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Abstract

The time variation is obtained of the total current induced on a

cylindrical post between a parallel-plate waveguide by a step-function

plane wave traveling between the plates.

The resonant frequency and the decay time constant of the fundamental .

mode of the post current and the field enhancement factor, defined as the

ratio of the u&ximum surface charge density to the late-time surface charge

density on the end cap of the post, are calculated for various plate spacings

and two given values of the post’s diameter-to-length ratio. The frequency

variation and the time history of the surface charge density on the end caP

of the post are also given in graphical form for several values of plate

separation.
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I. Introduction

This note is the continuation of a previous study on the electromagnetic

interaction of a site structure with a two-parallel-plate simulator, with the
1

site structure taller than the top plate of the simulator. Here, we study

the same problem for the case in which the top plate is higher than the site

structure. The result of this study will be reported in two separate notes.

The present note is devoted to calculating the response of a post to a step-

function incident plane wave traveling between two parallel plates, In a

subsequent note, a circular hole will be made in the top plate of the simulator

and we will seek a “compromised” hole si’zefor minimum electromagnetic inter-

action between the post and the simulator.

Recently, some results have been reported by Taylor and Steigerwald on

the same problem that we are considering here.
2

However, there are several

different aspects between their work and ours. Firstly, our approach to

the problem differs from that of Taylor and .steigerwald. Our formulation

is based on using the magnetic field and we arrive at an integral equation

of the second kind for the axial current on,the post, whereas their formulation

is based on using the-electr-icfield ‘and they end “up with an integral equation

of the first kind for the axial current with a constant determined by the

boundary condition on the current at the “end” of the post. It is well known

that an integral equation of the second kind is more suitable for numerical

solution tha~,one of the first

the post is taken into account

the effect of the end cap in a

surface charge density there.

kind.3 Secondly, the effect of the end cap of

in this note. Thirdly, because we account for

reasonably accurate way we can calculate the

The quantity of particular interest is the field

enhancement factor defined as the ratio of the maximum surface charge density

to the late-time surface charge density on the end cap when the post is

exposed to a step-function incident wave.

In section II, an integral equation for the axial current on the post -=

is derived by applying directly a Green’s theorem for axisymmetric bodies.

This integral equation is then solved numerically in section III. Numerical

results are given in graphical form for the variation of the post current

(a)with frequency at the base of the post, (b) along the post at resonant



frequencies, and (c) with the plate separation at resonant frequencies. We

also calculate, for a step-function incident wave and for several plate

separations, the time behavior of the post current from which we deduce its

decay time constant for various plate separations. In section IV, we tab-

ulate the field enhancement factor and give the frequency variation and time

history of the surface charge density at the post’s end for several plate

spacings and two given values of the post~s radius-to-length ratio.
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II. Integral Equation for the Post Current

A direct application of equation (A.7) in reference 1 to the space

between the parallel perfectly conducting plates and outside the perfectly

conducting cylindrical post (Fig. 1) gives

h

H$(p,z) = H
inc

f
~ (P,z) + [H$$ (P’G)] dz ‘

o P’=a

a

~
+ [H4 ;~ G] p’dp’

zf=h
o

where G satisfies the equation

32

[—
+Ia l:a2:k21G= - 6(2 - z’)

6(p-p’)——- —

ap2
p ap P2 azz P’

between the two plates and the boundary conditions

$G=O when z = 0,s ,

For an incident harmonic plane wave given by

g
inc

=-eHei&
-yO

1
we have, after averaging with respect to $,

Hint

+
= - iHoJl(kp) ,
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Figure 1. A cylindrical post between a parallel-plate
Two equivalent situations: A and B.

waveguide:
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Jl being the Bessel function of the first kind of order one. Defining

hq(p,z) = H4(P,Z)/Ho

K(p,z;a,z’) = - [~ (P’G)]
01=a

we obtain from (1)

h

‘h~ ~(a,z) +
~
K(a,z;a,z ’)hl(a,z’)dz’

o

(3)

on the surface of the cylinder (i.e. p = a, O < z < h). In terms of the

currents I(z) = 2raH@(a,z) and Ie(p) = 2~pH@(p,h), equation (3) becomes

h
1
~I(z) + hK a,z;a,z’)I(z’)dz’
L J

o

a

= - 2niaHoJl(ka) + a
J

Ie(P’)[~] dp ‘

o
z’=h

(4)

By assuming
.

Ie(P) = I(h)Cl - (1 - p2/a2)2’3] (5)
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one obtains an integral equation for I from (4). This assumption for I~ has

been checked against the numerical solutions of the coupled integral equations

involving I and Ie for ka < 1.2 in reference 3, and the accuracy of the

assumption has been found to be excellent. It is expected that this assumption

still holds true in the present situation if the separation between the top plate

and the post’s end is greater than the post~s radius. In our subsequent

numerical computation, equation (5) will be used.

