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Abstract

The current and voltage on a nonuniform surface transmission line are

calculated by using the conventional transmission-line theory when the line

is excited by a step-function voltage generator at one end and terminated

by an RC-load at the other. To show how the optimal value of the capacitance

in the RC-load can be chosen the current and voltage waveforms are calculated ,

in detail for some typical dimensions of the transmission line. These cal-

culations show that an improvement in the behavior of the waveforms can be

obtained with an RC-load. Analytical expressions for the low-frequency and

high-frequency behavior of the input impedance of the transmission line are

derived and for intermediate frequencies the input impedance is calculated

numerically.
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I. Introduction

●
One of the common simulators for the nuclear electromagnetic pulse (ENP)

over a ground surface (earth) is a surface transmission line. Due to the 10SSY

nature of earth, a simulated EMP, especially its early portion, attenuates as
(1)

it propagates down the line. By making the transmission line nonuniform
(2,3,4)

instead of uniform it has been shown that an improvement can be obtained

on the performance (especially the high-frequency performance) of the surface

transmission line as an EMP simulator.

In a previous note a purely resistive termination of the transmission

line has been used to match the high-frequency limit of the characteristic

impedance of a nonuniform line. In this note we seek to improve the performance

of the lossy nonuniform surface transmission line with an RC-load at one end.

The line is assumed to be driven by a step-function voltage generator at the

other end.

The analysis employed here is based on the assumption that the behavior

of the actual surface transmission line simulator can be described by the

conventional transmission-linetheory. Comments on this assumption have been

made in Sensor and Simulation Notes 60 and 77 and they are also valid in the o

present consideration. Sections 11, 111 and IV give the underlying mathematical

details and numerical methods for the sample of calculations that will be

performed in the following and for a parametric study that may be undertaken

in the future. In this parametric study we intend to vary the ground permittivity,

the ground conductivity, the length of the transmission line, the height and the

slope of the perfectly conducting sheet (or wire array) above the ground. A

discussion of the parameters that will be used in the parametric study is given

in section V. In the sample calculations performed here we use some typical

values of these parameters and display current and voltage ~Javeformsin the

time domain at selected positions along the line. Also, we plot the input

impedance in a complex plane. It is found that, indeed, the performance of

the nonuniform surface Transmission line can be improved with an RC-load.
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●
II. Transmission Line Model

A schematic representation of the transmission line considered here is

shown in figure 1. The top plate of the transmission line is a perfect conductor

and slants downward towards the bottom plate with constant slope (~s). The

bottom plate of the line is a lossy medium (earth). We assume here that the

influence of the lossy medium can be characterized by a surface impedance Zg“
The transmission line is excited by a step voltage of magnitude V. at x = O and

terminated by an RC-load, ZL, at-x = d (see figure 1). The resistances l?,

and R
2
of the load are determined from the geometry of the transmission line,

while the capacitance C 5s to be varied. The width of the transmission line

is W.

Let I(x,t) and V(x,t) be the current and voltage, respectively, due to

a step-function voltage generator of strength Vo. Noreover, introduce the

normalized quantities

T = (Ct - x)/d , (1)

h(x,~)
-1 -1

= yow V. ZoI(x,t)

and

V(X,’T)= v(x,t)/v ,
0

(2)

(3)

where y. is the height of the transmission line at x = O, Z. is the free space

wave impedance (Z. s 377Q) and c is the vacuum speed of light.

Using conventional transmission line theory together with Fourier*s

integral theorem we get the following integral representations for h(x,~) and
/l\

h(x,’r)=+

-m

cm

~

u(x,k)e
jkd~

dk (4)
jk z(O,k)

-m

u(x,k)z(x,k)e
jkdr

cik (5)jk z(O,k)
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where u(x,k) satisfies the differential equation

ulr- (2jk+~~/y)u’ + (jk/y)(&s -Zg/Zo)u= O

and

y(x) = y. - g~x

.

●
(6)

(7)

is the height of the top plate over the bottom plate. The normalized impedance,

z(x,k), is given by

z(x,k) = [Y(X)/yo~Cl + jk-lu’(x,k)/u(x,k)] . (8)

Here, as well as in the preceding, the primes denote differentiationwith

respect to x.

