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I. A Statement of the Problem

b

●

.

In note 106 [Ref. 1], we have computed the capacitance and equivalent

area of a disk in a circular aperture. The purpose of that computation was

to obtain accurate information on the low-frequency characteristics of the

“circular flush-plate dipole” sensor described in note 98 [Ref. 2]. In the

present note, we will make similar computations for the “single-gap hollow

spherical dipole” sensor described in note 91 [Ref. 3]. Because the purpose

here is so similar to that in note 106, we need no further justification of

the two particular boundary-value problems we will solve. Therefore, in

this section, we will merely give a precise statement of these boundzry-

value problems and discuss them briefly.

Figure 1 shows the conductor configuration we will study. In a spherical

coordinate system, (r,(3,$),the infinitely thin conductors coincide with the

surfaces (r = a; O< o<a)and(r=a; n- a<6<n). Conductors of this

shape have been called “spherical bowls” by Smythe [Ref. 4, p. 204], and

‘others. We will use that term here.

In order to determine the capacitance between the two bowls in figure 1,

we will first solve the Laplace equation,

V2*C=o r>aor r<a (1)

for the electrostatic potential ~c, where $= is +1 on the top bowl, -1 on

the bottom bowl, and vanishes at infinity, Also, $= and 3$c/~r are

continuous through the surface (r = a; a ~ 0 < ~ - u). The charge on the top

bowl may be computed from $C by evaluating an integral over the surface of

that bowl, that is,

The capacitance is then determined by

(2)

Q
c *C .=— (3)



In order to de~ermine the equivalent area of the two-bowl sensor, we

will first solve the Laplace equation for the electrostatic potential, ~a, of

the extra field induced when the two bowls, at the same potential, are immersed

in an external electrostatic field of strength I./aparallel to the axis of

symmetry of the bowls, IrIother words, we will.solve 9

Vzva = o -f>aor jf<a (4) ●

for the electrostatic potential $a, where ~a is equal to cos 6 on the bowls

and vanishes at infinity. In addition, $a and ~Ya/~r are continuous

through the surface (r = a; a < 6 < IT- a). Once ~a has been obtained, the

charge on the top bowl, Qa, may be calculated by using an equation like

equation (2). The equivalent area is then determined by

aQa
A
eq=~ s

(5)

The two boundary-value problems stated above are three-part mixed

boundary-value problems. In general, such problems are difficult to solve.

Yet, for certain special shapes of the boundary on which the potential or

its normal derivative is specified, methods exist for the reduction of such

problems to the solution of rather simple Fredholrx!integral equations of the

second kind [Ref. 5, Chap. 6]; it is fairly easy to solve such equations

numerically. In the next section, we will follow a simplified version of

Collins’s method [Ref. 5, Sect. 6.5; Ref. 6] to reduce each of our particular

problems to the solution of a simple integral equatioc. We will discuss

some of the properties of this integral equation in the third section. In

the fourth section, we deduce approximations for C and A for the cases when
eq

the bowls are either very small or almost touchfng. The numerical method

I used to solve the integral equation derived in che second section is discussed
!

in the last section.

4
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II. A Derivation of an Integral Equation

It is clear, for both our boundary-value problems, that ~(r,e) is

antisymmetric about the 0 = T/2 plane. This may be assured by setting

$(r,6) = 4(r,6) - Q(r,r - 8) (6)

where ‘$(r,e)also satisfies the Laplace equation. The most general axisym-

metric solution of the Laplace equation that is continuous, vanishes at

infinity, and is finite everywhere may be written in the form

‘$(r,e)= ~ An(r/a)n pn(cos e) r<a

n=o

(7)

o(r,e) = ~ An(a/r)n+l Pn(cos e) r>a,
n=o

‘wherethe Pn’s are Legendre polynomials [Ref. 7, Sect. 5,4] and the An’s are

constants to be determined by the boundary conditions at r = a. For both of

the problems discussed in the previous section, we may state the conditions on

$atr=aintheform

$(a,e) =V(e)

$(a,e) = - v(iT- e)

lim w=
ar

~im ~!(r,e)

r+-a- arr+a+

These conditions will be satisfied if

@(r,8) - O(r,m - f3)= v(e)

.