We now proceed to find the Green’s function G from (2). By the theory

of images and equation (A.5) of reference 1 we can immediately write down

where

(6)

2
R(+) = [(2ms+z+ z’) +p2+p’2- 2pp’ Cos $+
Ill

R(-) ~[(2ms- z+z’)2+p2+p ’2 -2pp’ cOS $$ .
m

Equations {4), (5) and (6) constitute the mathematical formulation of our

problem.
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III. Numerical Results

The integral equation (4) for the post current was numerically solved

with the aid of an electronic computer for two values of a/h (.1 and .01)

and several values of h/s. Figures 2a and 2b are plots of the post current

at the base (z = O) against kh. It is seen from these,plots that the resonant

frequencies are quite insensitive to the separation of the two plates. For

a/h = .1, koh~ 1.3 and for a/h = .01, koh - 1.5, where k. is the wave number

of the first resonance of the post current. These values of k. apply to all

plate separations within 10% or so. Figures 3a and 3b show the variation of

the current at k. along the post. In Fig. 4 the magnitude of the post current

at k. normalized with respect to that for infinite plate separation is plotted

against the plate separation. For s/h > 3 the two curves in Fig. 4 oscillate

about unity with decreasing amplitude, This phenomenon is expected from the

interactions of the post with its images.

For a step-function incident plane wave whose magnetic field vector is

J& (X,t) = -&yHoU(t - X/C)

the time history of the post current at z = O is plotted in Figs. 5a and 5b

for a/h = .1 and in Figs. 6a and 6b for a/h = .01 with the plate separation

as a parameter.

The decay time, Ts, of the fundamental mode of the post current normal-

ized with respect to the free-space value Tm (i.e., when the two plates are

separated infinitely far apart) is given in Table I and also plotted in Fig.

7* Note that in Table I we tabulate Ts/T~ for various values of h/s, while

in Fig. 7 we plot TS/T= against s/h. The values of ~s were obtained by fitting

the envelopes of the curves in Figs. 5b and 6b to an exponential curve

exp[- ct/(h~s)].

One can see from Figs. 5a and 5b that the quantity, I(O,t)/(hHo),
.

reaches its maximum value 2.52 at et/h = 1.1 for a/h = .1, and that it

reaches its maximum value 1.34 at et/h = 1.0 for a/h = .01. These maximum

values hold true for all plate separations within 2% or so.
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Figure 2a. Post current at z = O versus frequency.
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Figure 2b. Post current at z = O versus frequency.
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Figure 3a. Magnitude of current versus position around resonant frequency’(koh = 1.3).
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Figure 3b.” Magnitude of current versus position around resonant frequency (koh = 1.5).
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Figure 5a. Time history of post current at z - 0 with plate separation as parameter.
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Figure 6a. Time history of post current at z = O with plate separation as parameter.
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Table 1. Decay time

(Tm = 4.732 for a/h = .1, Tm = 7.325 for a/h = .01)

h/S T~/7m T~/Tw

(a/h= .1) (a/h= .01)

.9 .646 ‘>.541

.8 .650 .611

.7 .625 .760

.6 ●579 .965

*5 .938 1.170

.4 1.231 1.140

.3 1.074 .903

0 1.000 . 1.000
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IV. Field Enhancement at the Post’s End

Referring to the two-parallel-plate El@ simulator depicted in Fig. 1

one would naturally worry about the air breakdown near the end of the post

where the electric field strength is most intense. To estimate the field

strength there we will calculate the surface charge density, Oo, from a

knowledge of the total axial current at the post’s end (i.e., z = h), since

the surface charge density is a measure of the total electric field on a

perfect conductor. CTothus calculated is then the surface charge density

averaged with respect to $, which is she same thing as the zeroth mode in

the Fourier series expansion of u = .~ urncos m$.
m=o

Integrating the continuity equation
.

v’ &=-$ (7)

over a disk on the end of the post (i.e., a disk defined by z = h, O < p < a),

one immediately gets

aO

=&e(p,t) = 2TP -#

where

27T

- Ie(p,t) =
\

KP(p,$,t)~d+

o

2T

Uo(p,t) +;
~

a(p,$,t)d$

o

We now substitute (5) into (8) to get

a00
2

—= — I(h,t)
. (l - ~2,a2)-1/3

at
.3na2

which, upon integration and after normalization, gives

(8)

(9)
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cJo(Pjt)
et/h

=+ (+)2 Jl(:;t’)d($) ● (1 - pz/a2)-l/3
EE

00 0
0

(lo)

In the frequency domain (9) becomes, after normalization,

Note that (11) has the appropriate singular

, (1 -p2/a2)-~/3 + (11)

behavior at low frequencies.

