)

[J

#)(t)
m m

IJ
H(l)(t)

e-it sins= 7+(t) —de +
e-it sincY

c
~+(t) ~ dt ,

t 00 (loo)

using integration by parts again. But

for small t, implying

Thus, the lower limit, t=O, provides no contribution to the leading term on the
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right hand side of (100), and since the upper limit aiso contributes zero,

giving

m

J{ -}
*(l)(t)

PH=P~”O*+ - cos~ e-itsinay+(t)+eit ‘in@ ~ (t) 1— dt +O(k-2) .
t

o (103)

@

We have now reached the last step. From t he expressions for y+(t) and

p given in Eqs. (98) and (91) respectively,

{

-it sine -it sin a~-it ‘in* ~+(t)= ~ (1-ipt)e -e
}

.
P

A simikr result holds for e
it sin ix

y-(t), and hence

03

/{

co
f(t) J

~H(o(t)dt
e‘it‘ins7+(t)+3‘t‘inaTJ-(t)--+ dt=j (eit‘me-e-it‘ine~

o 0

co

[{ )
0)

it sine 1$ (t)

+$ ‘e *
-it sin~)-(eit sinab-it simj t dt

o

2 1-COS (a-e)
= - ~ t~e+~(cOSo-c0Si4= —

~2 P2 Cos e ‘
(104)
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(105)

where we have used the fact that

co

J

(1)sin (t sin y )Hl (t)dt = tan y , 171 <;

o

(see Eq. (B. 1) in the limit v > 1) and

co

J{

H(l)(t)

}

1
sin(t sin yl)-sin(t sin Y2) ~ dt= i (COSY2-cos yl) (106)

o

(which follows, formally at Ieast, on multiplying Eq. (105) through by i cos y

and integrating with respect to y ).

The final expression for PH is therefore

a2-al 1-COS( a -6 ) + ~(k-z ~
PH= P;”” + ~ .

P3
(107)

The difference from the physical optics result is quite apparent, but we postpone

exploration of this soIution until after consideration of the analogous problem of

E polarization.

6. Diffraction Coefficient for E Polarization

6.1 General Expression

The derivation of the general expression for the diffraction coefficient

closely parallels that in Section 5.1 that only the briefest of comments are

required.

In place of Eq. (85) we now have

so

(108)
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On proceeding to the far field and defining the diffraction coefficient D ~ for

E polarization as

it is found that

but for convenience we shall again work with the far field amplitude

in terms of which

and on

T

r -i -
DE= #k e

4P
v“

For the specific geometry of Fig. 1,
c-!

introducing a new variable of integration t = ky, together with the

quanti~ v(y) defined in Section 4, the above equation becomes

m
tz

PE= - +k
J

‘it ‘tie ‘ia ~k ‘0s6 ~t
V( ~ )e .

-co

(109)

(110)
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This isthe expression that

6.2 Physical Optics

The physical optics

portion of the surface

and hence, for the incident

must be evaluated.

approximation postulates that over the illuminated

field of Eq. (7), .

iky(sina+; ycosa)
v(y)= -2ik(cos a-ay sina)e ~

which is equivalent

expression (61) for

Pp.o. = - 1
E 2

to retaining only the leading term in V(y, a) in the general

v(y) . It follows that

mr eit(sina-sin6)(cos ~ t
\ \

-~ sin a) exp ia~ (cosa+cos 6) dt

d v
-m

(11;)

and with p defined as before, Eq. (112) can be written as

_ a2-al
2k

= a2-al
2k

--co

[

. .
Cos CY $ )%+

l+cos(a+e)

P’
+0

(:)3

(k-2)

2(COSQ

a

+Cos e)+O(k- 1
+

(113)

SO that

~:.o.

as expected.

=- ~-go.

This is consistent with the known fact (Knott and Senior, 1971) that the

physical optics approximation is intrinsically polarization inde~ndent.
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6.3 Precise Evaluation

An expression for v(y) that is correct through two orders in k was

given in Eq. (61) and if we expand the leading term on the right hand side of this

equation in powers of k, we obtain.

it sins
v(;)= -2ik cos @e

{
~ (sec3a+t2cosa+2it tan a) ‘

1+ 2k
\.

7 ~k(a2 ~
}

-a )M(t) +O(k-2) ,

where

%.

with the up~r (lower) sign according as t = ky >0 ( <0 ) .