5
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i.e.

~ {1 - (-l)n}A P (COS 6} = V(8) O<R<Q
n=o

nn

w

~ (2n + l)A P (COS 6) = 0nn
~<g<~

n=o

(8)

(9)

We may use a Mehler representation for the Legendre polynomial [Ref. 5, P. 57;

Ref.

or

e
a—
T I
o

This

7, p. 235] to rewrite equation (8) in the form

e

+ : {1 - (-l)nlA
I

cos(n + %)u du—= v(e) O<g<a
n

n=o o (Cos u - Cos 6)%

(
m

du

)
~ {1 - (-l)*)A cos(n +$j)u = V(13) . 0<6 < a

\COS U - COS 6}%
n

n=o

may be looked upon as an integral equation for the function within the

large parentheses. Its solution, from the appendix, is

e

~ {1 - (-l)n}A cos(n + %)6 = ‘&
J

sin u V(u)du C)<6<(X
n

n=o a o (Cos u - Cos 0)%

We define the right-hand side of this equation, which is a known function when

V(u) is specified,as h(9). We then can write

~ An COS(Il + $)6 = mh(0) + ~ (-l)n An cos(n+~i)6 0< 6 <~ , (10)

n=o n=o

Equation (9) may be transformed in a manner sim:i.larto that used above for

equation (8) if one uses the alternative Mehler representation

a=
Pn(cos e) = ~

J

sin(n + $)u du

e (Cos 6 - Cos u)+ ‘

.

(11)

.

.7



The result is

4
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,

j A COS(ll+3)@ = O l-J<8 <T. (12)
n

n=o

The function defined by the series on the left-hand side of equation (12) will

be denoted g(e). It is then clear, from equation (12) and orthogonality, that

LL

An=;
~
C(e)cos(n+%)0d8 . (13)

o

If one substitutes these values for the An’s into equation (10), he obtains

am

g(e) = h(e) + ~ (-l)n cos(n+%)O ● ~
J
:(e’)cos(n +%)e’de ’ O<e<a

n=o o

By interchanging the order of summation and integration in this equation,

and then rewriting the summation in closed form, one obtains

a

g(e) = h(e) ++
1{ }

‘-,’) +sec(*) C(e’)de’sec(— OC e <a . (14)

o

The An’s can he determined, once t(e) is

Therefore, the solution of equation (14)

solution of our boundary-value problems.

known, by using equation (13).

immediately gives the complete

But, since only Q+, the charge on

the top bowl, is needed for the determination of C and A we don’t really
eq’

need complete solutions and may proceed more simply as follows.

a

Qt = 2~a2
\
o(e)sin 0 de (15)

o

where, from equations (6) and (7)

= lim
{
a~(r,e) -
arr+a- ao(%-e)}- ;:+{a%’e) - a%n-’)} -

For e < a, we may invoke equation (12) and drop the second term in each of the

7
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@ limits. Thus,

a(e) = ~im ~$(r,O) _ ~im ~~(r,e)
c ar arr+a- r+a+

i.e.
aa(6) =

~ (2n + l)Anpn(cos e)E
n=o

or, from equation (11),

au(e) ~
~ (2n+1)A *g]

sin(n + %)u du
E n ‘fr

n=o * (Cos 6 - Cos u)%

e

where the upper limit may now be taken to be a because g+(u) = O if u > a.,

Now, from equations (15) and (16),

a a

Qt=- rfi as
J
sin 0 d6

I

~’(u)du

~ (Cc)s6 - Cos u)% “
o

After interchanging the order of integration, performing

and integrating the remaining integral by parts, one may

equation as

the inner integral,

rewrite the above

a

Qt = 8aE
~
~(u)cos(u/2)du .