Assume that the effect of the lossy medium can be taken into account by

a surface impedance defined by

Zg(k) = ~jkcpo/(a + jkcs)
@

(9)

where ~ and E are the conductivity and dielectric constant of the lossy medium

respectively. The characteristic impedance, Z(x,k), and the characteristic

admittance,Y(x,k),both per unit length of the transmission line are then

given by
(1)

Z(x,k) = jkcwoW-ly(x) + Zg/W (lo)

and

Y(x,k) = jkccoW/y(x) .

The boundary conditions for u(x,k) are

u(O,k) = 1
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and

uT(d,k)/u(d,k) = jk - Y(d,k)Z~(k)

where

ZL(k) = RI(I + jkcR2C)/[1 + jkc(Rl + R2)c] .

(13)

(14)

In appendix A some analytical properties of u(x,k) are given, and in

appendices B and C we derive asymptotic expansions of u(x,k) valid when

Ikdl << 1 and \kdl >> 1, respective~y.

Equation (6) was solved numerically in the following way. Starting at

x = d we assume the boundary conditions uo(d,k) = 1 and u~(d,k) = jk - Y(d,k)ZL(k).

Making use of the Runge-Kutta methociwe then compute uo(x,k) backward along

Xtox= o. The solution of the differential equation (6) satisfying the

boundary conditions (12) and (13) is then given by u(x,k) = uo(x,k)/uo(O,k).



111. Input Impedance

The input impedance .Z<=of the transmission line is given by
.!- LA

Zin(u) = Zoyow-lz(o,de)

where z(x,w/c) is defined in equation (8).

By putting

‘1
= zoyo/w

it follows from the analysis in appendix B that we have the
-1 -2

expansion of z(x,k), valid for udc <10,

where

-jkyo~a~{[2&~1 + 1/2 cryod-$;][l ’11- xd

- 2ydd-lg~lln[y(x)/ydl~+O(k2d2) .

k= u/c ,

Y~ = Y. - {~d

{C = yoC/dWco

~: = d/y~aZo

and cr is the relative dielectric constant of

(L5)

(16)

following asymptotic

-1 -1
- Y:3Y0 c~ )

(17)

the lossy medium.

In order to minimize the reflections from the load at high frequencies

we put
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RlR2/(Rl -i-R2j = Zoyd/W (18)

(see equation (C5) in appendix C). For u > Uo, where

u= 10 max{c~sy~l&~l,c/d,a/co} ,
0

it follows from the analysis in appendix C that

z(x,k) = {y(x)/yo}{l - jk-ld-l[Btsdy-l(x)

2f3+le-2jk(d-x)ll+ ~(k-2d-2)
- a[yd/y(x)] J (19)

where

B
-1 +

= 1/2 (g5 &r - 1)

and

Notice that with the above choice of RI and R2 we have

lim z (u.))
.+(-)‘n

= lim Z (w)
,JJ-xO‘n

= zoyo/w .

For intermediate frequencies the input impedance was calculated numerically

and the result is displayed in figures 14-19.The choice of the parameters as

well as the values assigned to them are discussed in section V. Ideally, we

would like the input impedance to be yoZo/W for all frequencies.



Iv. Waveforms for a Step Voltage

●
A. Current Waveforms

The current on the transmission line due to a step voltage generator

is described by (see equation (4))

m

J
jkd~

h(x,~) =+
u(x,k)e

dk .
jk z(O,k)

-m

The integrand is singular at k = O. To evaluate this Fourier inversion

integral numerically we put

a

h(x,~) = [1 - ~a(mT)-$lU(T) + (2#
~
H(x,k)e

jkd~dk
(20)

-m

where U(T) is the unit step function and

H(x,k) = - jk-~u(x,k)z‘l(O,k) +jk-l+ca~ .

It follows from appendices A, B and C that H(x,k) is bounded for k real and

that as k approaches infinity H(x,k) tends to zero sufficiently rapidly for

the integral to converge.