When this is substituted into Eq. (111) and the quadratic factor

expanded in powers of k,

PE = -+~ei@{l+~(sec3c@2ittana+t2(cos@+cosO]

d b
-m

(114)

(115)

9

also

(continued)
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. az-al 1+COS(CY+e) + ajal sec2a
2k

P3 my

+~(a2-aJ((-~)eiptM(t)dt+O(k-2),i cos a

and since the first term on the right hand side is simply P~*O” , it follows that

-cos.{-~se.3a+([-~)eiptM(t)d]+Ok-2\~,6,PE=P~oO”+i a~al

Equation (114) is very similar to the analogous equation (93) for H polari-

zation and the steps that are taken to evaluate (precisely) the in~grals containing

M(t) are likewise similar. Thus

m

J{eiptM(-)(t), -e-ipt (+)=

}
M (t) dt

o

where
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But

as shown in Appendix B, and

where the prime denotes differentiation with respect to t. Hence, on integration

hy parts ,

a) o

(H) [ 1
alipte M(t)dt= ~ ei@M(-)(t) +e-i@M(~(t)

lp
o -a) o

m
1

f{
-~

}

eip$&(t) +e-i@M(+)’(t) dt

o

{

m

}J{

= ; M(-)(0) +M(+)(0) ~ e@tM(-)’

}

(t) +e-i@M(@’(t) dt

o
.

and stice the first term is simply $ sec3 a, we now have

(117)
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As shown in Section 5.3,

.4 I-cos (a-e)

P2 Cos 8 “

Also

a) 03

1{ J
m

❑2 cm pt 0)

J }

,ti(f ~ina)H(l)(K)dE dtCOS(Esin a)H1 (C)de +sin pt
1

0 t t
03

[s

m
2

s 1
co

=;sin pt (1)COS(CSin@)Hl (f)dK-cos pt sin(f sin~)f)(~)d?

t t o
m

+2

J{ /

(1)
F

sinpt cos(t sins)-cos pt sin(t sins) HI (t)dt

o
m

2

J
sin(g sincz)H(l)(C)d~ 2 m=-

P
.-

1 P
1

sin(tsin~)~o)(t)dt

0 0

=; (talc?-tale)

as follows on using Eq. (105) and the expression (91) for p. Hence

~E=pyL a2-al Cosa

{

l-cos(a-e ) + tan e -tanc?-—
2k

}

+O(k-z)
pscos e P’
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which reduoes to

az-al 1 -Cos(-e) +o&.2)
PE=#E”*” + ~ ●

P3

(118)

As in the case of H polarization, the difference from the physical optics result

is quite apparent.

7. General Considerations

7.1 The Nature of the Diffraction Coefficients

It is convenient to start by summarizing the results obtained for the

d.iffraotion coefficients. Using a specific model consisting of two parabolic

cylinders of dffferent latus reota jofned so as to create a two-dimensional (line)

discontinuity in curvature at the front (see Fig. 1), it has been shown that if
m

~ U&x COSCZ+y SfllCt) (119)
~i=ze

then

r

i(kr- ~)
~sw$ -& e PE (120)

with

‘E
‘F-G; (121)

whereas if

i . ~ eik(-x cosa+y sins)
g *

implying

gi = -Z & sina+$cos a) e
ik(-x Cosa+y Sins)

J

(122)
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implying

r

i(kr- ;)
gs = -Z (4 sine -$cos t?) =& e PH

with

‘H
=F+G,

where

a2-al 1 -Cos (a-e ) +o(k-2)
F== (125)

(sin@- sin 6$ ‘

(123)

(124)

a2-al l+cos(a+e)
G=~ i- o(k-2) , (126)

(sins- sin 13)3

As demanded by the reciprocity condition concerning the interchange of receiver

and transmitter, the expressions for F and G are unaffected if @is repIaced by

-aanda by-e.

The terms shown on the right hand sides of Eqs. (125) and (126) are the

leading terms in a high frequency asymptotic development of F and G, and are

valid provided that I &CZl is bounded away from zero (to separate the contribution

of the spectiar point from that of the discontinuity). In the expansion of the sur-

face field it was found necessary to assume that ~ - I al is bounded away from

zero (to ensure that the discontinuity is fully illuminated), and on physical

grounds it would also appear necessary that ~ -1131 be bounded from zero so

that the discontinuity will be directly visible to the field point. However, the
+x

expressions for F and G are finite and continuous in the limit c?,@+ _ ~ ,

~sina- sin 6 I #O, allowing us to replace the conditions on a and f3individuality

by the less restrictive ones ~al , I f3I ~ ~ . This extension is vital to the

application of our resul~ to the problem of an EMP generator.