0

It is now evident from equation (3) that the capacitance between two

bowls of half-angle a is given by

a
c—.
4ac ~

Gc(6)cos@/2)de

o

... .,



where CC(9) is the solution of equation (14) when

e

h(8) =JL
J

sin u du
4 de = cos(e/2) .

0 (Cos u - Cos e)+

Similarly,

where Ca(9) is the solution of equation (14) when

e

h(e) =~~
~

sin u cos u du
~ de = cOs(e/2)14 COS2(0/2) - 3} .

0 (Cos 6 - Cos u)%

We will make one further transformation to simplify equation (14) by

setting

x = tan(e/2)

cOs(e/2)g(e) = f(x)

cOs(e/2)h(e) = g(x) .

These substitutions reduce equation (14) to

L

f(x) -:
~

f(x’)dx’
- X2X,2 = g(x) , O<X<T

1
0

where T 5 tan(a/2). The expressions for C and A now become
eq

&=z
T fc(x)dx

4ca J01+X2

(17)

(18)

(19)

where fc is detemined from equation (17) by setting

.. ,-.



g(x) = 1
1+X2

and fa is the solution of equation (17) when

1 - 3X2
g(x) =

(1+X2)2 “

Equations (17) through (21) are the ones on which the numerical work was

performed.

(20)

(21)

10
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III. Some Properties of the Integral Equation

Although we will give a numerical method of obtaining accurate values

of the capacitance in the last section of this note, there is still some use

in deriving analytical approximations to this quantity. In this section, we

will show that the approximations to the capacitance that result from an

application of the method of successive approximations [Ref. 8, p. 7] to

equation (17) will converge to the true capacitance, but not very quickly.

We will then present a variational representation for the capacitance which

will be used in the next section to obtain an accurate approximation formula.

The method of successive approximations is the name given to an iterative

application of the formula

fn(x) = 1
I

+2 T ‘n-l(~’), dx’ (22)
1+X2 ‘J-xx’

where

1
fo(x) = — .

,1+X2

We will show that if we define

Cn
T

\

fn(x)dx

G:
2

1+X2
o

then

C-cn
+Oas

c
n+co.

In fact, from equations (17) and (22),

T f(x’) - fn_l(x’)
f(x) - fn(x) =:

J 2 ,2
dx’ .

1 -xx
o

Thus, defining

T

Ez
J

If(x) - fn(x)]dx ,
n

o



it follows that

while

T
2

& =—
on J1

0

f(x’)dxdx’

1
2 ,2

-xx

2f(x’) ● 1 + X’2
● dx’dx

1 + X’2 2(1 - X2X’2)

c
‘z’K”

From equations (23) and (24) it follows that

while, from the definitions of C and Cn,

C-cn

4sa

T f(x)

J

- fn(x)
= 2 dx

1+X2
o

T

SE*2
\

dx
n 1+X2

o

From equations (25) and (26), it is now clear that

C-cn

c
<cYKn+l .

(23}

(24)

(25)

(26)

(27)
.

b

But
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<

0

< 1

hence equation (27) shows that the approximations to the capacitance converge

to the correct value. Nevertheless, since K can be almost as large as T/4,

it may take several iterations before an acceptable approximation to C is

obtained. In fact, if ~ is close to its maximum and the equality sign in

equation (27) were to hold, it would be necessary to make about thirty

successive substitutions to obtain .1% accuracy in the capacitance.

The above results indicate the need for a more efficient method of,’
approximating the capacitance than the straightforward iteration procedure.

This more efficient method can be based

the capacitance which may be derived by

(18),and (20). This representation is

rT 12 TT

on a stationary representation for

the usual method from equations (17),

T 1-1

The application of this equation will be considered in the next section.