The initial value theorem together with the analysis in appendix C

gives

lim h(x,~) = CY(X)/Yo16 (21)
T+o+

and, of course, this result agrees with the corresponding result in reference 1.

The result of the numerical computations are shown in figures 2-7. The

discontinuities in the slopes of the curves are due to reflections of the wave

front at the load and a~

unity.

B.

and

Voltage Waveforms

The voltage on the

(20))

the generator. Ideally, we would like h(x,T) to be

transmission line is described by (see equations (5)
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w

dto(m~y:)-%(~) + (2Tr)
-1V(X,T) = [1 -

j
E(x,k)e

jkd~dk

-m

where

(22)

E(x,k) = -l&- jk-lu(x,k)z(x,k)z‘l(O,k) + jk-l + COYO

Moreover, we have

lim V(X, T) = [y(x)bol@+l (23)
~+ w

and, of course, v(O,T) = U(T). The result of the numerical Fourier inversion

is shown in figures $-13.

In the next section, we first introduce a set of parameters suitable

for a parametric study of the current and voltage waveforms on the transmission

line considered here and then calculate the waveforms for some typical values

of these parameters. The complete parametric.studywill be undertaken in

a future note.
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v. Numerical Results

Before we proceed with the discussion of the numerical results we list

all symbols that will be used.

A. List of Symbols

h(x,~) =

V(x,t) =

h(~,T{&r,~a,~o,~~,~C)= yo#@#x,t)

v(g,Tl&r,&o,go,gs,5c)= v(x,t)/vo

to = YOM-

Ec
-1

= yoC(dWso)

c = x/d

T = (et -x)/d .

v = Ud/c

I(x,t) = current on transmission line

V(x,t) = voltage on transmission line

VoU(t) = generator voltage

U(t) = unit step function

Zin(u) = input impedance of transmission line

& = relative dielectric constant of Iossy mediumr

o = conductivity of lossy medium

c = capacitance of RC-load

<s = slope of transmission line

Y. = height of transmission line at generator

.

●
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d=

w=

x’

t =

a=

c=

length of transmission line

width of transmission line

distance along transmission line from generator

time

angular frequency

vacuum speed of light,

Z. = free space wave impedance

e = dielectric constant of free space
o

B. Current and Voltage Waveforms

From the analysis given in sections 11 and IV we see that two variables

(T,5) and five parameters (Sr,50,Eo,~s,5C)are needed to describe h and VY i“e”j

The time variations of v and h for ~ = O, 0.5 and 1 were calculated in

the following way. First, the differential equation (6) was solved numerically

by using the Runge-Kutta method. Then, the inverse Fourier integrals (20)

and (22) were evaluated numerically hereby making use of the high-frequency

approximate expressions derived in appendix C.

The values of the parameters zr,~o,co,gs and gc were chosen in the

following way. For each fixed combination of values of er,to,co and gs we

have chosen the value of Cc that would give as closely as possible the ideal

current and voltage waveforms which are given by

hi(~,~) = (1 - 55@-lvi(c,T) =U(T) .

As mentioned earlier the wave front is reflected at the load and at the

generator. In general, for a value of Ec less than the chosen value these
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reflections cause a drop in the current waveform and an overshooting in the

voltage waveform. On the other hand a value of CC greater than the chosen ●
value will make the current waveform overshoot its desired value of unity and

the rise time of the voltage waveform will become larger. However, a deviation

less than 20% of CC

waveforms.

In our sample

from its desired

calculations the

value has negligible influence on the

parameters are given the values

respectively. A typical

?S=o, .o1, .02, .04, .06, .lo

&c= .1, ●1$ .1, .3, .S, .5,

parametric values can be

surface transmission line that gives the above

described by

d=50m

Y. =6In

yd = 6, 5.5, 5, 4, 3, 1 m

RI/W = R2/W = 2262 S2m
-1

Clw= 7.4, 7.4,
-1

7.4, 22, 37, 37 pFm ,

respectively (1 pE = 10’12 F).