We have checked equation (11) against some accurate numerical calculations

for the case a/h = .25 and kh = O, and only 3% difference was found in ~he

two different methods of calculation, The agreement would become better as

a/h gets smaller.

In Table II, we give the values of Cs, Cr/CS and Cm/CS for various

values of h/s, where

:m (~)2 Limc5=— ~I(k,h)I
~MO (kh)(hHo)

2 h2 lI(k,h)l

{

kh
Cr == (~)

(kh)(hHo)
for

kh

‘1
2 h*
3T (#cm=— J I(h,c)

hH
d(~) , TI =

o
0

= 1.3 when a/h = .1

= 1.5 when a/h = .01

the first zero crossing in the

time-history curves of the current

If one wishes, one can call Cr/Cs the field enhancement factor at the first

resonant frequency and C /Cs the maximum field enhancement factor.
m

Figures 8a and 8b display the frequency variation of the surface charge

density with the plate spacing as a parameter. It can be seen that the resonant

frequencies are quite insensitive to the plate separation. In these figures,

\ is defined to be the coefficient of equation (11), i.e., .

~ ~~)z lI(k,h)\ ‘
ck=3m a (kh)(hHo) “
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Table II. Surface charge density on the post’s end

a/h= .1 a/h = .01

Ills

.9

.8

.7

.6

.5

.4

.3

0

The time history of

cr/c
s

1.086

1.502

1 ● 744

1.990

2.422

2.762

2.416

2,502

cm/cs

1,448

1.465

1.483

1.501

1.513

1.532

1.541

1.547

Cs

-k%%

71, %9
:,,, / :

4A-U

&&&-

6’s6

&w
<.

67:35

6ki7

Crlc
s

2.434

2.993

3.596

4.335

4.771

4.301

4.098

4,244

cmlc~

1.667

1.667

1.684

1.691

1.701

1.709

1.713

1.715

the surface charge density is plotted in Figs. 9a

and 9b. As time increases, these curves oscillate about unity with decreasing

amplitudes. In these figures, Ct is defined as the coefficient of equation

(10), i.e.,

et/h

=+ (:)2
1

I(h,t’) d(~) ●

Ct
hHo

o

.
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Figure 8a. Frequency variation of surface charge density at the post’s end with plate
separation as parameter.

I

)



1
.

.

5

4

I ‘h/~- .5
1 I 1 I 1 I I

=0

—. 8

0

kh

Fig~re 8b. Frequency variation of surface charge density at the post’s end with plate
separation as parameter.



1:6

1;4

1.2

1.0

ct/c~

m
m .i!

.4

I I I 1 I I
2 4 6

I I
8

1
10 12 14 16 18

et/h

Figure 9a. Time history of surface charge density at the post’s end with plate separation
as parameter.

! I



. I

, ‘1

1.6

1.4

1.2

1.(

CJC.
m
.-l

.&?

.4

.

I I I I 1 I I I !

. .

,
.’

2 4 6 8 10 12 14 16 18 20

1. et/h

Figure 9b. Time history of surface charge density at the post’s end with plate separation
as parameter.



. .

1.

2.

3.

4.

5.

References

R. W. Latham, K. S. H. Lee, and R. W. Sassman, “Minimization of current

distortion on a cylindrical post piercing a parallel-plate waveguide,”

Sensor and Simulation Notes, No. 93, September 1969.

C. D. Taylor and G. A. Steigerwald, “On the pulse excitation of a cylinder

in a parallel plate waveguide,~tSensor and Simulation No~es, No. 99,

March 1970.

D. L. Phillips, “A technique for the numerical solution of certain

integral equations of the first kind,” J. Assoc. Comput. Hachinery, ~,

pp.84-97, 1962.

R. W. Sassman, “The current induced on a finite, perfectly conducting,

solid cylinder in free space by an electromagnetic pulse,” EMP Interaction

Note XI, July 1967,

T. T. Taylor, “Electric

cylinder,’tJ. Res. NBS,

polari.zabilityof a short right circular conducting

64B, NO. 3, p. 135, 1960.

1

28



.

SSN 111

Errata Sheet No. 1

R. W. Latham and K. S. H. Lee, “Electromagnetic Interaction Between a Cylindrictll

Post and a Two-Parallel-Plate Simulator, I“ SSN 111, July 1970.

On page 23, Table II should read as follows:

hlS

.9

.8

.7

.6

●5

.4

.3

0

a/h= .1
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7.512
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6.481

6.332
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1.086
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1.744

1.990

2.422
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2.416

2.502

cm/c
s

1.448

1.465

1.483

1.501

1.513

1.532

1.541

1.547

a/h = .01

Cs Crlc cmlc~
s
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32.96

32.72

32.57

32.51

32.38

2.434 1.667

2.993 1.667

3.596 1.684

4.335 1.691

4.771 1.701

4.301 1.709

4.098 1.713

4.244 1.715
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