(28)

13
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IV. Asymptotic Approximations

If one substitutes

fo(x) = 1
1+X2

into equation (28), the integrations can be performed easily and the result is

2
c

Tc
o

(29)G“ co(7r-a) - % a sin a + cos a ln(cos a)

where

co
a + sin a

c =—=
o 4sa 2

(30)

is the normalized zero-order approximation to the capacitance, as defined in

the previous section. It is interesting that Co is also the effective cap-

acitance of two capacitors in series, each of which has a capacitance equal

to that of an isolated spherical bowl of half-angle a ~Ref. 4, p. 204].

Equation (30) is not very accurate, but equation (29) is accurate to four

figures for a less than 50°. Equation (29) is plotted in figure 2 along

with the more accurate values derived from the numerical solution cf equation

(17),

is

of

to

To obtain an approximation to the capacitance for the case where a

close to r/2 we will proceed differently. For that case we may make use

previous work [Ref. 3, eqs. (105) and (110)] to say that an approximation

the admittance between the two bowls is

Y = ‘o(y-fn~ + ‘ext)

‘m(2n+1)~P#O)]2 2Fl(-~,~;~;62)
IL

ka jn(ka) ka hn(ka)
=Yo ~

n odd n(n+l) kajn(ka)j’ - ~ka hn(ka)~’1
.

where B = Tr/2”-a, as shown in figure 1. For smi~ll k, equation (31) reduces

to the admittance of a pure capacitance whose value is given by

, (31) 0

b



But, for n odd [Ref. 10, p. 334],

n+1

P:(o) = (-) 2 p;;,,..

2 r(n/2 + 1)
‘~r(n/2+ .5) ‘

while [Ref. 7, p. 39 and p. 213],

(32)

(33)

LL LL 11

= ~tpo>-m(l ‘2 (0,-%)(1-2B2)+(1-6)P - 262) , (34)
n n

where P(U’V)(X) is a Jacobi polynomial [Ref. 7, sect. 5.2]. For small f3the
3 n
,. above equation may be approximated by

n-i-ln,
2FI( 2 ,29ZB 2, s P:o’-+)(l - 2!32) .

But [Ref. 7, p. 211 and p. 228]

Jo,+)(l - 2B2) = JOYO)(J1 - f)
n n

—.

= Pn(Jl - flz) (35)

where Pn(x) is a Legendre polynomial [Ref. 7, sect. 5.43. Now one can use

equations (33), (34), and (35) to write equation (32) in the form

2
c r(n/2 -f-1)

GW 1~zodd[Jt:::l“r(n/2+.5) ‘n(Jl - 62) “
(36)

.,



With the use of the asymptotic formula [Ref. 7, p. 121,

r(n/2 + 1)
r(n/2+ .5)s +

;(1++) ,

equation (36) may be rewritten as

(37)

(38)
*

where D(B) accounts for the error introduced by using equation (37) for even

the lowest values of n. We will approximate D(B) by D(O). Its value, from

a numerical summation, is

D(0) = .0130 .

Now equation (38) may be rewritten

Pn(~l-f3’)+ D(0) .

The first sum in the above equation may be performed analytically ~Ref. 7,

p. 239]; the second sum may also be reduced to well-known forms if, in that

sum, we set 6 as zero. These

c

()

In l+J1-f32
G= $

or, neglecting terms of order

—= ,9872 - in B
4~a

(39)

This equation is correct as @ approaches zero, and it is in error by less than

a quarter of one percent of !3is less than a tenth; if plotted on figure 4, it

would be indistinguishable from the true curve. *

An approximation to A for small 6 may be derived by calculating the
eq

charge induced on one half of a closed conducting sphere immersed in a uniform
e

electrostatic field. The result of this calculation is

16



A = 3na2
eq

in agreement with reference 3. Actually, if we write

A = 3ra2 sin u (40)
eq

we are in error by less than two percent for a greater than 45°.