Both the current and the voltage waveforms are graphed for O S T S 7 and

for g = O, .5, 1 in figures 2-13. The voltage

c. Input Impedance

Introduce the normalized input impedance

at C = O is simply a step function.

z by
in
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(24)

From the analysis in sections II and III we see that one variable (v) and

five parameters (er,~a,go,g~,CC)are required to describe Zin, i.e.,

where the normalized frequency v is defined by

V = udlc . (25)

For each combination of values of the parameters zr,co,~o,t~ and CC

we have graphed Zin in a complex diagram with v as a variable (see figures

14-19). ASV+COZ in spirals towards 1.

For given cr,<G,60,<s let c: be the value of <C that minimizes A, the

maximum deviation of zin from unity over O < v < ~. Let this minimum value

of A be denoted by 6, i.e., in mathematical terms

(26)

In table 1 we give 6 and c: for different values of $~ with c = 10, to = .607r
and Es = .12.

o .48 .1

.01 .39 .1

.02 .30 .1

● 04 .25 .3

.06 .30 .5

.10 .68 .5

This t; that makes the input impedance deviate the least from its desired value

of unity also gives the most desired current and voltage waveforms.
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Figure 1. Schema~ic representation of a nonuniform transmission
slope, terminated by an RC-load and excited by a step
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line with constant
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Figure 2. Current wave forms on nonuniform transmission line excited by
a step voltage when sr=lO, CO=.607$ &o=.12, g~=O, gc=.l.
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Figure 3. Current wave forms on nonuniform transmission line excited by
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Figure 6. Current wave forms on nonuniform transmission line excited by
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Figure 7. Curretitwave forms on nonuniform transmission line excited by
a step voltage when sr=lO, gG=.607, 5.=.12, ss=,lO, CC=.5.
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Figure 8. Voltage wave forms on nonuniform transmission line excited by
a step voltage when s-=10, g==.607, ~n=.12, Cn=O, <P=.l.
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Figure 9. Voltage wave forms on nonuniform transmission line excited by
a step voltage when Er=lO, :.=.607, EO=.12, &m, Ec=.l.

22



e

1*1

1.0

.9

.8

.7

.6

.5

.4

.3

.2

. A

.

0 1 2 3T4 5 6 7
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Figure 11. Voltage wave forms on nonuniform transmission line excited by
a step voltage when cr=10, $.=.607, &o=.12, ES=.04, &c=.3.
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Figure 12. Voltage wave forms on nonuniform transmission line excited by
a step voltage when cr=lO, CO=.607, CO=,12, &s==.06,&c=.5.
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.
,

The solution,

can be expressed in

w and M (5)
K~!J K>l.J9

Appendix A

Solution of Equation (6)

u(x,k), of the differential equation (6) in section II...

terms of Whittaker7s confluent hypergeometric functions,

u(x,k) = Cl(k)Fl(x,k) + C2(k)F2(x,k)

where

~~e
z/2

Fl(x,k) = w
2jk ~

K,O(z) ‘

~sez”2
F2(x,k) = M

2jk ~
K,O(z) ‘

z =. 2jky(x)/g~ ,

and

-1 -1
K = 0.5 Zgzo Es ,

The constants of integration, Cl(k) and C2(k), are determined from the

boundary conditions at x = O and x = d given by equations (12) and (13) in

section II. Thus,

Cl(k) = [F;(d,k) -F(k)F2(d,k)]/N(k)

C2(k) = [- F{(d$k) + F(k)Fl(d$k)]/N(k) /

(Al)

(A2)

where

N(k) = Fl(0)k)~F~(d,k) - F(k)F2(d,k)] - F2(0,k)~F;(d,k) - F(k)Fl(d,k)]
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and

F(k) =jk- Y(d,k)ZL(k) .

From Lemma 2 given below it follows that N(k) # O for k real and k # O.

Thus, u(x,k) is analytic for k real and k # O.

In the two lemmas given below we will make use of the input impedance

Zin(k) = ZoyoW-Lz(O,k), where z(x,k) is defined by equation (8) in section 11.

Lemma 1. The input impedance Zin(k) ~ O for k real and k ~ O.