Equations (121) and (124) can be written more compactly as
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‘E, H
=F~G

and since the physical

pP ●o.
E,H

=~G,

optics approximation is simply

(127)

(128)

the differences from the physical optics estimates are obvfous. Under most cir-

cumstances, F’ is smalI compared with G: for example, in the particular case

of backscattering (6 = -Q ),

a2-al
F== cosec a + O(k-2 )

a2-al
G== cosec3 a + 0(k-2 )

and F is less than G by a factor 10 or more if a’ is less than 18.4 degrees.

Nevertheless, F is the sole source of the polarization depexxlence of the scattering.

Its inclusion is therefore important in any snalysis which seeks to reproduce

the polarization characteristics, and is vitaI in any study aimed at the cross

polarized compment of the backscattered field.

7.2 Complete Diffraction Matrix

A derivation of the diffraction matrix associated with a discontinuity in cur-

vature is essential for the incorporation of our results within the general frame-

work of the geometrical theory of diffraction (see, for example, Keller, 1962).

In order to obtain this, it is helpful to proceed in two steps, drawing first the

analogy between a discontinuity in curvature (involving the second derivative)

and a discontinuity in slope (or first derivative), i.e. , a wedge-like singularity.

Consider a perfectly conducting wedge of hdf angle S2 on which a plane

electromagnetic wave is incident as shown in Fig. 2.

we introduce a set of base vectors, ‘$, *,

to the edge, fi is a unit vector ‘normal’ to

50

~, where

the edge,

FoHowing Keller 0957),

f is a unit vector parallel

and B is the unit vector



.

FIG. 2: Geometry for First Derivative (wedge) Discontinuity.
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‘binormalf to the edge WI pointing into

of $ is chosen to make $, fi, 8 a right

the shadowed half space. The direction

handed system, Le. ~ = fiAs .

With the coordinate system of Fig. 2, it is known that sn incident electric

field
i=~ieik?”x

g (129)

having
4
1 =-$sin@+$cosa ( -;+$25LX; ) (130)

produces a diffracted electric field whose expression at pdnts far from the edge

and away from all geometrical optics boundaries is

with
A
S= fisine-acose

III particular (see, for example, Senior and Uslenghi, 1$J71), if

Ai
e =4

then
~d

=-$(X-Y)

and if
hi
e =~coscr+$sin~

then

gd=&0s6+& ine)(x+ Y),

Y==
{

- sin ~ cos :+ COS:
}

(F-a-e) ‘1
n
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(131)

(132)

(133)

(134)

(135)

(136)

(137)

(138)



with

n=2 (l-~) . (139)

L& us now adopt a similar coordinate system for a discontinuity in curvature.

This is shown in Fig. 3 and necessitates the following coordinate transformations

of our earlier results in order that we may employ them:

A A A
x-N, $+-$, &-T, ct=w- ~, 6*2

~-e. (140)

Equations (129) through (132) now appIy as for a wedge-like discontinuity but

under the conditions that

with ~

Isin a- sin

Moreover, from

e I bounded away from zero .

Eqs. (119) through (126) we have that if

(141)

then
$d

= -$ 2i(F-G) , (142)

whereas if
~i

= i$cosa+t sina (143)

then
~d A

= (N cos 8 + ~ sin t3)2i(F +G) , (144)

where the expressions for F and G in terms of the new angles a and 6’ are

‘Observe that this last condition excludes backscattering

as well as the specular direction.

at grazing incidence
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FIG. 3: Modified Coordi* System for a SeJoomi Derivative
Discontfnui&.
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F

a -a
2 1 1+ COS(Q+6)

F=-— + O(k-z),
2k (Cos Q+cos 0?

a2-al l+coS(a-6)
G=-y +O(k-2) .

(Cos CY+cos6?