For small a we may use the zero-order

(17) to say that

Ae
+

3~a2 sin a

approximate solution of equation

8
5’

In the following table we give an indication of the errors involved

in the various approximations derived in this section.

Table of Relative Error

a(degrees)

o

10

20

30

40

50

60

70

80

90

Eqn. (29) Eqn. (39)

o co

< 10-3% 254%
-32< 10 102%
-3

Clo% 52%

- .010% 29%

- .050% 15%

- .196% 7.6%

- .758% 3.0%

-3.166% .7%

- 100% +0

Eqn. (40)

17.809%

12.100%

7.841%

4.758%

2.628%

1.261%

.481%

.120%

.010%

o

17



v. Discussion of the Numerical.Technique

In order to obtain numerical data from equation (17) one can use a

numerical quadrature formula for the integral. One of the most accurate of

these formulae is Gauss’s. Using Gauss’s formula, one can write

N

,[

~ W(xj)

/

: ~.,..— f(Xj) = g(xi) + =N(xi) , i=l, ...N (41)
j=l ‘g m l-x:x;

where

= My‘j

W(x) = Tw(N)j j

The X$N) (N)are the roots of the Legendye polynomial and the w. are the Gaussian
3

coefficients for the interval (0,1) cRef. 10, p. 922].

,’Inequations (41), cN(xi) represents the error introduced into equation

(17) by the use of the numerical integration formula; this error decreases

with increasing N. If the CN(xi) are neglected, the resulting set of equations

may be solved to obtain approximate values of the f(xi). These approximate

values may be used in the Gaussian integration of equations (18) and (19) to

obtain approximate values of C and A An extensive discussion of this
eq”

technique has been given by Kantorovich and Krylov [Ref. 9, Chap. 11, 51].

Kaneorovich and Krylov also deduce bounds on the error involved in the

above procedure. Unfortunately, their equation for the error bound involves

elements of the matrix inverse to that implied by equations (41). These

matrix elements are not produced naturally in any efficient method of solving

equations (41’),and so we must rely on the brute-force error estimation method

of doubling N until the calculated C or A remains the same to the number of
eq

significant figures desired. However, we need not make this check at every

value of T. The error in approximating equation (17) by equations (41) without ●

the &N(xi) decreases with decreasing T, so that.if we find, for instance, an

N good enough for a T of .9, that N will also be good enough for all–T less *

than .9.

.. .,



The numerical results for C and A are given in tables 1 through 4
eq

and in figures 2 through 5. The normalizations of C and A for tables 1 and
eq

2 and figures 2 and 3 have been chosen to give only a small variation in the

tabulated quantities over the whole range of a. Tables 3 and 4 and figures

4 and 5 have been included to give more extensive data for the important

values of a close to Tr/2(B close to zero). “

19
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a

oE
1

2

3

4

5

6

7

8

.“
Table 1

This table gives the value of the capacitance between two spherical bowls located symmetricallyon a

sphere of radius a. The capacitanceis tabulated as a fu~ction of a, the half-angle subtended at the

center of the sphere by one Of the bowls, and it is normalized to 4ca sin a. The first digit of a, in

degrees, is to be read from the left-hand column, while the second digit is to be read from the top row.