Proof. Suppose the transmission line is driven by a current generator

jckt) and r.m.s. unity. The time averagedwith harmonic time-dependence (e

power, Pin, fed into the transmission line from the generator is then

pin(k) = Re{zin(k)} *

The time averaged power loss in the load, PL, is

pL(k) = Iu(d,k)12Re{ZL(k)}= lM(d,k)/N(k)12Re{ZL(k)}

where Z~ is given by equation (13) in section 11 and

M(x,k) = E~zr(l/2 - ~)e-z .

●

(A3)

This expression for M(x,k) is easily obtained from the Wronskian for the

Whittaker functions. Because of the passive nature of the transmission line

we have

(A5)

Suppose there exists kl real, kl # 0, such that Zin(kl) = O. Then

Pfn(kl) = O, while from equation (A4) it follows that PL(kl) > 0. This

contradicts equation (A5). Tnus, Zin(k) # O for k real and k ~ O.
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Lemma 2. The input admittance Yin(k) = Z~~(k) # O for k real and k ~ O.

Proof. Suppose the transmission line is driven by a voltage generator

with harmonic time dependence (ejkct) and r.m.s. unity. The time averaged.
power fed into the transmission line is then

Pin(k) = Re{Yin(k)~ (A6)

where

‘1(k)yin(k) = Zin = N(k)/A(k) .

From Lemma 1 it follows that A(k) i.sanalytic and A(k) # O for k real and k # O,

The time averaged power loss in the load is

PL(k) = \M(d,k)/A(k)12Re{ZL(k)} (A7)

and again we have

pin(k) z PL(k) . (A8)

Suppose there exists k2 real, k2 ~ O, such that Yin(k~= O. Then

pin(k2) = O, while from equation (A7) it follows that PL(k2) > 0. This is

in contradiction to equation (A8). Thus, Yin(k2) # O for k real and k+ O.

Using the same kind of argument as in the proof of Lenmia2 one can

easily show that u(x,k) # O for k real and k # O. Thus, z(x,k) is analytic

for k real and k # O.
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Appendix B

Approximate Solution of Equation (6) for Low Frequencies

In this appendix we will find an approximate solution of equation (6)

in section II valid for low frequencies. Substituting

u’(x,k)/u(x,k) = f(x,k) +jk+ 0.5 &s/Y(x) (Bl)

and

h(x,k) = k2 - jk ZgZ~ly-l(x) + 0.25 t~y-2(x)

into equation (6) in section 11 we arrive ae the Ricatti equation

f’(x,k) + fz(x,k) +h(x,k) = O

(B2)

(B3)

with the boundary condition

f(d,k) =

Here ZL(k) is analytic on the

k = kl,

-1 -1
- jk WZLZO yd - 0.5 gsy;~ .

complex k-plane except for one simple pole at

-1
‘1 = j[c(R1+R2)C] .
.

In appendix Awe have shown that f(x,k) is analytic for k real and k ~ 0.

‘Thesurface impedance Zg has a branch-point at k = O, and for lkd~ ~~ 1 we can

express h(x,k) in equation (B2) as

h(x,k) = (jk)3”2g(x,k) + I(x,k) (B4)

where g(x,k) and fl(x,k)are analytic functions of k for \kd/ << 1. Suppose

now the following expansion of f(x,k) is valid for Ikdl << 1

.

a
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,

f(x,k) = (jk)ap(x,k)i-q(x,k) (B5)

where p(xjk) and q(x,k) are analytic functions of k for Ikdl << 1 and

p(x,k) + O. Equations (B3)-(B5) then give

(jk)ap’(x,k)+q’(x,k) + (jk)2ap2(x,k)+q2(x,k)

+ 2(jk)ap(x,k)q(x,k)+ (jk)3/2g(x,k) + L(x,k) = O . (B6)

From the analyticity condition at k = O it follows that equation (36) can be

split up into two different systems of equations, namely (I) for a = 3/4,

p(x,k) and g(x,k) must satisfy the system of differential equations

p’(x,k) + 2p(x,k)q(x,k) = O

p2(x,k) + g(x,k) = O / (B7)

q’(x,k) + q2(x,k) + fl(x,k)= O J

(11) for a = 3/2, p(x,k) and q(x,k) must satisfy the system of differential

equations

p’(x,k) + 2p(x,k)q(x,k) + g(x,k) = O

1

(B8)

q’(x,k) - jk3p2(x,k) + q2(x,k) + R(x,k) = O .