(145)

(146)

On comparing Eqs. (141) through (144) with (133) through (136), it is seen that

the diffracted field produced by a discontinuity in the second derivative is

obtainable from that created by a discontinuity in the first derivative by

replacing 2 CY-e

x by ‘2iF _ a::l ‘ec -’5-
cosa+cos6

(147)

and
sec2 cl-w

Y by
a2-al2iG = — T

2ik cos a+cos 19 “ (148)

This analogy between the diffracted fields produced by the two types of

surface discontinuity is rather interesting. In a physical sense, a discontinuity

in the second derivative is like a very tsubduedt version of a first derivative

discontinuity, and the latter may occur (in the form of a surface kink) if insuf-

ficient care is taken in the fabrication of a model. From an examination of the

surface in the immediate vicinity of the discontinuity, it could be hard to tdl

whether the discontinuity was in the second derivative (as, perhaps, intended)

or was instead in the first derivative. Consider, therefore, the expressions for

X and Y for small e ( > O) where

n=l+e,

implying

G?= ;( 1+).

We now have

55



.

~ecz ~e + ~(c2)
x=-; —

Y= - ; *..2++ 0(/’),’

and from Eqs. (147) and (148) it then follows that a second derivative discontinuity

is equivalent (as regards the diffracted field) to a kink having

a2-al
E = ~ (COS ~+COS e)-l,

that is , to a wedge of half angle

{
S2= ; 1-

az-al
~ (COS ~ + cos e)-l

\

In addition to the expected dependence on k,

of the angles of incidence and diffraction.

● (149)

we observe that S2 is aIso a function

A further consequence of the snalogy between the two types of surface

discontinuity is that we can write down immediately the complete diffraction

matrix for a discontinuity in curvature by making the substitutions (147) and

(148) in the known matrix for a wedge-like discontinuity. With the base vectors

‘?, #, ~ and the angles a and 13as shown in Fig. 3, we consider an incident

plane wave having an electric field

(150)

where
+A
l= Tcos P-#sin Psina+~ sin f3coscY (151)

with O<8<r. At points far from the discontinui~ and in directions satisfying

the previously-mentioned restrictions on a and O, the diffracted electric fieId

can be written as
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(152)

(see Keller, 1957), where

$ = $cos@+~sin~ sin f3-6sin@cos 6 (153)

and

~d=A$i (154)

in which A is a 3 x 3 matrix (or dyadic) provided &i is treated as a column

vector in the base $, #, ~ . An adequate expression for A now follows by

making the substitutions (147) and (148) in Eq. (A. 13) of Senior and Uslenghi

(1!371), and is

(
-2i(F-g) o 0

A= 2i(F-G) cot 8 sine 2i(F@cos o COS@

)

2i(F+G)cos (3sin a (155)

-2i(F-G]cot~cosO 2i (FW)sin @cos a 2i(F+G)sin 6 sin a

where F and G are as

8. Conclusions

given in Eqs. (145) and (146) respectively.

The rigorous derivation of the diffraction matrix for a discontinuity y in

curvature significantly enlarges the scope of the geometrical theory of diffraction,

and permits application of this technique to surface singularities other than the

wedge-type to which it has been restricted heretofore. Since the form of ‘the

matrix is so similar to that for a discontinuity in surface slope, it would be

relatively simple to extend existing programs for calculating the diffracted

fields produced by discontinuities in slope to include this new and more suppressed

form of discontinuity. In the context of EMP generators, for example, it is now
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possible to investigate the short time radiated field associated with near-source

geometries which are more general than the bicone -cylinder configurations that

have been considered so far @ricer and Varvatsis, 1971), and this application

of ths matrix will
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Appendix A — Luneburg-Kline Expansion for a Parabolic Cylinder

When an electromagnetic wave is incident on a smooth convex body, the

reflected field at high frequencies can be expanded in a series of negative powers

of the wave number k. The procedures for exploiting this fact were originally

developed by Luneburg (1944), and because of their subsequent extension by

Kline (195 1)$ the resulting expansion is now known as the Luneburg-Kline

expansion. A variety of specific applications to both two- snd three-dimensional

problems has been given by Keller (1956) .

The psxticular problem of concern to us here is the determination of

the first two terms in the asymptotic expansion of the surface field

electromagnetic wave at oblique incidence on a parabolic cylinder.

equation of the cylinder. is taken as

2x
Y2 a=-—, -co< z<co

for a plane

The

(A. 1)

(see Fig. A. 1), where a is the reciprocal of the latus rectum and the origin

of coordinates is at the front of the cylinder, The propagation vector of the

incident field is assumed to be

t= -~cosa+~ sina,

and by treating in succession the cases in which the field has its electric or mag-

netic vector in the z direction, we are led to two scalar problems satisfying

Dirichlet and Neumann boundary conditions respectively at the surface. We

therefore write

. eik(-x cos cr+ysina)
U1 > (A. 2)
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x

\

Fig. Al: Geometry

.,
where U1=E; for an E-polarized wave and Ui= Hi for H-polarization, and seek the

scattered (or reflected) field us satisfying the boundary condition

, s_Ul+u -0 (E-polarization) (A. 3)

or

a u~ +8US=0
a x

(H-polarization) (A. 4)

at the surface, where n is in the direction of the outward normal to the cylinder.