o

1.00000

1.06168

1.13806

1.23416

1.35796

1.52281

1.75377

2.10654

2.75580

1

1.00562

1.06859

1.14667

1.24513

1.37231

1.54236

1.78217

2,15293

2.85758

2

1.01134

1.07564

1.15550

1.25639

1.38707

1.56258

1.81181

2.20219

2.97200

3

1.01719

1.08286

1.16423

1.26793

1.40228

1.58352

1.84275

2.25465

3.10239

4

1.02316

1.09023

1.17377

1.27978

1.41794

1.60519

1.87512

2.31066

3.25364

5

1.02925

1.09776

1.18324

1.29194

1.43408

1.62767

1.90903

2.37071

3.43334

6

1.03547

1.10546

1.19294

1● 30443

1.45072

1.65100

1.94459

2.43534

3.65418

7

1.04181

1.11334

1.20286

1.31727

1.46790

1.67520

1.98195

2.50521

3.93988

8

1.04829

1.12139

1.21304

1.33045

1.48561

1.70036

2.02128

2.58117

4 ● 34380

9

1.05491

1.12963

1.22347

1.34402

1.50391

1.72653

2.06273

2.66424

5.03587
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Table 2

This table gives the value of the equivalent area of an electric field sensor made up of two spherical

bowls on a sphere of radius a. The equivalent area is tabulated as a function of a, the half-angle

subtended at the center of the sphere by one of the bowls, and is normalized to 3naL sin a. The first

digit of a, in degrees, is to be read from

to a
P

o

1

2

3

4

5

6

7

8

from the top row.

o

.848826

.892063

.927294

.954584

.974392

.987548

.995212

.998803

.999898

1

.853504

.895949

.930377

.956891

.975991

.988541

.995729

.998998

.999929

2

.858103

.899754

.933379

.959122

.977523

.989478

.956207

.999171

.999953

3

.862625

.903478

.936302

.961280

.978990

.990364

.996648

.999321

.999972

the left-hand column, while the second digit is to be read

4

.867068

.907122

.939146

.963367

.980395

.991198

.997051

.999452

.999983

5

.871433

.910684

.941912

.965379

.981736

.991984

.997420

.999562

.999991

6

.875719

.914168

.944601

.967321

.983017

.992720

.997756

.999657

.999996

7

.879924

.917570

.947211

.969192

.984236

.993410

.998061

.999736

.999998

8

.884051

.920892

.949745

.970994

.985398

.994054

.998337

.999d02

.999999

9

.888097

.924133

.952203

.972727

.986501

.994654

.998584

.999855

1.00000



.

Table 3

This table givee the capacitance of a single-gaphollow spherical dipole sensor whose sphere radius is

a. The capacitance is normalized to 4Ea and is tabulated as a function of the half-angle of the gap,

0. The first two decimal points of f3,in radians, are to be read from the lefti-handcolumn, while the

third decimal point is to be read from the top row.

f3 o

m
t+ .00 ~

.01 5.59226

.02 4.89881

.03 4.49289

.04 4.20464

.05 3.98079

.06 3.79766

.07 3.64258

.08 3.50802

.09 3.38912

1

7,89496

5.49693

4.84997

4,46005

4.17987

3.96092

3,78104

3.62829

3.49549

3.37794

2

7.2(3180

5.40988

4.80342

4.42826

4.15571

3.94141

3.76468

3.61422

3.48312

3.36691

3

6.79632

5.32982

4.75893

4.39742

4.13213

3.92229

3.74859

3.60031

3.47088

3.35597

4

6.50863

5.25568

4,71633

4.36752

4.10906

3.90353

3.73276

3.58660

3.45880

3.34515

5

6.28547

5.18665

4.67545

4.33847

4.08652

3.88508

3.71716

3.57308

3.44684

3.33445

6

6.10313

5.12208

4.63618

4.31025

4.06446

3.86699

3.70181

3.55973

3.43503

3.32385 .

7

5.94897

5.06144

4.59840

4.28279

4.04289

3.84920

3.68667

3,54655

3.42336

3.31338

8

5.81543

5.00424

4.56198

4.25606

4i02177

3.83174

3.67177

3.53355

3.41183

3.30300

9

5.69765

4.95014

4.52684

4.23001

4.00106

3.81455

3.65706

3.52071

3.40’041

3.29271

r ●
●
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Table 4

This table gives the equivlent area of a single–gaphollow spherical dipole sensor whose sphere radius

is a. This area is normalized to 3ra2 and is tabulated as a function of the half-angle of the gap, 6.