However, it is easy to show that the system of differential equations (B7) is

overdetermined and hence has no solution. Thus, we have a = 3/2, and p(x,k)

q(x,k) must satisfy the system of differential equations (B8). By expanding

p(x,k), q(x,~)Y g(x,k), !(x,k) and f(d,k) in a power series in k and sub-

stituting these expansions into the system of equations (B8) we get the

following approximate solution of f(x,k), valid for Ikdl << 1,
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f(x,k) = qo(x) + jk ql(x) + (jk)2q2(x)i-(jk)3’2po(x) ●
5/2 (x) +.0(k3d3)+ (jk) PI (B9)

where

qo(x) =

C@) =

q2(x) =

po(x) =

PI(X) =

cc =

where

and

- 0.5 z&x) ,

- Y#y(x) ,

[yo/y(x)]{dEc + Yo[~‘lIn[y(x)/yd] - 0.5[y2(X) - y~]Y~l~~l} ,

gad-+(x - d)yo/y(x) ,

‘1 + 0.5 &yO/d](d - x)Y;lEg=d-%y:yd/y(x)]{[~E~

- 2E;21&Y(x)/Ydl} s

yOOWd&O

Moreover, we have for lkdl ‘< 1

3/2
u(x,k) = 1 +jkul(x) + (jk) U2(X) + 0(k2d2)

Ul(x) = x - yo&jllnEyo/y(x)l

(B1O)
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The approximate expression for f(x,k) given by equation (B9) was used

when deriving an approximate expression of the input impedance valid for low

frequencies (equation (17) in section II). Together equations (B9) and (B1O)

were used to obtain equations (20) and (22) in section III.
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Appendix C

Approximate Solution of Equation (6) for High Frequencies

We will here derive an approximate expression for the solution of the

differential equation (6), u(x,k), valid for large k. In the frequency domain

the current on the transmission line, I(x,k), satisfies che differential

equation(’)

With

s(x,k) satisfies the

S1’-

and with

p(x,k) satisfies the

p“ +

~l!
- (Y1/Y)I’ -YZI = O .

I(x,k) = Il(k)s(x,k)e
-jkx

differential equation

(2jk+Es/y)s’ + (jk/y)(Cs - Zg/Zo)s = O

I(x,k) = 12(k)p(x,k)e
jkx

differential equation

(2jk - <~/Y)P’ - (jk/y)(~s+Zg/Zo)p = O

Thus, (see equation (6) in section 11)

2jkx
u(x,k) = s(x,k) + p(x,k)e .

For k large we make the expansion

s(x,k) = ka ~ (jk)-msm(x)
m=O

.

(cl)

(C2)

(C3)

(C4)

(C5)
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,

p(x,k) = ka ~ (jk)-mp (x) .m (c6)
m.=o

The boundary condition u(O,k) = 1 gives

a = o (C7)

and

Sin(o)+ pm(o) = dom (C8)

where 6~ is the Kronecker symbol. The boundary condition at x = d yields

(see equation (13) in section II)

u’(d,k)/u(d,k) = jk - Y(d,k)ZL(k) . (C9)

Expanding equations (C2), (C3) and (C9) in a power series in k-l and making

use of the fact that WRIR2 = ZO(RI + R2)Yd and so(x) # O we arrive at the

following expression for u(x,k), valid for Ikdl >> 1,

u(x,k) = f(x) - (j/kd)[h(x)+a g(x)e-2jk(d-x) - a f(x)e-2jkd~ +o(k-2d-2) (cIo)

where

f(x) =[Y(x)/Yol~ ,

g(x) = [Y(x)/Yol-~-l ,

h(x) = 0.5 ,62&~d[y-l(x)- y:l] + 0.25 dcrZo&s&r‘1 ‘3/2f(x)ln[yo/y(X)l ~

and
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The expression for u(x,k) given by equation (C9) was used when deriving

equation (19) in section 11 and in the numerical evaluation of the integrals ●
in equations (20) and (22) in section 111.
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