In both cases it is assumed that

form

Usbf,y)*e*’y2m.o

and we seek the first two terms

us is capable of asymptotic expansion in the

Vm(x,y)

(ik)m ‘

in the expansion of the surface field.

(A. 5)

60



.

It is convenient to reverse the ordeF adopted in the main body of this

Report by treating the case of E polarization first. This is followed by H polari-

z ation, and certain of the purely mathematical operations involved are presented

in the third and final section.

In addition to the Cartesisn coordinates (x, y, z), we also employ cylindrical

polar coordinates (p, @,z) referred to an origin at the focus, in terms of which

1
x =pcosp-~a , y=psin~ .

On the surface,

‘=po=&’
implying

--$1 1- Cos
x=-—

2a l+COS ‘

SO that

1
‘=~a-po o

3/2The radius of curvature of the cylinder is 2a(l- ‘/a) .

E-Polarization

The scalar quantity u now represents the

cation of the boundary condition (A. 3), we obtain

component E z, and on appli-

-ikpocos (p +@) ik@(po, @) m vm(Po, O
e +e

z
In=o ‘&)m ‘0 “
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Hence

V(PO)P)= -P&os@+~)> (A, 6)

Vo(po, p) = -1 (A. 7)

and

Vm(po, $)=o , m~l. (A. 8)

At any point P=P( p, ~ ) off the surface, the field is attributable to a

ray which is reflected at the appropriate point P. of the surface according to

the laws of geometrical optics. FoHowing Keller et al (1956, pp. 249 et seq.),

we introduce new (ray) coordinates s,@ where s is the distance along the

reflected ray at P measured from the caustic, and j3 is the angle which this

ray makes with the positive x sxis. Thus

p=$+@

and if so is the value of s at Po, then

Hence,

with

at P,

V(S, B)=4(S0, P)+S-S0

[1S=so+ POP .

The expression for Vo(s, ~) is

‘o 1/2
vo(s, p)=vo(so, p’){~) ,

as follows from the conservation of power. Hence, using (A. 7),

(A. 9)

s y-J
VO(SJ3)= -(+)
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implying

1/2 ik {V (SO, @)+s-so\
& - (:) ~

[
l+o(k-l ) ] .

aui . -ik ~05 ( ~ +a) ~-ikpOcOs(@+a) o

?G-
P=PO

.

Also

(A. 10)

(A. 11)

(A. 12)

{

aus. i k a
m Vm(s, p) m ~

* (s,@) ~
x 1

ikx(s , P)
%- T%

—+ —m & Vm(s, B) e

m =0 (ik)m m=o (ik)

and bemuse Vm=O, m ~ 1, on the surface, with Vo= -1,

1{
]1hs . -ik ~ + avo + ~ ~-1 ~ eiW(s, B)

Tii h TX
.

P=PO P=PO

On inserting the results of Eqs. (A. 29) and (A. 30), this becomes

39
aus

1{

P
a cos -

2

I

-ikpocos(@ +a)

x
= -ikcos(c?+~ ) + +0 (k-l) e

P=po Cos%+g ) (A. 13)

which can be combined with Eq. (A. 12) to give
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& (Ui+Us)

I

1!

\ ‘k :**(k-’i;:::(p+”) ●

= -2ikcoshr+2) 1+ ~ —

P=PO

Ih terms of Cartesian coordinates,

& (Ui+us) I
.

P=PO= -= {
(cos a-ay sincz) 1+ fk (cos a-ay sins)-3

)
+ O (k-z) e

ik(-x cos a + y sin a ) (A. 15)J

which is the result required. For a = O it is equivalent to the

by KeIler et al (1956) for the special case of axial incidence.