The first two decimal points of B, in radians, are to be read from the left-hand column, while the third

decimal point is to be read from the top row. In all cases here the first two decimal points of the

normalized area are .99; we tabulate the next four decimal points.

.00

.01

.02

.03

.04

.05

.06

.07

.08

.09

0

9950

9799

9551

9199

8749

8199

7546

6796

5943

1

9999

9940

9779

9519

9159

8698

8138

7476

6714

5853

2

9998

9928

9758

9488

9118

8648

8076

7406

6632

5762

3

9996

9916

9736

9456

9075

8595

8014

7332

6551

5668

4

9992

9902

9712

9423

9032

8541

7951

7259

6467

5575

5

9988

9888

9688

9387

8987

8486

7886

7184

6383

5479

6

9982

9873

9661

9352

8940

8432

7819

7109

6297

5384

7

9976

9856

9635

9316

8895

8375

7753

7031

6210

5287

8

9968

9839

9608

9277

8847

8317

7686

6955

6123

5190

9

9960

9819

9580

9239

8799

8285

7617

6876

6032

5090
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Figure 1: Two identical spherical bowls with half-angle a located
symmetrically on the surface of a sphere of radius a.
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Figure 2: Capacitance between two spherical bowls versus the gap half–angle.
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Figure 3: Equivalent area of spherical bowl sensor versus the gap half-angle.
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Appendix

For completeness, we present here the well-known solutions of the two

integral equations,

x

J f(y)dy
= g(x) o < x < asm

o (Cos y - Cos x)%
(Al)

and ,

T

~

f(y)dy
= g(x) OSa < x < 7T .

x (Cos x - Cos y)+

(A.2)

These equations are special cases of two more general integral equations that

have been solved by Srivastav [Ref. II]. Because the solutions of Srivastav’s

equations may be useful in other applications, we will present these solutions

first. We will then specialize them in order to write the solutions of

equations (Al) and (A.2) in a simple form.

Let us first examine the integral equation,
>

x

J

f(y)dy
= g(x) a <x< b , (A.3)

a {w(x) - w(y)l’

where O < u < 1 and’w(x) possesses a positive derivative in (a,b). If one

multiplies both sides of equation (A.3) by

w’(x)

{w(z)
1-p

- w(x))

integrates over x from a to z, and interchanges

the left-hand side, he obtains

In the

to the

Y

the order of integration on

zz

hf(y)dy
W’(x)dx

~

W’(x)g(x)dx
l-p = l-p . (A.4)

y {w(x) - w(y)}~{w(z) - w(x)} a {w(z) - w(x)}
a

inner integral on the left-hand side of

new independent variable,

~ = w(x) - w(y)
w(z) - w(y)

equation (A.4), one can change

>

.. ..,



and obtain the integral defining the beta function [Ref. 7, p. 71,

1

= Tr Csc mu .

If one substitutes this value in equation (A.4) and differentiates,he obtains

the solution to equation (A.3) in the form

z
Sill v df(z) = ~

\

wt(x)g(x)dx
“z

a {w(z)
l-p “

- w(x)}
(A.5)

In a similar manner, Srivastav has also shown that the solution of the

equation,

b

i
f(y)dy

= g(x) a <x< b ,

J {w(y) - W(x)}p -
x

where u and w(x) have the same properties

in the form

z

If we now choose p to be ~ and w(x)

(A.6)

as in equation (A.3),may be written

W’(x)g(x)dx
l-u ‘

(A.7)
{w(x) - w(z)}

to be (1 - cos x), it is clear from

equation (A.5) that the solution of equation (Al) is

z

f(z)=+”+
J

sin x g(x)dx
(A.8)

o (Cos x - Cos z)*“

It also follows, as a special case of equation”(A.7), that the solution of

equation (A.2) is

IT

f(z) =-+.& J sinx g(x)dx
.

(Cos z - Cos x)$
z

.

30
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