H-Polarization

solution obtained

The procedure is rather similar to the abo~re. The scalar u now rep-

resents the field component Hz, and on application of the boundary condition

(A. 4), we obtain

forp=p o. Hence
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Wo,$)=-pocos(fl+cd

aa before, snd

$-vo(Po, fJ)* ‘o,Cos(cz- ~ (A. 16)
-;

avm.l *
T

(A. 179+Vm(Poj@)~n=O, m?le

Introducing the ray coordinates (s, 6) once again, ~ (s, ~ ) assumes the

form (A. 9). Hence

a~-1 9VO(SOJ3)=(=) COS(CY++

ati~and on inserting the expression for / given in Eq. (A. 30), this becomes

VO(SOJ3)= 1, (A. 18)

implying

1/2
VO(S,13)=(:) .

Equation (A. 17) serves to specify VI on the surface as

v~(so, m ..-(2-J*)-1 w.

IT S.so

snd using (A.29) in conjunction with (A. 30), we have

acos3 ~

“(s0’6)=- * “

(A. 19)

(A. 20)
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Combining (A. 2), (A. 6), (A. 18) and (A. 20), the surface field is found to be



.0s39

1{ 2
3

}

-ikpocos (~+a).
(Ui+us)

‘2 1- %
+ O(k-’z ) e (A. 21)

P=PO Cos (c?+g )

in agreement with the result give% by Keller et aI [1956) for the SPSCM case

of sxisl incidence (CY=O). In terms of Cartesian coordinates,

(Ui+us)
I { }

=2 1-& (cos @aysina)-3+O(k-2) ek(-x cosa+y ‘in~ ,
P=PO (A. 22)

which is the result required.

Mathematical Relations

We present here a derivation of the two formulae that have been em-

ployed in the preceding sections.

From Eq. (A. 10, we have

and since S=S(X, y), #=fl (x, y), it follows that

To determine as/ax , as/~, ap/& snd aP/& , we first observe that
.

x=-~
2a

(A. 24)+{s-s. ) COS13+P0 Cos (B+)

y = (s-sO)Sinl%losin(6+) (A. 25)
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where

= J-**.2 ‘~ 3 B+cos P*
‘o 2a

and so=posec ~ — .
2

On eliminating s from (A. 24) and (A. 25), we obtain

2 p-a
(X +&)sin&ycos ~= ~a sins sec ~ (A, 26)

and differentiation with respect to x keeping y constant then shows that

a&= sin ~
ax

-—0
s

(A. 27)

Likewise, on differentiating (A. 26) with respect to y keeping x constant,

we have

8P COSp
~=T “

To find as/8x , it is convenient to express x in the form

\
x = Scosp+g (

&

)-1
COS3&

2

as follows by eliminating so and p. from Eq, (A. 24). If we now differentiate

with respect to x allowing s and (3 to vary, and then use Eq. (A. 27), we find

as 3sin@sincz
~ =Cosp+

c~& “

Similarly, from Eq. (A. 25),

sin 3&a
— Sins

2
y = ssinf3-$a

COS3 @—;
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and differentiation with respect to

she 3 Cos p Sinsas -—=
% Cosp+cosa “

y gives

On substituting the above results into Eq. (A. 23), the normsl derivative

becomes

We first apply this operation to ~0/s)Y2 . Since

and when s =s., this reduces to

+(>;’21=- *
s =s 2SOCO: ‘*

o T

Hence

(A. 29)
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Our final task is to apply the ogxwation (A. 28) to V(s, ~). Since

O(S,P) =Wo,m+s-so

it is obvious that

8_ti . ~
as “

Using the known expressions for V( so, P) and so, it can also be shown that

aQ~=3 p-a
i3~ Ta

sin@sec4 ~ ,

and on substituting these into Eq. (A. 28), we find

a~ @+cy
G=cOs T”

In terms of the oridinal coordinate @,

(A. 30)
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Appendix B — Some Mtegral Expressions

The results that we require can be deduced from the discontinuous in-

tegral of Weber and Schafheitlin (Watson, 1948, pp. 398 et seq.). From

formulae (4) and (5) on p. 405,

r

iitsiny
Jv(t) e dt=sec~e

?iv~
,Rev >-1,

o

and since

{

~(l)(t)= ~e-iv~ !Jv(t) - i J-v(t) cosec v T ,
v

we have
m

J

-i ~ ‘/2 Sinv(; :’y)
“tsin-fdt=2secTe~(l)(t) e– 1

u Sinvz (B. 1)

o

valid for I Re. v ~ < 1. Iu particular, for v = O ,

Differentiation of Eq. (B. 1) with respect to ~ yields

(B. 2)
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>
c1

. .

The integral converges when v = 1 and hence, on taking the limit as v ~ 1,

which is the other result that is needed.
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